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Dense random packings of hard particles are useful models of granular media and are closely related to the
structure of nonequilibrium low-temperature amorphous phases of matter. Most work has been done for
random jammed packings of spheres and it is only recently that corresponding packings of nonspherical
particles �e.g., ellipsoids� have received attention. Here we report a study of the maximally random jammed
�MRJ� packings of binary superdisks and monodispersed superballs whose shapes are defined by �x1�2p+ ¯

+�xd�2p�1 with d=2 and 3, respectively, where p is the deformation parameter with values in the interval
�0,��. As p increases from zero, one can get a family of both concave �0� p�0.5� and convex �p�0.5�
particles with square symmetry �d=2�, or octahedral and cubic symmetry �d=3�. In particular, for p=1 the
particle is a perfect sphere �circular disk� and for p→� the particle is a perfect cube �square�. We find that the
MRJ densities of such packings increase dramatically and nonanalytically as one moves away from the
circular-disk and sphere point �p=1�. Moreover, the disordered packings are hypostatic, i.e., the average
number of contacting neighbors is less than twice the total number of degrees of freedom per particle, and yet
the packings are mechanically stable. As a result, the local arrangements of particles are necessarily nontrivi-
ally correlated to achieve jamming. We term such correlated structures “nongeneric.” The degree of “nonge-
nericity” of the packings is quantitatively characterized by determining the fraction of local coordination
structures in which the central particles have fewer contacting neighbors than average. We also show that such
seemingly “special” packing configurations are counterintuitively not rare. As the anisotropy of the particles
increases, the fraction of rattlers decreases while the minimal orientational order as measured by the tetratic
and cubatic order parameters increases. These characteristics result from the unique manner in which super-
balls break their rotational symmetry, which also makes the superdisk and superball packings distinctly differ-
ent from other known nonspherical hard-particle packings.
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I. INTRODUCTION

Particle packing problems, such as how to fill a volume
with given solid objects as densely as possible, are among
the most ancient and persistent problems in science and
mathematics. A packing is a large collection of nonoverlap-
ping solid objects �particles� in d-dimensional Euclidean
space Rd. The packing density � is defined as the fraction of
space Rd covered by the particles. Dense ordered and ran-
dom packings of nonoverlapping �hard� particles have been
employed to understand the equilibrium and nonequilibrium
structure of a variety many-particle systems, including crys-
tals, glasses, heterogeneous materials and granular media
�1–4�. Packing problems in dimensions higher than three at-
tract current interest for retrieving stored data transmitted
through a noisy channel �5–8�.

The packings of congruent hard spheres in R3 have been
intensively studied since despite the simplicity they exhibit
rich packing characteristics. It is only recently that the dens-
est packings with �max=� /�18�0.74, realized by the face-
centered cubic lattice and its stacking variants, have been
proved �9�. In addition, three-dimensional random packings
can be prepared both experimentally and numerically with a
relatively robust density ��0.64 �10,11�. The term random
close packing �RCP� �12�, widely used to designate the

“random� packing with the highest achievable density, is
ill-defined since random packings can be obtained as the
system becomes more ordered and a definition of random-
ness has been lacking. A more recent concept that has been
suggested to replace RCP is that of the maximally random
jammed �MRJ� state �11�, corresponding to the most disor-
dered among all jammed �mechanically stable� packings. A
jammed packing is one in which the particle positions and
orientations are fixed by the impenetrability constraints and
boundary conditions �13�. It has been established that the
MRJ state for spheres in R3 has a density of ��0.637, as
obtained by a variety of different order metrics �13,14�. This
density value is consistent with what has traditionally been
associated with RCP in three dimensions.

