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We report a numerical study on heat conduction in one-dimensional homogeneous lattices in both the linear
and the nonlinear response regime, with a comparison among three prototypical nonlinear lattice models. In the
nonlinear response regime, negative differential thermal resistance (NDTR) can occur in both the Frenkel-
Kontorova model and the ¢* model. In the Fermi-Pasta-Ulam-8 model, however, only positive differential
thermal resistance can be observed, as shown by a monotonous power-law dependence of the heat flux on the

applied temperature difference. In general, it was found that NDTR can occur if there is nonlinearity in the
onsite potential of the lattice model. It was also found that the regime of NDTR becomes smaller as the system
size increases, and eventually vanishes in the thermodynamic limit. For the ¢* model, a phenomenological
description of the size-induced crossover from the existence to the nonexistence of a NDTR regime is

provided.
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I. INTRODUCTION

Heat conduction in low-dimensional systems has become
the subject of a large number of theoretical and experimental
studies in recent years. An existing theoretical problem of
great interest is on the validity of Fourier’s law in low-
dimensional classical systems. In recent years it has been
found that Fourier’s law is not satisfied in momentum-
conserving systems such as the Fermi-Pasta-Ulam (FPU)
chain [1], where the corresponding anomalous heat-
conduction behavior is characterized by a size-dependent
thermal conductivity k«N”. Conflicting results have been
obtained for the value of the exponent v. In the linear re-
sponse regime, the renormalization group theory predicts a
universal value of v=1/3 [2] while some recent calculations
[3,4] based on the mode coupling theory suggest a value of
v=1/3 for the FPU-& model and a value of v=1/2 for the
FPU-$ model. In the presence of a nonlinear on-site poten-
tial, it has been generally conjectured that Fourier’s law is
obeyed (i.e., normal heat conduction), which has been nu-
merically verified for the Frenkel-Kontorova (FK) model as
well as the ¢* model [5-7]. It should be emphasized that
most of these studies focus on the linear response regime, in
which only small temperature differences are applied to the
system. For heat conduction in the nonlinear response re-
gime, only relatively few studies have been carried out. For
example, the existence, and uniqueness of the stationary state
of an anharmonic chain coupled to two heat baths at any
arbitrary temperature difference has been proven in Ref. [8].
The deviation from local equilibrium in the nonlinear re-
sponse regime has also been investigated [9,10]. However,

*dahaihe @ gmail.com

1539-3755/2010/81(4)/041131(7)

041131-1

PACS number(s): 05.70.Ln, 44.10.+1i, 05.60.—k

a general theoretical framework for heat conduction in the
nonlinear response regime is still lacking to date.

The study of heat conduction in low-dimensional systems
also has practical implications. Recently it has been found
that nonlinear systems with structural asymmetry can exhibit
thermal rectification [11-16], which has triggered model
designs of various types of thermal devices such as thermal
transistors [17], thermal logic gates [18], and thermal
memory [19]. It is worth pointing out that most of these
studies are relevant to heat conduction in the nonlinear re-
sponse regime, where the counterintuitive phenomenon of
negative differential thermal resistance (NDTR) may be ob-
served and plays an important role in the operation of those
devices [17-19]. Here, NDTR refers to the phenomenon
where the resulting heat flux decreases as the applied tem-
perature difference (or gradient) increases. It can be seen that
a comprehensive understanding of the phenomenon of
NDTR, which is lacking at the moment, would be conducive
to further developments in the designing and fabrication of
thermal devices.

So far all existing studies on NDTR have been on models
with structural inhomogeneity, for example the two-segment
Frenkel-Kontorova model [17,20,21] and the weakly coupled
two-segment ¢* model [22]. Interestingly, there has not been
any NDTR study on structurally homogeneous models so far,
and it is still not clear whether NDTR can occur in a struc-
turally homogenous lattice and what role structural inhomo-
geneity plays in the exhibition of NDTR. For harmonic sys-
tems attached to Langevin heat baths, theoretical studies [23]
have shown that the heat flux is all the way proportional to
the applied temperature difference, implying the absence of a
NDTR regime. For anharmonic homogeneous systems, how-
ever, there has not yet been any conclusion on whether
NDTR can occur in the nonlinear response regime. In view

©2010 The American Physical Society


http://dx.doi.org/10.1103/PhysRevE.81.041131

HE et al.

of this, we have carried out an extensive investigation on the
heat-conduction behavior of various prototypical homoge-
neous nonlinear lattice models—the FK model, the ¢4 model
and the FPU-B model. It was found that NDTR can occur in
the FK model as well as in the ¢4 model, but not in the
FPU- 8 model. For the ¢* model, we have developed a phe-
nomenological model that eventually predicts the existence
of a critical system size for the occurrence of NDTR.

