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The nonequilibrium work fluctuation theorem provides the way for calculations of �equilibrium� free-energy
based on work measurements of nonequilibrium, finite-time processes, and their reversed counterparts by
applying Bennett’s acceptance ratio method. A nice property of this method is that each free-energy estimate
readily yields an estimate of the asymptotic mean square error. Assuming convergence, it is easy to specify the
uncertainty of the results. However, sample sizes have often to be balanced with respect to experimental or
computational limitations and the question arises whether available samples of work values are sufficiently
large in order to ensure convergence. Here, we propose a convergence measure for the two-sided free-energy
estimator and characterize some of its properties, explain how it works, and test its statistical behavior. In total,
we derive a convergence criterion for Bennett’s acceptance ratio method.
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I. INTRODUCTION

Many methods have been developed in order to estimate
free-energy differences, ranging from thermodynamic inte-
gration �1,2�, path sampling �3�, free-energy perturbation �4�,
umbrella sampling �5–7�, adiabatic switching �8�, dynamic
methods �9–12�, optimal protocols �13,14�, asymptotic tails
�15�, to targeted and escorted free-energy perturbation
�16–20�. Yet, the reliability and efficiency of the approaches
have not been considered in full depth. Fundamental ques-
tions remain unanswered �21�, e.g., what method is best for
evaluating the free-energy? Is the free-energy estimate reli-
able and what is the error in it? How can one assess the
quality of the free-energy result when the true answer is un-
known? Generically, free-energy estimators are strongly bi-
ased for finite sample sizes such that the bias constitutes the
main source of error of the estimates. Moreover, the bias can
manifest itself in a seemingly convergence of the calculation
by reaching a stable value, although far apart from the de-
sired true value. Therefore, it is of considerable interest to
have reliable criteria for the convergence of free-energy cal-
culations.

Here we focus on the convergence of Bennett’s accep-
tance ratio method. Thereby, we will only be concerned with
the intrinsic statistical errors of the method and assume un-
correlated and unbiased samples from the work densities. For
incorporation of instrument noise, see Ref. �22�.

With emerging results from nonequilibrium stochastic
thermodynamics, Bennett’s acceptance ratio method �23–26�
has revived actual interest.

Recent research has shown that the isothermal free-energy
difference �f = f1− f0 of two thermal equilibrium states 0 and
1, both at the same temperature T, can be determined by
externally driven nonequilibrium processes connecting these
two states. In particular, if we start the process with the ini-

tial thermal equilibrium state 0 and perturb it towards 1 by
varying the control parameter according to a predefined pro-
tocol, the work w applied to the system will be a fluctuating
random variable distributed according to a probability den-
sity p0�w�. This direction will be denoted with forward. Re-
versing the process by starting with the initial equilibrium
state 1 and perturbing the system towards 0 by the time
reversed protocol, the work w done by the system in the
reverse process will be distributed according to a density
p1�w�. Under some quite general conditions, the forward and
reverse work densities p0�w� and p1�w� are related to each
other by Crooks fluctuation theorem �27,28�

p0�w�
p1�w�

= ew−�f . �1�

Throughout the paper, all energies are understood to be mea-
sured in units of the thermal energy kT, where k is Boltz-
mann’s constant. The fluctuation theorem relates the equilib-
rium free-energy difference �f to the nonequilibrium work
fluctuations which permits calculation �estimation� of �f us-
ing samples of work values measured either in only one di-
rection �one-sided estimation� or in both directions �two-
sided estimation�. The one-sided estimators rely on the
Jarzynski relation �29� e−�f =�e−wp0�w�dw which is a direct
consequence of Eq. �1�, and the free-energy is estimated by
calculating the sample mean of the exponential work. In gen-
eral, however, it is of great advantage to employ optimal
two-sided estimation with Bennett’s acceptance ratio method
�23�, although one has to measure work values in both direc-
tions.