It has been argued in the granular materials literature that
large disordered jammed �MRJ� packings of hard frictionless
spheres are isostatic �15,16�, meaning that the total number
of interparticle contacts �constraints� equals the total number
of degrees of freedom of system and that all of the con-
straints are �linearly� independent. This implies that the av-
erage number of contacts per particle Z is equal to twice the
number of degrees of freedom per particle f �i.e., Z=2f�, in
the limit as the number of particles gets large. This prediction
has been verified computationally with very high accuracy
�17,18�. On the other hand, a packing is hypostatic if it is
mechanically stable �i.e., jammed� while the number of con-
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straints is smaller than the number of degrees of freedom.
For large packings, this is equivalent to the inequality Z
�2f . It has been shown that a jammed sphere packing can-
not be hypostatic �17�.

It is also of great practical and fundamental interest to
understand the organizing principles of dense packings of
nonspherical particles �19–28�. The effect of asphericity is an
important feature to include on the way to characterizing
more completely real dense granular media as well as low-
temperature states of matter. Another important application
relates to supramolecular chemistry �29� of organic com-
pounds whose molecular constituents can possess many dif-
ferent types of symmetry groups �30�. Such systems can be
approximated by nonspherical hard particles with the same
symmetry groups.

Recently, MRJ packings of three-dimensional ellipsoids
�31,32� have been studied. In particular, it was found that the
density � and the average coordination number Z �the aver-
age number of touching neighbors per particle� increase rap-
idly, in a cusplike manner, as asphericity is introduced from
the sphere point. The density � reaches a maximum at a
critical aspect ratio �� �33� and then begins to decrease;
while Z increases monotonically until it attains a plateau
value for all � beyond ��. In addition, Z is always smaller
than twice the number of degrees of freedom per particle f
with its plateau value slightly below 2f �for an ellipse f =3
and for an ellipsoid f =6�. In other words, the packings are
hypostatic �32�. The characteristics of MRJ ellipsoid pack-
ings are distinctly different from their densest crystalline
counterpart �21�, in which � increases smoothly as one
moves away from the sphere point, and reaches a plateau
value of 0.7707. . . for ���3 �oblate spheroids� and �
�1 /�3 �prolate spheroids�.

In Refs. �25,26�, we studied dense and maximally dense
packings of superballs, a family of nonspherical particles
with versatile shapes. In particular, a d-dimensional superball
is a centrally symmetric body in Rd occupying the region

�x1�2p + �x2�2p + ¯ + �xd�2p � 1, �1�

where xi �i=1, . . . ,d� are Cartesian coordinates and p�0 is
the deformation parameter, which indicates to what extent
the particle shape has deformed from that of a d-dimensional
sphere �p=1�. Henceforth, the terms superdisk and superball
will be our designations for the two-dimensional �d=2� and
three-dimensional �d=3� cases, respectively. A superdisk
possesses square symmetry, as p moves away from unity,
two families of superdisks can be obtained, with the corre-
sponding fourfold rotational symmetry axes rotated by 45°
with respect to each other; when p�0.5, the superdisk is
concave �see Fig. 1�. A superball can possess two types of

shape anisotropy: cubelike shapes �for p�1� and octahe-
dronlike shapes �for 0� p�1� with a shape change from
convexity to concavity as p passes downward through 0.5
�see Fig. 2�.

Optimal packings of congruent superdisks and superballs
apparently are realized by certain Bravais lattices possessing
symmetries consistent with those of the particles �25,26,28�.
Even these crystalline packings exhibit rich characteristics
that are distinctly different from other known packings of
nonspherical particles. For example, we found that the maxi-
mal density �max as a function of p at p=1 �the sphere or
circular-disk point� is nonanalytic and increases dramatically
as p moves away from unity. In addition, we have discovered
twofold degenerate maximal density states for squarelike su-
perdisks, and both cubelike and octahedronlike superballs.