II. METHOD OF SIMULATION

The homogeneous lattice models investigated in this
study are each described by a Hamiltonian of the form

N 2
H=3 4 Vi =) + ULy, (1)

i=1

For the ith particle along a one-dimensional lattice chain, x;
is the instantaneous displacement of the particle from its
equilibrium position, p; is the particle’s instantaneous mo-
mentum, V(x;,,—x;) is the nearest-neighbor interaction po-
tential, and U(x;) is the onsite potential. The temperatures at
the two ends of the one-dimensional lattice chain are fixed at
T, and T_, respectively. Since exact analytic solutions to
these lattice models are generally very rare, numerical simu-
lations have turned out to be an indispensable tool of inves-
tigation. In our nonequilibrium molecular dynamics simula-
tions, Langevin heat baths [1] were used for controlling the
temperatures at the two ends of each lattice chain and the
fixed-boundary conditions xy=xy,;=0 were employed. For
each of the one-dimensional lattice models under study, the
equation of motion takes the form

JH
Xi=————vXi+m, (2)
ox;
where y,=¢(8;,+06,5) and 7=7,6,1+71_6,5. The noise
terms 7. denote a Gaussian white noise that has a zero mean
and a variance of 2%.kpT.. The heat flux is given by j
=(F(x;y1—x;)Pi+1)> Where F(x)=—=V'(x) and the notation (...)
denotes a steady-state average. At steady states, the numeri-
cally computed local heat flux is always constant along the
chain (i.e., independent of position), and the local tempera-
ture is given by T;=(p?). A rescaled heat flux J=Nj (usually
referred to as the “total heat flux” in the literature [1]) is also
considered for convenience sake. Note that Langevin heat
baths instead of Nosé-Hoover heat baths were chosen for the
simulations because the use of Nosé-Hoover heat baths
might lead to unreliable results in the nonlinear response
regime [24], particularly at very low or very high tempera-
tures.

III. RESULTS

In the language of nonequilibrium thermodynamics, it
would be interesting to understand the behavior of thermo-
dynamic systems when they are driven away from equilib-
rium. For heat conduction in lattice systems described by Eq.
(1), it would be interesting to understand how the resulting
heat flux depends on the externally applied temperature dif-

PHYSICAL REVIEW E 81, 041131 (2010)

8.5 °

8.0—: /
= /
0 /

i .
6.5 1 = Vs
) o ]
-— 6.0 o ®o_ 'e
[ _
< 1 / o—0—©@
5.5 .
-— ]
5.04 /
454 P
4.0—/
3.5-e
T T T T T T T T T T T T T T T T
0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225

AT

FIG. 1. (Color online) FK model: heat flux j as a function of the
applied temperature difference AT=T,—T_. NDTR occurs in an in-
termediate range of AT as indicated by the dotted rectangle. Here,
K=0.5, V=5, T_=0.001, and N=32.

ference AT=T,—T_. When AT is small, the system is only
weakly driven by the thermodynamic force so that the sys-
tem falls within its linear response regime, i.e., the resulting
heat flux j is directly proportional to A7. But when AT is
sufficiently large, the relation between j and AT can become
nonlinear. An instance of this is the exhibition of NDTR
[17-22], which is characterized by the existence of a nega-
tive slope in the plot of j against AT and reminiscent of the
well-known phenomenon of negative differential electrical
resistance (NDER) in tunnel diodes [25]. As mentioned
above, previous NDTR studies have all been on structurally
inhomogeneous systems. This paper presents a first report on
the exhibition of NDTR in homogeneous nonlinear lattices.