The work fluctuations necessarily allow for events which
“violate” the second law of thermodynamics such that
w��f holds in forward direction and w��f in reverse di-
rection, and the accuracy of any free-energy estimate solely
based on knowledge of Eq. �1� will strongly depend on the
extend to which these events are observed. The fluctuation
theorem indicates that such events will in general be expo-
nentially rare; at least, it yields the inequality �w�1��f
� �w�0 �29�, which states the second law in terms of the
average work �w�0 and �w�1 in forward and reverse direction,
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respectively. Reliable free-energy calculations will become
harder the larger the dissipated work �w�0−�f and �f
− �w�1 in the two directions is �20�, i.e., the farther from
equilibrium the process is carried out, resulting in an increas-
ing number N of work values needed for a converging esti-
mate of �f . This difficulty can also be expressed in terms of
the overlap area A=�min�p0�w� , p1�w�	dw�1 of the work
densities, which is just the sum of the probabilities �−�

�f p0dw
and ��f

� p1dw of observing second law “violating” events in
the two directions. Hence, N has to be larger than 1 /A. How-
ever, an a priori determination of the number N of work
values required will be impossible in situations of practical
interest. Instead, it may be possible to determine a posteriori
whether a given calculation of �f has converged. The
present paper develops a criterion for the convergence of
two-sided estimation which relies on monitoring the value of
a suitably bounded quantity a, the convergence measure. As
a key feature, the convergence measure a checks if the rel-
evant second law “violating” events are observed sufficiently
and in the right proportion for obtaining an accurate and
precise estimate of �f .

Two-sided free-energy estimation, i.e., Bennett’s accep-
tance ratio method, incorporates a pair of samples of both
directions. Given a sample �wk

0	 of n0 forward work values,
drawn independently from p0�w�, together with a sample
�wl

1	 of n1 reverse work values drawn from p1�w�, the as-

ymptotically optimal estimate �f̂ of the free-energy differ-
ence �f is the unique solution of �23–26�

1

n0


k=1

n0 1

� + �ewk
0−�f̂

=
1

n1


l=1

n1 1

� + �e−wl
1+�f̂

, �2�

where � and �� �0,1� are the fraction of forward and re-
verse work values used, respectively,

� =
n0

N
and � =

n1

N
, �3�

with the total sample size N=n0+n1.
Originally found by Bennett �23� in the context of free-

energy perturbation �4�, with “work” being simply an energy
difference, the two-sided estimator �2� was generalized by
Crooks �30� to actual work of nonequilibrium finite-time
processes. We note that the two-sided estimator has remark-
ably good properties �21,23,24,31�. Although in general bi-
ased for small sample sizes N, the bias

b = ��f̂ − �f� , �4�

asymptotically vanishes for N→� and the estimator is the
one with least mean-square error �viz. variance� in the limit
of large sample sizes n0 and n1 within a wide class of esti-
mators. In fact, it is the optimal estimator if no further
knowledge on the work densities besides the fluctuation
theorem is given �20,22�. It comprises one-sided Jarzynski
estimators as limiting cases for �→0 and �→1, respec-
tively. Recently �32�, the asymptotic mean square error has
been shown to be a convex function of � for fixed N, indi-
cating that typically two-sided estimation is superior if com-
pared to one-sided estimation.

In the limit of large N, the mean-square error

m = ���f̂ − �f�2� , �5�

converges to its asymptotics

X�N,�� =
1

N

1

��
� 1

U�

− 1� , �6�

where the overlap �integral� U� is given by

U� =
 p0p1

�p0 + �p1
dw . �7�

Likewise, in the large N limit the probability density of the

estimates �f̂ �for fixed N and �� converges to a Gaussian
density with mean �f and variance X�N ,�� �24�. Thus,
within this regime a reliable confidence interval for a particu-

lar estimate �f̂ is obtained with an estimate X̂�N ,�� of the
variance,

X̂�N,�� ª
1

N��� 1

Û�

− 1� , �8�

where the overlap estimate Û� is given through

Û� ª
1

n0


k=1

n0 1

� + �ewk
0−�f̂

=
1

n1


l=1

n1 1

� + �e−wl
1+�f̂

. �9�

To get some feeling for when the large N limit “begins,”
we state a close connection between the asymptotic mean-
square error and the overlap area A of the work densities as
follows:

1 − 2A
NA

� X�N,�� �
1 − A
��NA

, �10�

see Appendix A. Using ��0.5 and assuming that the esti-
mator has converged once X�1, we find the “onset” of the
large N limit for N�

1
A . However, this onset may actually be

one or more orders of magnitude larger.
If we do not know whether the large N limit is reached,

we cannot state a reliable confidence interval of the free-
energy estimate: a problem which encounters frequently
within free-energy calculations is that the estimates “con-
verge” towards a stable plateau. While the sample variance
can become small, it remains unclear whether the reached
plateau represents the correct value of �f . Possibly, the
found plateau is subject to some large bias, i.e., far off the
correct value. A typical situation is displayed in Fig. 1 which
shows successive two-sided free-energy estimates in depen-
dence of the sample size N. The errorbars are obtained with

an error-propagation formula for the variance of �f̂ which
reflects the sample variances, see Appendix C after reading
Sec. III. If we take a look on the top panel of Fig. 1, we
might have the impression that the free-energy estimate has
converged at N�300 already, while the bottom panel
reaches out to larger sample sizes where it becomes visible
that the “convergence” in the top panel was just pretended.
Finally, we may ask if the estimates shown in the bottom
panel have converged at N	10000? As we know the true
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value of �f , which is depicted in the figure as a dashed line,
we can conclude that convergence actually happened.

The main result of the present paper is the statement of a
convergence criterion for two-sided free-energy estimation in
terms of the behavior of the convergence measure a. As will
be seen, a converges to zero. Moreover, this happens almost
simultaneously with the convergence of �f̂ to �f . The pro-
cedure is as follows: while drawing an increasing number of
work values in both directions �with fixed fraction � of for-
ward draws�, successive estimates �f̂ and corresponding val-
ues of a, based on the present samples of work, are calcu-
lated. The values of a are displayed graphically in
dependence of N, preferably on a log scale. Then the typical
situation observed is that a is close to it’s upper bound for
small sample sizes N�

1
A , which indicates lack of “rare

events” which are required in the averages of Eq. �2� �i.e.,
those events which “violate” the second law�. Once N be-
comes comparable to 1

A , single observations of rare events

happen and change the value of �f̂ and a rapidly. In this
regime of N, rare events are likely to be observed either
disproportionally often or seldom, resulting in strong fluctua-
tions of a around zero. This indicates the transition region to
the large N limit. Finally, at some N


1
A , the large N limit is

reached, and a typically fluctuates close around zero, cf. the
inset of Fig. 1.

The paper is organized as follows. In Sec. II, we first
consider a simple model for the source of bias of two-sided

estimation which is intended to obtain some insight into the
convergence properties of two-sided estimation. The conver-
gence measure a, which is introduced in Sec. III, however,
will not depend on this specific model. As the convergence
measure is based on a sample of forward and reverse work
values, it is itself a random variable, raising the question of
reliability once again. Using numerically simulated data, the
statistical properties of the convergence measure will be
elaborated in Sec. IV. The convergence criterion is stated in
Sec. V, and Sec. VI presents an application to the estimation
of the chemical potential of a Lennard-Jones fluid.

II. NEGLECTED TAIL MODEL FOR TWO-SIDED
ESTIMATION

To obtain some first qualitative insight into the relation
between the convergence of Eq. �9� and the bias of the esti-
mated free-energy difference, we adopt the neglected tails
model �33� originally developed for one-sided free-energy
estimation.