In this paper, we generate both packings of binary super-
disks in R2 and monodispersed superballs in R3 that repre-
sent the MRJ state of these particles, using a novel event-
driven molecular dynamics algorithm �34,35� and investigate
their characteristics. For both superdisks and superballs, we
find that the corresponding density � and the average contact
number Z increase rapidly, in a cusplike manner, as the par-
ticles deviate from perfect circular disks and spheres, respec-
tively. In particular, we find that the MRJ packing density �
increases monotonically as p moves away from unity, and
shows no signs of a plateau even for large p values. This is to
be contrasted with the case of ellipsoids for which the pack-
ing density reaches a maximum as the aspect ratio increases
from its sphere point value and then begins to decrease as the
aspect ratio grows beyond that associated with the density-
maximum value.

Moreover, we find that Z for superdisk and superball
packings reaches its associated plateau value at relatively
small asphericity deviations �i.e., �p−1�� and the packings
remain highly hypostatic for all values of p examined. By
“highly hypostatic,” we mean that Z is much smaller than
twice the number of degrees of freedom per particle. This is
to be contrasted with random ellipsoid packings in which the
asymptotic value of Z for large aspect ratios �i.e., the plateau
value� is only slightly below 2f . Therefore, to achieve jam-
ming, the local particle arrangements are necessarily corre-
lated in a nontrivial way. We call such correlated structures
“nongeneric” �36�. We quantify the degree of “nongeneric-
ity” of the packings by determining the fraction of local co-
ordination configurations in which the central particles have
fewer contacting neighbors than average Z. We also show
that such “nongeneric” configurations are not rare, which is a
rather counterintuitive conclusion. In addition, we find that
although the rapid increase of density is unrelated to any
observable translational order, the orientational order �e.g.,
the tetratic and cubatic order parameters �37�� increases as p

FIG. 1. �Color online� Superdisks with different values of the
deformation parameter p.

FIG. 2. �Color online� Superballs with different values of the
deformation parameter p.
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moves away from unity. These packing characteristics,
which are distinctly different from that of the MRJ packings
of ellipsoids, are due to the unique way in which rotational
symmetry is broken in superdisk and superball packings.

The rest of the paper is organized as follows: in Sec. II,
we briefly describe the simulation techniques and the ob-
tained packings. In Sec. III, we provide a detailed analysis of
the novel packing characteristics. In Sec. IV, we make con-
cluding remarks.

II. MAXIMALLY RANDOM JAMMED PACKINGS
VIA COMPUTER SIMULATION

We use an event-driven molecular dynamics packing al-
gorithm recently developed by Donev, Torquato, and Still-
inger �34,35� �henceforth, referred to as the DTS algorithm�
to generate MRJ packings of convex superdisks in two di-
mensions and superballs in three dimensions. The DTS algo-
rithm generalizes the Lubachevsky-Stillinger �LS� sphere-
packing algorithm �38� to the case of other centrally
symmetric convex bodies �e.g., ellipsoids and superballs�.
Initially, small particles are randomly distributed and ran-
domly oriented in the simulation box �fundamental cell� with
periodic boundary conditions and without any overlap. The
particles are then given translational and rotational velocities
randomly and their motion followed as they collide elasti-
cally and also expand uniformly with an expansion rate 	,
while the fundamental cell deforms to better accommodate
the configuration. After some time, a jammed state with a
diverging collision rate is reached and the density reaches a
local maximum value. To generate random jammed pack-
ings, initially large 	 are employed to prevent the system
following the equilibrium branch of the phase diagram that
leads to crystallization. Near the jamming point, sufficiently
small expansion rate is necessary for the particles to establish
contacting neighbor networks and to form a truly jammed
packing. On the basis of our experience with spheres �17�
and ellipsoids �31�, we believe that our algorithm with rapid
particle expansion produces final states that represent the
MRJ state well. Here we use the largest possible initial 	
� �0.1–0.5� that is numerically feasible to ensure the gener-
ated superdisk and superball packings are maximally random
jammed. We mainly focus on superdisks and superballs with
deformation parameters p within the range 0.85–3.0, since
extreme values of p associated with polyhedronlike shapes
present numerical difficulties.