A. FK model
The Hamiltonian of the FK model is given by

N2

. K

Hyg = > % + 5()6,41 -x)? cos 27rx;. (3)
i=1

@2m)?
Figure 1 shows the relation between j and AT at K=0.5,
V=5, T_=0.001, and N=32. When AT is sufficiently small, j
and AT are proportional to each other and the system is
within its linear response regime. But at larger values of AT,
i.e., between AT=0.075 and AT=0.15, the system enters a
nonlinear response regime where NDTR occurs. It is inter-
esting to see that the curve in Fig. 1 mimics the typical
NDER curves of tunnel diodes [25].

For the FK model, it was found that the regime of NDTR
varies with the strength V of the onsite potential (Fig. 2). For
decreasing V, the NDTR range of AT becomes smaller. This
can be understood as follows: for decreasing V or increasing
temperature (i.e., increasing AT in our case), it becomes
easier for the particles to overcome the onsite potential via
their thermal energy. Essentially, the system is approaching
the harmonic limit where NDTR cannot occur. In addition, as
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FIG. 2. (Color online) FK model: heat flux j as a function of AT
for V=0.2, 1, 3, 4, and 5. Here, K=0.5, 7_=0.001, and N=32.

illustrated in Fig. 3, our numerical simulations show the ex-
hibition of NDTR for a system size of N=32, 64, and 128
but not for the case of N=512. This suggests that the NDTR
regime generally becomes smaller as the system size N in-
creases. Note that there are two possibilities regarding the
shrinkage of the NDTR regime for increasing system size:
(a) the NDTR regime disappears at some finite critical sys-
tem size N*; OR (b) As long as the system size remains
finite, the NDTR regime still exists; yet, when the system
size is relatively large, e.g., N=512, the NDTR regime falls
at very small values of AT which are not covered by our
numerical simulations and which are possibly in the order of
numerical error. Therefore, the question of whether there ex-
ists a finite critical system size N* above which the NDTR
regime no longer exists can only be answered analytically.
As reported in the next section, this is exactly the case of the
¢* model where our theoretical analysis predicts the exis-
tence of such a critical system size N*. Regarding the system
as equivalent to a set of equal-sized thermal resistors con-
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FIG. 3. (Color online) FK model: rescaled heat flux J=Nj as
a function of AT for N=32, 64, 128, and 512. Here, K=0.5,
T7_=0.001, and V=5.

PHYSICAL REVIEW E 81, 041131 (2010)

nected in series, the overall thermal resistivity of the system
is simply the average over the local thermal resistivity every-
where in the bulk as well as the thermal resistivity at each
individual boundary. As the system size N increases, the ther-
mal resistivity at each boundary carries a smaller weight in
the average thermal resistivity of the system. The coinci-
dence of (a) NDTR occurring mainly in small-size systems
and (b) the relative importance of thermal boundary resis-
tance in small-size systems has led us to the speculation that
NDTR is the result of some kind of boundary mechanisms
(e.g., phonon-boundary scattering) or properties (e.g., ther-
mal boundary resistance) that could potentially influence the
spatially continuous heat flux j. This has motivated us to
carry out an initial study on the relation between boundary
temperature jumps and heat flow. Figure 4 shows how the
heat flux j and the boundary temperature jump [9] OT
=T(N)-T_ vary with the applied temperature difference AT.
A general correlation between j and 67, which corresponds
to the existence of thermal boundary resistance, can be seen.

B. ¢* model

What role does the onsite potential of a lattice model play
in the occurrence of NDTR? Is the occurrence of NDTR
related to the presence of a bounded onsite potential (e.g., the
sinusoidal onsite potential in the FK model)? In this study,
insights have been gained via a NDTR study of the ¢*
model, which has an unbounded onsite potential. Its Hamil-
tonian is given by

N 2

pi 1
Hy = 2+ E(Xm -x)%+

4
+ 4
%5 : @)