Two-sided estimation of �f essentially means estimating
the overlap U� from two sides, however in a dependent man-

ner, as �f̂ is adjusted such that both estimates are equal in
Eq. �9�.

Consider the �normalized� overlap density p��w�, defined
as harmonic mean of p0 and p1

p��w� =
1

U�

p0�w�p1�w�
�p0�w� + �p1�w�

. �11�

For �→0 and �→1, p� converges to p0 and p1, respectively.
The dominant contributions to U� come from the overlap
region of p0 and p1 where p� has its main probability mass,
see Fig. 2 �top�.

In order to obtain an accurate estimate of �f with the
two-sided estimator �2�, the sample �wk

0	 drawn from p0 has
to be representative for p0 up to the overlap region in the left
tail of p0 and the sample �wk

1	 drawn from p1 has to be
representative for p1 up to the overlap region in the right tail
of p1. For small n0 and n1, however, we will have certain
effective cut-off values wc

0 and wc
1 for the samples from p0

and p1, respectively, beyond which we typically will not find
any work values, see Fig. 2 �bottom�.

We introduce a model for the bias �4� of two-sided free-
energy estimation as follows. Assuming a “semilarge” N
=n0+n1, the effective behavior of the estimator for fixed n0
and n1 is modeled by substituting the sample averages ap-
pearing in the estimator �2� with ensemble averages, how-
ever truncated at wc

0 and wc
1, respectively,



wc

0

� p0�w�

� + �ew−��f̂�
dw = 


−�

wc
1 p1�w�

� + �e−w+��f̂�
dw . �12�

Thereby, the cutoff values wc
i are thought fixed �only depend-

ing on n0 and n1� and the expectation ��f̂� is understood to
be the unique root of Eq. �12�, thus being a function of the
cut-off values wc

i , i=0,1.
In order to elaborate the implications of this model, we

rewrite Eq. �12� with the use of the fluctuation theorem �1�
such that the integrands are equal,
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FIG. 1. Displayed are free-energy estimates �f̂ in dependence of
the sample size N, reaching a seemingly stable plateau if N is re-
stricted to N=1000 �top panel�. Another stable plateau is reached if
the sample size is increased up to N=100 000 �bottom panel�. Has
the estimate finally converged? The answer is given by the corre-
sponding graph of the convergence measure a which is shown in
the inset. The fluctuations around zero indicate convergence. The
exact value of the free-energy difference is visualized by the dashed
horizontal line.
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e��f̂−�f� =



−�

wc
1 p0�w�

�ew−��f̂� + �
dw



wc

0

� p0�w�

�ew−��f̂� + �
dw

, �13�

and consider two special cases:
�1� Large n1 limit: assume the sample size n1 is large

enough to ensure that the overlap region is fully and accu-
rately sampled �large n1 limit�. Thus, wc

1 can be safely set
equal to � in Eq. �13�, and the right-hand side becomes
larger than unity. Accordingly, our model predicts a positive
bias.

�2� Large n0 limit: turning the tables and using wc
0=−� in

Eq. �13�, the model implies a negative bias.

In essence, ��f̂� is shifted away from �f towards the in-
sufficiently sampled density. In general, when none of the
densities is sampled sufficiently, the bias will be a trade off
between the two cases.

Qualitatively, from the neglected tails model, we find the
main source of bias resulting from a different convergence
behavior of forward and reverse estimates �9� of U�. The
task of the next section will be to develop a quantitative
measure of convergence.

III. CONVERGENCE MEASURE

In order to check convergence, we propose a measure
which relies on a consistency check of estimates based on

first and second moments of the Fermi functions that appear
in the two-sided estimator �9�. In a recent study �20�, we
already used this measure for the special case of �= 1

2 . Here,
we give a generalization to arbitrary �, study the conver-
gence measure in greater detail, and justify its validity and
usefulness. In the following we will assume that the densities
p0 and p1 have the same support.