All of the generated packings used in the subsequent
analyses are verified to be at least collectively jammed using
an “infinitesimal shrinkage” method �13�, i.e., the particles in
the packing are shrunk by a very small amount �39� and
given random velocities. If no significant structural changes
and no decrease in pressure occur after the system “relaxes”
after a sufficiently long enough time, the packing is consid-
ered to be collectively jammed. It is well established that the
“infinitesimal shrinkage” method is robust, i.e., it always
gives the same results for sphere packings as those obtained
from a rigorous linear programming jamming test algorithm
provided the amount of shrinkage from the jammed state is
sufficiently small for a given number of particles within the
periodic cell �40�.

A. Binary mixtures of MRJ superdisks

In two dimensions, we study MRJ packings of a specific
family of binary superdisk mixtures. We do not use mono-
dispersed superdisk systems here because they easily crystal-
lize into ordered packings �25�. The size ratio 
 of the two
superdisk species is defined as the ratio of the diameter of a
large superdisk over that of a small superdisk and we choose

=1.4. The molar ratio � of the two superdisk species is
defined as the number large superdisks over the number of
small superdisks and we choose �=1 /3. Let N denote the
total number of particles within the periodic simulation box.
For p=1, one obtains the binary circular-disk system which
has been intensively studied as a prototypical glass former
�41�. Typical jammed packing configurations for two differ-
ent values of the deformation parameter �p=0.85 and p
=1.5� are shown in Fig. 3, in which N=1000. We have also
generated MRJ packings with N=250, 500, 625, and 2500,
and we find that statistical fluctuations associated with the
packing characteristics are sufficiently diminished when N
�500. For very large systems �e.g., N=2500�, it is numeri-
cally very expensive to produce truly jammed packings.
Therefore, the characteristics reported here are obtained from
MRJ packings with N=1000 in both two and three dimen-
sions. The density � and the average contact number per
particle Z as a function of p are shown in Fig. 4, which
reveals that the initial rapid increases of � and Z are linear in
�p−1� �42�. The density � increases monotonically as p
moves away from unity and shows no signs of a plateau,
even for relatively large p. In addition, � quickly surpasses
the density of the optimal binary circular-disk packing asso-
ciated with the size and molar ratios employed here, which
contains phase-separate regions of triangular lattice packings
of different sized circular disks �41�. The quantity Z quickly
reaches its plateau value Z��4.7 at p�1.3, which is smaller
than 2f =6, indicating the packings are hypostatic. The tet-
ratic order parameter S4 in two dimensions is defined as S4

= 1
2 �cos�4��	, where � is the angle between the particle axis

and the director, along which the principle axes of the par-
ticles have maximum mutual alignment �37�. The measured
tetratic order parameter is S4�0.06 to 0.48 with the ten-
dency to increase as �p−1� grows.

(b)(a)

FIG. 3. �Color online� Typical configurations of MRJ packings
of binary superdisks for two different values of the deformation
parameter p. The chords show one of the symmetry axes of the
superdisks: �a� p=0.85, �b� p=1.5.
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B. MRJ packings of monodisperse superballs

In three dimensions, monodispersed superballs can be
easily compressed into a jammed random packing due to
geometrical frustration �i.e., the densest local particle ar-
rangement cannot tile space�. Typical jammed packing con-
figurations for two different values of the deformation pa-
rameter �p=0.85 and p=1.5� are shown in Fig. 5, in which
N=1000. The quantities � and Z as a function of p are
shown in Fig. 6, respectively. As in two dimensions, � and Z
increase rapidly, in a cusplike manner �43�, as the particles
deviate from perfect sphere. � increases monotonically as p
moves away from unity, quickly goes beyond the optimal
sphere packing density and shows no signs of plateau, even
for relatively large p values. The contact number per particle
Z reaches its plateau value Z��8.15 at p�1.4, which is
significantly smaller than 2f =12, indicating that the packings
are hypostatic. The cubatic order parameter P4 in three di-
mensions is defined as P4= 3

14��35 cos4 �−30 cos2 �+3�	,
where � is the angle between the particle axis and the direc-
tor, along which the principle axes of the particles have
maximum mutual alignment �37�. The measured cubatic or-
der parameter is P4�0.03 to 0.32, which increases with
�p−1�.