X

N

where \ is termed the strength of the quartic onsite potential.
It can be envisaged that the presence of such an “unbounded”
onsite potential will contribute to a difference in conduction
behavior between the ¢* and the FK model. For the FK
model, the particles can, at sufficiently high temperatures,
overcome the “bounded” substrate potential via their thermal
energy so that the system would behave like a harmonic
system without the occurrence of NDTR. For the d>4 model,
since its onsite potential is unbounded, it is expected that
such kind of “harmonic” behavior will not occur. In fact, it
was found that there exists a critical temperature difference
AT" that separates the low-AT regime (i.e., low-temperature
regime for T_ being fixed) of PDTR and the high-AT regime
(i.e., high-temperature regime for 7_ being fixed) of NDTR
(Fig. 5). As shown in the figure, the value of AT* decreases
for increasing \. Unlike the FK model, the ¢* model does
not have an upper bound for its NDTR range of AT. This is
attributed to the “unboundedness” of the onsite potential of
the ¢* model. It was also found that the value of AT* in-
creases for increasing system size N (Fig. 6), and eventually
approaches infinity in the thermodynamic limit. This is simi-
lar to the case of the FK model, where the regime of NDTR
generally becomes smaller for increasing system size. Figure
7 illustrates how the temperature profile of the system
changes for a variation of the system size from N=32 to N
=2048 at some fixed values of T, T_, and A. As in the case
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FIG. 4. (Color online) FK model: heat flux j and the corresponding boundary temperature jump 8T as a function of AT for V=35 (left) and
V=0.2 (right). Here, K=0.5, T_=0.001, and N=32. The inset for the case of V=5 (left) shows a plot of j against the “inner” temperature
difference AT'=T(1)—T(N). Note that it also displays the occurrence of NDTR and is practically the same as the plot of j against AT. This
is because the boundary temperature jumps are typically at least one order of magnitude less than AT, meaning that AT and AT’ are

practically the same.

of the FK model, there also exists a temperature jump at each
end of the ¢* chain where the detailed relation of such
boundary temperature jumps to the occurrence of NDTR re-
mains to be understood.

It has been generally found that the thermal conductivity
k(T) of the ¢* model follows a power-law relation «(7)
=AT “ with the temperature T [10]. The phenomenological
parameters A and a can be evaluated by numerical fitting,
e.g., A=2.83 and a=1.35 for =1 [10]. In the continuum
limit, one can incorporate this power-law dependence of the
thermal conductivity into the equation j(x)=—«(T)VT(x) to
obtain [7,9,10]

AT =TI

(5)
(1-a)N
and
a_ —4A—7=09 loos4

—=—7=0.02
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FIG. 5. (Color online) ¢* model: heat flux j as a function of AT
for A=0.02, 0.2, and 0.9. Here, 7_=1 and N=64. The inset gives an
enlarged view of the NDTR behavior within the dotted rectangle for
A=0.9.

T l-a X 1/l-«a
T(x)=T+{l—[l—<E> k}} (6)

through an integration along the lattice chain. The numerical
results presented in Figs. 6 and 7 for the case of the largest
system size, i.e., N=2048, are in good quantitative agree-
ment with the curves of Egs. (5) and (6), respectively. Note
that Langevin heat baths were employed in our simulations
while modified Nosé-Hoover heat baths were used in Refs.
[7,10]. The agreement between the two methods suggests
that the validity of the above continuum analysis is indepen-
dent of the choice of heat baths. In particular, Eq. (5) predicts
a saturation of the heat flux for 7,>T_, meaning that in the
continuum limit NDTR cannot occur, i.e., AT approaches to
infinity. For increasing AT, such saturation is a result of the
counterbalance of two competitive effects: As AT increases,

N=32
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N=512
N=1024
N=2048
continuum
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FIG. 6. (Color online) ¢* model: rescaled heat flux J=Nj as a
function of AT for N=64, 128, 256, 512, 1024, and 2048. The solid
line depicts the continuum limit as described by Eq. (5). Here,
T_=1 and \=1.

T
100
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FIG. 7. (Color online) ¢* model: temperature profiles (from top
to bottom) for N=32, 64, 128, 256, 512, 1024, and 2048, where, for
the ith particle, x=(i—1)/(N—1). The solid line depicts the con-
tinuum limit as described by Eq. (6). Here, T_=1, T,=10, and
A=1.

the heat flux j tends to increase due to the increase in the
thermodynamic driving force. However, the corresponding
decrease in the thermal conductivity of the system tends to
slow down the conduction of heat.