It was discussed in the preceding section that the large N
limit is reached and hence the bias of two-sided estimation
vanishes if the overlap U� is �in average� correctly estimated
from both sides, 0 and 1. Defining the complementary Fermi
functions tc�w� and bc�w� �for given �� with

tc�w� =
1

� + �e−w+c ,

bc�w� =
1

�ew−c + �
, �14�

such that �tc�w�+�bc�w�=1 and tc�w�=ew−cbc�w� holds. The
overlap �7� can be expressed in terms of first moments,

U� =
 t�f�w�p1�w�dw =
 b�f�w�p0�w�dw , �15�

and the overlap estimate Û�, Eq. �9�, is simply obtained by
replacing in Eq. �15� the ensemble averages by sample aver-
ages,

Û� = t�f̂

�1�
= b�f̂

�0�
. �16�

According to Eq. �2�, the value of �f̂ is defined such that the

above relation holds. Note that �f̂=�f̂�w1
0 , . . . ,wn1

1 � is a
single-valued function depending on all work values used in
both directions. The overbar with index �i� denotes an aver-
age with a sample �wk

i 	 drawn from pi, i=0,1. For an arbi-
trary function g�w� it explicitly reads

ḡ�i� =
1

ni


k=1

ni

g�wk
i � . �17�

Interestingly, U� can be expressed in terms of second mo-
ments of the Fermi functions such that it reads

U� = �
 t�f
2 p1dw + �
 b�f

2 p0dw . �18�

A useful test of self-consistency is to compare the first-order

estimate Û�, with the second order estimate Û�
�II�, where the

latter is defined by replacing the ensemble averages in Eq.
�18� with sample averages

Û�
�II� = �t

�f̂

2
�1�

+ �b
�f̂

2
�0�

. �19�

Thereby, the estimates �f̂, Û�, and Û�
�II�, are understood to be

calculated with the same pair of samples �wk
0	 and �wl

1	.
The relative difference of this comparison results in the

definition of the convergence measure,
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FIG. 2. Schematic diagram of reverse p1, overlap p�, and for-
ward p0 work densities �top�. Schematic histograms of finite
samples from p0 and p1, where in particular the latter is imperfectly

sampled, resulting in a biased estimate �f̂ of the free-energy differ-
ence �bottom�.
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a =
Û� − Û�

�II�

Û�

, �20�

for all �� �0,1�. Clearly, in the large N limit, a will con-

verge to zero, as then �f̂ converges to �f and thus Û� as

well as Û�
�II� converge to U�. As argued below, it is the esti-

mate Û�
�II� that converges last, hence a converges somewhat

later than �f̂.
Below the large N limit, a will deviate from zero. From

the general inequality

Û�
2 � Û�

�II� � 2Û�, �21�

�see Appendix B� follow upper and lower bounds on a which
read

− 1 � a � 1 − Û� � 1. �22�

The behavior of a with increasing sample size N=n0+n1

�while keeping the fraction �=
n0

N constant� can roughly be
characterized as follows: a “starts” close to its upper bound
for small N and decreases towards zero with increasing N.
Finally, a begins to fluctuate around zero when the large N

limit is reached, i.e., when the estimate �f̂ converges.
To see this qualitatively, we state that the second order

estimate Û�
�II� converges later than the first order estimate Û�,

as the former requires sampling the tails of p0 and p1 to a
somewhat wider extend than the latter, cf. Fig. 3. For small

N, both, Û� and Û�
�II�, will typically underestimate U�, as the

“rare events” which contribute substantially to the averages
�16� and �19� are quite likely not to be observed sufficiently,

if at all. For the same reason, generically Û�
�II�� Û� will hold,

since b�f̂�w0�2�b�f̂�w0� holds for w0��f̂ and similar

t�f̂�w1�2� t�f̂�w1� for w1��f̂. Therefore, a is typically posi-
tive for small N. In particular, if N is so small that all work

values of the forward sample are larger than �f̂ and all work

values of the reverse sample are smaller than �f̂, then Û�
�II�

becomes much smaller than Û�, resulting in a�1.
Analytic insight into the behavior of a for small N results

from the fact that nx̄2�x2 for any set �x1 , . . .xn	 of positive
numbers xk. Using this in Eq. �19� yields