III. PACKING CHARACTERISTICS

A. Rattlers

MRJ packings generated in both two and three dimen-
sions contain a small fraction of rattlers, i.e., particles that

can wander freely within cages formed by their jammed non-
rattling neighbors. When p is close to unity, the fraction of
rattlers is approximately 2.6% and 1.2% for two and three
dimensions, respectively. As p moves away from unity, the
fraction of rattlers decreases quickly and practically vanishes
for large p �e.g., p�2.75�. This behavior results from the
increasing protuberance of the particle shape, which makes it
more difficult to form isotropic cages and also requires more
average contacts per particle to achieve jamming. Note that
rattlers are excluded when reporting average contact num-
bers in the following discussion.

B. Packing density

The rapid increase in the density is mainly due to the
broken rotational symmetry of the particles. In particular, the
cubiclike �squarelike� and octahedral-like particles are more
efficient to cover the space than spheres �circular disks�, i.e.,
near the jamming point the particles can rotate to accommo-
date the neighbors by orienting the “far corners” to fill the
available gaps and thus cover more space. For small values
of p, the increase in � is also attributed to the expected
increase in the number of contacting neighbors per particle,
which means locally more particles can be packed in a given
volume. The manner in which rotational symmetry is broken
in superball packings is distinctly different from that in el-
lipsoid packings. For example, the asphericity �27,28�, de-
fined as the ratio of the radii of circumsphere and insphere of
a nonspherical particle, is always bounded and close to unity
for all values of p for superballs, while it can increase with-
out limit as the largest aspect ratio � grows for ellipsoids.
For very elongated or flakelike ellipsoids with large aspect
ratios, the effect of a very anisotropic exclusion volume be-
comes dominant and causes the density of random ellipsoid
packings to decrease. By contrast, the shape of superballs
becomes more efficient in filling space as the deformation
parameter deviates more from unity and thus results in a
monotonically increasing density. The nonanalyticity of � at
p=1 is also associated with the broken symmetry of superd-
isks and superballs. This nonanalytical behavior has also
been observed in the optimal packings of these particles re-
alized by various Bravais lattices �25,26�. This stands in con-
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FIG. 4. �Color online� The density of MRJ packings of binary
superdisks as a function of p. Insert: the average contact number Z
as a function of p.
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FIG. 5. �Color online� Typical configurations of MRJ packings
of superballs for two different values of the deformation parameter:
�a� p=0.85, �b� p=1.5.
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FIG. 6. �Color online� The density of MRJ packings of super-
balls as a function of p. Insert: the average contact number Z as a
function of p.
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trast to the densest known ellipsoid packings, which are pe-
riodic packings with a two-particle basis possessing a
smooth initial increase of �max as the aspect ratio moves
away from unity �21�.

C. Hypostaticity and nongeneric local structures

There have been conjectures �15,16� that frictionless ran-
dom packings have just enough constraints to completely
statically define the system �i.e., it is isostatic�, i.e., for large
packings, one has Z=2f . It has been shown both experimen-
tally and computationally that although the isostatic conjec-
ture �15� holds for large sphere packings �40,44�, it is gener-
ally not applicable to nonspherical particles, such as
ellipsoids �31,32�. It was found that even for ellipsoids with
large aspect ratios, Z is still slightly below 2f �31�.