Although the numerical data in Fig. 6 suggest a general
increase in AT™ for increasing N, one still cannot conclude
whether there exists a critical system size N* above which
NDTR cannot occur. This is because it is still possible that
cases with an infinite AT (i.e., cases where NDTR can never
occur) correspond only to the thermodynamic limit of an
infinite N but not to any other case with a finite N. Therefore,
to find out whether there exists such a critical system size N*,
addition information is needed, hence the following phenom-
enological model that provides a description of the size-
induced crossover from the existence to the nonexistence of
a NDTR regime. As mentioned above, the thermal conduc-
tivity « follows a power-law relation with the temperature T
in the linear response regime [10]. Following this, we as-
sume a similar power-law relation

Kegf(T) = C(T+1)7 (7)

between the effective (nonlocal) thermal conductivity &,
=Nj/AT of the whole system and the average temperature

T=(T,+T_)/2 for both the linear and the nonlinear response
regimes. Here, C>0, y>0, and ¢ are fitted parameters that
generally vary with the system size N. Note that this assumed

power-law relation between «,; and T can be reduced to the
power-law relation between « and T for sufficiently small
values of AT, i.e., in the linear response regime. For any
fixed value of 7_, NDTR corresponds to

9j
— | <O. 8
IAT | 1 ®)
It can be easily shown that the above inequality is invalid for
vy=1. That is, NDTR occurs only when y>1 and AT
>AT*, where AT*=2(T_+1)/(y-1).
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FIG. 8. (Color online) ¢* model: effective thermal conductivity
Kofr as a function of the average temperature T=(T,+T.)/2 for N
=32, 64, 128, 256, 512, 1024, and 2048. Here, A\=1 and 7_=1, with
the covered values of T, corresponding to the same values of AT in
Fig. 6. The straight curves in this log-log graph indicate that the
assumed power-law relation in Eq. (7) is valid, even for the nonlin-
ear response regime at AT>0 (ie., 7>1), and that the fitted
parameter ¢ is practically zero.

As shown in Fig. 8, the assumed power-law relation in
Eq. (7) has been verified numerically across almost two or-

ders of magnitude in T (i.e., also in AT) for a range of the
system size from N=32 to N=2048. Figure 9 shows that, for
increasing system size N, the scaling exponent y decreases
monotonously from y=1.23 to y=0.96. The critical system
size N* above which NDTR can never occur is at N*~300.
Note that this is consistent with the numerical results in Fig.
6, where there exists a NDTR regime for the cases of N
=32, 64, 128, and 256 but not for the cases of N=512, 1024,
and 2048. It is worth pointing out that the conclusions from
this phenomenological model can be applied to cases of any
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FIG. 9. (Color online) ¢* model: scaling exponent 7y as a func-
tion of the system size N. The crossover from the existence to the
nonexistence of a NDTR regime for increasing N occurs at the
critical exponent y=1 (dotted line) where N=N"*=300.
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FIG. 10. (Color online) FPU-B model: heat flux j as a function
of AT for 8=0.001, 1, and 1000 in the FPU-B model. Here T_=1.
The results are fitted (dotted lines) well by joc AT”. As a reference,
the bold solid line depicts the analytical solution for the heat flux in

the harmonic limit (8=0), ]—ﬁxz\—IMX-AT (see [23]), where yx

is the system-bath coupling. Here, y=1 was chosen for the numeri-
cal simulations. The inset shows that v varies only within a rela-
tively small range [0.97, 1.06] with the nonlinearity B of the inter-
action potential.

arbitrarily large value of AT, and can therefore provide an
answer to the question of whether NDTR can occur at values
of AT that are too large to be considered in numerical simu-
lations.

C. FPU-£ model
The Hamiltonian of the FPU-£ model is given by

Hgpy = 2

. RS CNERINC)
i=1

+ (xl+1
where f3 is referred to as the strength of the nonlinear inter-
action. As mentioned above, for the FK model, if the tem-
perature is sufficiently high, the particles can overcome the
onsite potential of the lattice so that the system behaves like
a harmonic model. This means that the regime of NDTR, if
exists, must be extremely small. The FPU-8 model shares a
similar situation with the harmonic model in that both of
them do not have an onsite potential. Will NDTR cease to
occur in the FPU- model as in the case of a harmonic
chain? As shown in Fig. 10, it was found that the heat flux j
is practically proportional to the temperature difference AT.
That is, jocAT", where the numerically fitted exponent v
ranges only between 0.97 and 1.06 for a variation of S over
six orders of magnitude from $=0.001 to S=1000. Exten-
sive numerical simulations have also revealed the same qua-
silinear behavior for different values of the system size N,
which suggests that NDTR generally cannot occur in the
FPU-B model. Such quasilinear behavior corresponds to a
similarity with the behavior of a harmonic chain (v=1),
which might be due to the following reason: The FPU-8
model, even in the case of strong nonlinear interactions (i.e.,
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FIG. 11. (Color online) FPU-B model: heat flux j and the cor-
responding temperature jump 67 versus AT. Here, T_=1, B=1 and
N=64.

large values of B), can be treated as an effective weakly
interacting phonon system via renormalization means
[26,27]. Finally, it was also found for the FPU-8 model that
the boundary temperature jump exhibits a correlation with j
(Fig. 11) as in the case of the FK as well as the ¢* model.