Û�
�II� � 2N��Û�

2 , �23�

and

1 − 2��NÛ� � a � 1 − Û�. �24�

This shows that as long as NÛ��1 holds, a is close to its

upper bound 1− Û��1. In particular, if �= 1
2 and N=2, then

a=1− Û� holds exactly.
Averaging the inequality for some N sufficiently large to

ensure �a��0 and �Û���U�, we get a lower bound on N
which reads N�

1
2��U�

. Again, this bound can be related to
the overlap area A taking �= 1

2 and using U1/2�2A �see
Appendix A�, we obtain N�

1
A , in concordance with the

lower bound for the large N limit stated in Sec. I.
Last we note that the convergence measure a can also be

understood as a measure of the sensibility of relation �2� with

respect to the value of �f̂. In the low N regime, the relation

is highly sensible to the value of �f̂, resulting in large values
of a, whereas in the limit of large N, relation �2� becomes

insensible to small perturbations of �f̂, corresponding to a
�0. The details are summarized in Appendix D.

IV. STUDY OF STATISTICAL PROPERTIES OF THE
CONVERGENCE MEASURE

In order to demonstrate the validity of a as a measure of
convergence of two-sided free-energy estimation, we apply it
to two qualitatively different types of work densities, namely
exponential and Gaussian, see Fig. 4. Samples from these
densities are easily available by standard �pseudo�random
generators. Statistical properties of a are obtained by means

of independent repeated calculations of �f̂ and a. While the
two types of densities used are fairly simple, they are entirely
different and general enough to reflect the statistical proper-
ties of the convergence measure.

A. Exponential work densities

The first example uses exponential work densities, i.e.,

pi�w� =
1


i
e−w/
i, w � 0, �25�


i�0, i=0,1. According to the fluctuation theorem �1�, the
mean values 
i of p0 and p1 are related to each other, 
1

∆f
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1/β

21/β
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1
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FIG. 3. Schematic plot which shows that the forward work den-
sity, p0�w�, samples the Fermi function b�f�w�=1 / ��+�ew−�f�
somewhat earlier than its square.
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densities.
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=

0

1+
0
, and the free-energy difference is known to be �f

=ln�1+
0�.
Choosing 
0=1000 and �= 1

2 , i.e., n0=n1, we calculate

free-energy estimates �f̂ according to Eq. �2� together with
the corresponding values of a according to Eq. �20� for dif-
ferent total sample sizes N=n0+n1. An example of a single
running estimate and the corresponding values of the conver-
gence measure are depicted in Fig. 1. Ten thousand repeti-
tions for each value of N yield the results presented in Figs.
5–10. To begin with, the top panel of Fig. 5 shows the aver-
aged free-energy estimates in dependence of N, where the
errorbars show � the estimated square root of the variance

���f̂− ��f̂��2�. For small N, the bias ��f̂−�f� of free-energy
estimates is large, but becomes negligible compared to the
standard deviation for N	5000. This is a prerequisite of the
large N limit, therefore we will view N�5000 as the onset of
the large N limit.

The bottom panel of Fig. 5 shows the averaged values of
the convergence measure a corresponding to the free-energy
estimates of the top panel. Again, the errorbars are � one
standard deviation ��a2�− �a�2, except that the upper limit is
truncated for small N, as a�1 holds. The trend of the aver-

aged convergence measure �a� is in full agreement with the
general considerations given in the previous section. For
small N, �a� starts close to its upper bound, decreases mono-
tonically with increasing sample size, and converges towards
zero in the large N limit. At the same time, its standard
deviation converges to zero, too. This indicates that single

values of a corresponding to single estimates �f̂ will typi-
cally be found close to zero in the large N regime.