Here we observe that in MRJ packings of superdisks and
superballs Z is significantly smaller than 2f for all values of
p examined, i.e., the packings are significantly hypostatic.
The hypostatic packings result from the competition between
fT translational and fR rotational degrees of freedom of the
particles �f = fR+ fT� in developing the contacting networks
close to the jamming point. In particular, although it is true
that to constrain the translational degrees of freedom each
particle needs at least 2fT contacts, rotational degrees of free-
dom can be blocked with less than 2fR additional contacts
per particle if the curvatures at the contacting points are suf-
ficiently small �32�. In addition, due to the relatively small
asphericity of superdisks and superballs, there is little reason
to expect the rotational motions of these particles �especially
those with p close to unity� would be frozen even when they
are translational trapped and may only rattle inside small
“cages” formed by their neighbors. Near the jamming point,
it is expected that the particles can rotate significantly �45�
until the actual jamming point is reached, at which rotational
jamming will also come into play, and rotational degrees of
freedom are frozen with the number of additional contacts
much less than 2fR. This is in contrast to hypostatic MRJ

packings of ellipsoids with large aspect ratios, for which the
translational and rotational degrees of freedom are on the
same footing and, thus, the average contact number per par-
ticle is only slightly below twice the number of total degrees
of freedom.

Furthermore, the local geometry of the MRJ packings is
necessarily nontrivially correlated �nongeneric�, i.e., all the
normal vectors at the points of contact for a particle should
intersect at a common point to achieve torque balance and
block rotations. In light of the isostatic conjecture, the local
packing structures are less nongeneric when they possess
larger contact numbers so that the constraining neighbors are
less correlated. The truly generic local packing structures
should have Z=2f per particle, for which the constraining
neighbors could be completely uncorrelated. To characterize
the nongenericity of the packings, we compute Gng, the frac-
tion of local structures composed of particles with fewer con-
tacts Zlocal than average Zaverage, i.e.,

Gng =
N�Zlocal � Zaverage�

Ntotal
. �2�

A larger Gng indicates a larger degree of nongenericity.
We find Gng is approximately 0.65 in two dimensions and
0.78 in three dimensions when p is close to unity, which
quickly decreases and plateaus at 0.6 and 0.68, respectively
as p increases. Figure 7 shows the distribution of contact
numbers for different p values and the topology of the local
structures contributing to Gng. It can be seen that as p moves
away from unity, the distributions become more skewed as
the means shift to larger Z. Moreover, the subset of particles
associated with the nongeneric structures percolate. We do
not observe any tendency of increasing Z even for the largest
p values that are computationally feasible and we expect that
MRJ packings in the cubic limit are also hypostatic. It is
noteworthy that isostatic random packings of superdisks and
superballs are difficult to construct, since achieving isostatic-
ity requires Z=2f =12 which is necessarily associated with
translational crystallization �46�.

(b)

(a)

FIG. 7. �Color online� �a� Distribution of con-
tact numbers for different p values for MRJ pack-
ings of superdisks �upper panel� and superballs
�lower panel�. �b� Local packing structures with
more contacts than average �shown in dark gray,
or blue online� and those with less contacts than
average �shown in light gray, or pink online� in
two-dimensional superdisk packings for different
p values.
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We note that the aforementioned nongeneric structures
�see Fig. 7�b�� are not rare. In particular, a nonspherical par-
ticle can be rotationally jammed if it has neighbors that can
translationally jam the particle �32�. To illustrate this point,
we will consider a small packing composed of four superd-
isks in two dimensions. Now we show that one can locally
jam a superdisk by three contacting neighbor superdisks.
Translational jamming requires that the centroids of the
neighbors cannot lie in the same semicircle around the cen-
troid of the central superdisk. Suppose a superdisk is trans-
lationally trapped �not jammed� by its three neighbors,
whose positions and orientations are fixed. This four-particle
configuration has four degrees of freedom: two translational
and one rotational degrees of freedom of the trapped particle
as well as the expansion of the particles. To obtain a jammed
configuration, the four degrees of freedom need to be com-
pletely constrained. This can be achieved by the three contact
conditions for the jammed particle and its neighbors and the
requirement that the three inward normal vectors at the con-
tacting points meet at a common point, a sufficient condition
for torque balance �32�. Thus, one has four independent
equations for the four degrees of freedom; see the Appendix
for details.