IV. CONCLUSIONS AND DISCUSSION

Heat conduction in three prototypical homogeneous lat-
tice models has been studied in both the linear and nonlinear
response regime. As the applied temperature difference AT
increases, the system undergoes a transition from the linear
to the nonlinear response regime, with the latter being gen-
erally characterized by a nonuniform local temperature gra-
dient. This study shows for the first time that NDTR can
occur in homogeneous lattice models, in contrast to previous
NDTR studies which all focus on inhomogeneous systems,
e.g., two-segment models. It was found that NDTR can occur
in the FK and in the ¢4 model, both of which consist of a
nonlinear onsite potential. However, extensive numerical
simulations suggest that NDTR cannot occur in the FPU-3
model, which does not have a nonlinear onsite potential. For
both the FK and the ¢4 model, the regime of NDTR becomes
larger as the system size decreases or the strength of the
nonlinear onsite potential increases. For the ¢* model, the
existence of a critical system size N* above which NDTR can
never occur was predicted from a theoretical analysis of the
numerical data. Although the scaling assumption in Eq. (7)
for the ¢* model is well supported by numerical data, a
first-principle derivation of this assumption is highly antici-
pated. In general, the observation of a larger NDTR regime
at smaller systems has led us to the speculation that certain
boundary mechanisms (e.g., phonon-boundary scattering) or
properties (e.g., thermal boundary resistance) are related to
the occurrence of NDTR, which has motivated us to carry
out an initial study on the relation between boundary tem-
perature jumps and heat flow. However, much further work is
needed to identify the underlying physical mechanisms that
are responsible for the occurrence of NDTR.
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The presence of a nonlinear onsite potential facilitates the
occurrence of phonon-lattice scattering [5], which generally
becomes more significant for increasing temperature and can
therefore contribute to a decrease in the thermal conductivity.
In the case of the FK model, such phonon-lattice scattering is
important only at sufficiently low temperatures where the
dynamics of the particles is much influenced by the bounded
onsite potential. As the applied temperature difference AT
increases from zero with 7_ being fixed, the increase in the
thermodynamic driving force will drive an increase in the
heat flux j. At higher values of AT (i.e., higher values of the
system’s average temperature), however, the effect of
phonon-lattice scattering becomes so significant that NDTR
occurs. But with a further increase in AT, the average tem-
perature of the system has become sufficiently high such that
the particles can overcome the bounded onsite potential via
their thermal energy; Phonon-lattice scattering is no longer
an important factor and therefore the regime of NDTR comes
to an end, hence the S-shaped curves of j vs AT in Figs. 1-3.
In the case of the ¢* model, the dynamics of the particles is
always influenced by the unbounded onsite potential and, for
increasing temperature, the increase in phonon-lattice scat-
tering is reflected by the power-law decrease of the thermal
conductivity [Eq. (7)]. For increasing AT with T_ being fixed

PHYSICAL REVIEW E 81, 041131 (2010)

(i.e., increasing system’s average temperature), the particles
in the ¢* model are not able to overcome the onsite potential
as in the case of the FK model so that there is no upper
bound of AT for the occurrence of NDTR (Fig. 6). In the
case of the FPU-8 model, the nonexistence of a NDTR re-
gime might be due to the lack of phonon-lattice scattering in
the absence of a nonlinear onsite potential.

As to the experimental fabrication of NDTR devices, the
conclusion that NDTR mainly occurs in small-size systems
is in line with the current trend of device miniaturization in
the technological world [28]. The observation of NDTR in
homogeneous systems shows that spatial inhomogeneity is
not a necessary condition for the occurrence of NDTR. This
implies that NDTR devices can be fabricated without involv-
ing the complicated control of interfacial properties as in the
case of multisegment systems.
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