Noting that a is defined as relative difference of the over-

lap estimators: Û� and Û�
�II� of first and second order, respec-

tively, we can understand the trend of the average conver-
gence measure by taking into consideration the average

values �Û�� and �Û�
�II��, which are shown in Fig. 6. For small

sample sizes, U� is typically underestimated by both, Û� and

Û�
�II�, with Û�

�II�� Û�.
The convergence measure takes advantage of the different

convergence times of the overlap estimators: Û�
�II� converges
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<Û(II)
α >

Uα exact

FIG. 6. Mean values of overlap estimates Û� and Û�
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somewhat slower than Û�, ensuring that a approaches zero

right after �f̂ has converged. The large standard deviations
shown as errorbars in Fig. 6 do not carry over to the standard

deviation of a, because Û� and Û�
�II� are strongly correlated,

as is impressively visible in Fig. 7. The estimated correlation
coefficient

��Û�
�II� − �Û�

�II����Û� − �Û����
�Var�Û�

�II��Var�Û��
, �26�

is about 0.97 for the entire range of sample sizes N. In good

approximation, Û� and Û�
�II� are related to each other accord-

ing to a power law, Û�
�II��cNÛ�

�N, where the exponent �N and
the prefactor cN depend on the sample size N �and ��. We
note that �N has a phase-transitionlike behavior: for small N,
it stays approximately constant near two; right before the
onset of the large N limit, it shows a sudden switch to a value
close to one where it finally remains.

Figure 8 accents the decrease in the average �a� with de-
creasing mean square error �5� of two-sided estimation. The
small N behavior is given by the upper right part of the
graph, where �a� is close to its upper bound together with a

large mean-square error of �f̂. With increasing sample size,
the mean-square error starts to drop somewhat sooner than
�a�, however, at the onset of the large N limit, they drop both
and suggest a linear relation, as can be seen in the inset for
small values of �a�. The latter shows that �a� decreases to
zero proportional to 1

N for large N �this is confirmed by a
direct check, but not shown here�.

The next point is to clarify the correlation of single values
of the convergence measure with their corresponding free-
energy estimates. For this issue, figure 9 is most informative,

showing the deviations �f̂−�f in dependence of the corre-
sponding values of a for many individual observations. The
figure makes clear that there is a strong relation, but no

one-to-one correspondence between a and �f̂−�f: for large

N, both a and �f̂−�f approach zero with very weak corre-
lations between them. However, the situation is different for

small sample sizes N where the bias ��f̂−�f� is consider-
ably large. There, the typically observed large deviations oc-
cur together with values of a close to the upper bound,
whereas the atypical events with small �negative� deviations
come together with values of a well below the upper limit.
Therefore, small values of a detect exceptional events if N is
well below the large N limit, and ordinary events if N is
large.

To make this relation more visible, we split the estimates

�f̂ into the mutually exclusive events a�0.9 and a�0.9.

The statistics of the �f̂ values within these cases are depicted
in the inset of Fig. 10, where normalized histograms, i.e.

estimates of the constrained probability densities p��f̂ �a
�0.9� and p��f̂ �a�0.9� are shown. The unconstrained

probability density of �f̂ can be reconstructed from a likeli-

hood weighted sum of the constrained densities, p��f̂�
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free-energy estimator. The inset shows an enlargement for small
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= p��f̂ �a�0.9�pa�0.9+ p��f̂ �a�0.9�pa�0.9. The likelihood
ratios read pa�0.9 / pa�0.9=6.2 and 0.002 for N=32 and 1000,
respectively. Finally, the inset of Fig. 10 shows the average

values of constrained estimates �f̂ over N with errorbars of
� one standard deviation, in dependence of the condition on
a.