Figure 8 shows the nongeneric jammed configurations as-
sociated with three specific fixed trapping superdisks. The
multiplicity of the configurations is due to the multiple solu-
tions of the equations. The jamming configurations can be
also obtained using the DTS algorithm, which allows the
trapped particle to translate and rotate and allows all the
particles to grow. Although the above analysis is for local
jamming �i.e., the neighbors of the central particle are fixed�,
it is reasonable to expect that collective particle rearrange-
ments further facilitate the formation of nontrivial orienta-
tional correlations and thus, enable a larger number of non-
generic jamming configurations. Indeed, the numerous
hypostatic jammed packings that we found from our simula-
tions strengthen our argument that nongeneric structures are
not rare.

D. Nonvanishing orientational order

We also observe the increase in the orientational order
�measured by S4 and P4� associated with the increasing p
values, although the largest possible expansion rate 	 has

been used to suppress the formation of orders �i.e., to main-
tain the maximal degree of randomness� �47�. As p deviates
from unity, the particle shape develops “edges” and “cor-
ners” with large curvatures, which may not be able to block
rotational unjamming motions if contacts occur at signifi-
cantly curved regions of the particle surface. On the other
hand, low-curvature contacts are more favorable, which is
associated with partial alignments of the particles. The ten-
dency of particle alignments to form low-curvature surface
contacts required by jamming becomes stronger as the par-
ticle moves further away from the sphere point. Thus, there
is also a competition between orientational disorder and jam-
ming for packings of superdisks and superballs, resulting
from their unique symmetry-breaking manner, which has not
been observed in random packings of ellipsoids. Due to nu-
merical difficulties, we could not use the DTS algorithm to
study the random jammed packings of particles with extreme
shapes, i.e., in the limit p→0.5 and p→�. However, it rea-
sonable to expect considerable orientational ordering in such
packings.

IV. CONCLUSIONS

In this paper, we studied the maximally random jammed
packings of superdisks and superballs. The packing densities
increase dramatically and nonanalytically as one moves
away from the circular-disk and sphere point �p=1� and the
packings are hypostatic. To achieve jamming, the local ar-
rangements of particles are necessarily nontrivially corre-
lated and we term these structures nongeneric in light of the
correlations. The degree of nongenericity of the packings is
quantitatively characterized by the fraction of local structures
composed of particles with fewer contacts than average.
Moreover, we showed that such seemingly “special” packing
configurations are not rare. As the anisotropy of the particles
increases, the fraction of rattlers decreases while the minimal
orientational order increases. The novel features arising in
MRJ packings of superdisks and superballs result from the
unique manner in which rotational symmetry is broken. This
makes such packings distinctly different from other known
MRJ packings of nonspherical particles such ellipsoids and
ellipses.

The ability to produce dense random packings using su-
perballs casts lights on several industrial processes such as
sintering and ceramic formation, where interest exists in in-
creasing the density of powder particles to be fused. If
superball-like particles instead of spherical particles are used,
the packing density of a randomly poured and compacted
powder could be increased to a value surpassing that of the
maximal sphere-packing density. We note that superdisks
and superballs can be experimentally mass produced using
current lithography techniques. Recently, inorganic nano-
crystals possessing similar shapes and symmetry with super-
disks and superballs have been produced through nonhydro-
lytic chemical routes �48�, which make it possible to prepare
and study the behavior of colloidal systems composed of
such nanocrystals and compare them with our simulation re-
sults. The experimental analog of the nongeneric local con-
figurations as shown in Fig. 8 could be detected using a

(b)(a) (c)

FIG. 8. �Color online� Nongeneric locally jammed configura-
tions associated with three fixed superdisks shown in light gray
�pink online� and the trapped one shown in dark gray �blue online�.
In each configuration, the central superdisk is approximately
aligned with one of its fixed neighbors to form at least one contact
such that each face has small curvature in order to block the rotation
of the central particle.
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combination of polarized and depolarized dynamic light scat-
tering �49�.

Understanding the statistical thermodynamics of the jam-
ming transition of superdisks and superballs, especially the
role of rotational and translational degrees of freedom for
different deformation parameters is a subject that merits fu-
ture investigation. Such studies could deepen our under-
standing of the nature of glass transitions, since the prepon-
derance of previous investigations has focused on spherical
particles. Superellipsoids generalize the ellipsoidal shape in
the way that superballs generalize the spherical shape �50�.
Not surprisingly, MRJ-like packings of superellipsoids have
been shown to possess similar packing characteristics as
those of superball packings when the aspect ratio is small
�51�. However, MRJ superellipsoid packings may exhibit
distinctly different features from the analogous superball
packings for larger aspect ratios. We will focus on the pack-
ing properties of such shapes in our future research.
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APPENDIX: EQUATIONS FOR LOCALLY JAMMED
FOUR-SUPERDISK CONFIGURATIONS

In this section, we provide the equations that determine
locally jammed four-superdisk configurations composed of a
trapped central particle and three fixed contacting neighbors
�see Fig. 8�. In particular, the boundary of a superdisk with
radius R is define by


 x1

R

2p

+ 
 x2

R

2p

= 1, �A1�

which can be also expressed by the parametric equations

x1��� = �cos ��1/pR sgn�cos �� ,

x2��� = �sin ��1/pR sgn�sin �� , �A2�

where sgn�x� gives the sign of argument x. Let the centroids
of the three fixed neighbors be �ai ,bi� �i=1,2 ,3�, and the
orientations be �i. Their boundaries are then given by

x1
�i���� = ai + cos �i�cos ��1/pR sgn�cos ��

+ sin �i�sin ��1/pR sgn�sin �� ,

x2
�i���� = bi − sin �i�cos ��1/pR sgn�cos ��

+ cos �i�sin ��1/pR sgn�sin �� . �A3�

Similarly, if the centroid of the central particle is at �ao ,bo�
and its orientation is characterized by �o, its boundary is
specified by

x1
o��� = ao + cos �o�cos ��1/pR sgn�cos ��

+ sin �o�sin ��1/pR sgn�sin �� ,

x2
o��� = bo − sin �o�cos ��1/pR sgn�cos ��

+ cos �o�sin ��1/pR sgn�sin �� . �A4�

Since the positions and orientations of the three neighbors
are fixed, the four-particle system has four degrees of free-
dom, namely the position �ao ,bo� and orientation �o of the
central particle, as well as the radius R of all particles, as
discussed in Sec. III C.

In the jammed configuration, the central particle contacts
all its three neighbors. From Eqs. �A1� and �A4�, the contact
point �x1c

�i� ,x2c
�i�� between neighbor particle i and the central

particle can be expressed in terms of �ao ,bo ,�o ,R�, which
must also lie on the boundary of the neighboring particle i,
i.e.,


 x1c
�i��ao,bo,�o,R� − ai

R

2p

+ 
 x2c
�i��ao,bo,�o,R� − bi

R

2p

= 1,

�A5�

for i=1,2 ,3. This leads to three equations in the variables
ao , bo , �o, and R. In addition, to achieve jamming the three
normals at contacts must meet at a common point, which
guarantees torque balance. The normals at contacts are along
the lines

�x2 − x2c
�i�� = −
 dx1

�i�/d�

dx2
�i�/d�



�x1c

�i�,x2c
�i��

�x1 − x1c
�i�� . �A6�

The aforementioned torque balance condition requires that
the three lines given by Eq. �A6� must intersect at a common
point. This leads to another equation in the variables
ao , bo , �o, and R. Thus, there are four independent equa-
tions for the four degrees of freedom and �ao ,bo ,�o ,R� can
be completely determined for a locally jammed four-particle
configuration.
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