B. Gaussian work densities

For the second example the work densities are chosen to
be Gaussian,

pi�w� =
1

��2�
e−�w − 
i�

2/2�2
, w � R , �27�

i=0,1. The fluctuation theorem �1� demands both densities
to have the same variance �2 with mean values 
0=�f
+ 1

2�2 and 
1=�f − 1
2�2. Hence, p0 and p1 are symmetric to

each other with respect to �f , p0��f +w�= p1��f −w�. As a
consequence of this symmetry, the two-sided estimator with
equal sample sizes n0 and n1, i.e. �=0.5, is unbiased for any
N. However, this does not mean that the limit of large N is
reached immediately.

In analogy to the previous example, we proceed in pre-
senting the statistical properties of a. Choosing �=6 and
without loss of generality �f =0, we carry out 104 estima-
tions of �f over a range of sample sizes N. The forward
fraction is chosen to be equal to �=0.5, and for comparison,
�=0.999, and �=0.99999, respectively. In the latter two
cases, the two-sided estimator is biased for small N. We note
that �=0.5 is always the optimal choice for symmetric work
densities which minimizes the asymptotic mean-square error
�6� with respect to � �32�.

Comparing the top and the bottom panel of Fig. 11, which
show the statistics �mean value and standard deviation as

error bars� of the observed estimates �f̂ and of the corre-
sponding values of a, we find a coherent behavior for all
three cases of � values. The trend of the average �a� shows
in all cases the same features in agreement with the trend
found for exponential work densities.

As before, the characteristics of a are understood by the

slower convergence of Û�
�II� compared to that of Û�, as can

be seen in Fig. 12. A scatter plot of Û�
�II� versus Û� looks

qualitatively such as Fig. 7, but is not shown here.
Figure 13 compares the average convergence measures as

functions of the mean-square error of �f̂ for the three values
of �. For the range of small �a�, all three curves agree and
are linear. Again �a� decreases proportionally to 1

N for large
N. Noticeable for small N is the shift of �a� towards smaller
values with increasing �. This results from the definition of

a: the upper bound 1− Û� of a tends to zero in the limits �

→0,1, as then Û�→1.

The relation of single free-energy estimates �f̂ with the
corresponding a values can be seen in the scatter plot of Fig.
14. The mirror symmetry of the plot originates from the sym-
metry of the work densities and the choice �=0.5, i.e., of the
unbiasedness of the two-sided estimator. Opposed to the

foregoing example, the correlation between �f̂−�f and a

vanishes for any value of N. Despite the lack of any corre-
lation, the figure reveals a strong relation between the devia-

tion �f̂−�f and the value of a: they converge equally to zero
for large N.

Last, Fig. 15 shows averages of constrained �f estimates
for the mutually exclusive conditions a�0.9 and a�0.9,
now with �=0.99999 in order to incorporate some bias. We
observe the same characteristics as before, cf. the inset of

Fig. 10: the condition a�0.9 filters the estimates �f̂ which
are closer to the true value.

C. General case

The characteristics of the convergence measure are domi-
nated by contributions of work densities inside and near the

10
2

10
4

10
6

−6

−4

−2

0

2

m
ea

n
of

es
tim

at
es

of
∆f

10
2

10
4

10
6

0

0.2

0.4

0.6

0.8

1

N

m
ea

n
of

co
nv

er
ge

nc
e

m
ea

su
re

,<
a>

α=0.5

α=0.999

α=0.99999

FIG. 11. Gaussian work densities result in the displayed aver-
aged estimates of �f . For comparison, three different fractions � of
forward work values are used �top�. Average values of the conver-
gence measure a corresponding to the estimates of the top panel
�bottom�.

100 1000 10000

0

0.002

0.004

0.006

N

m
ea

n
of

ov
er

la
p

es
tim

at
es
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region where the overlap density p��w�, Eq. �11�, has most of
its mass. We call this region the overlap region. In the over-
lap region, the work densities may have one of the following
characteristic relation of shape:

�1� Having their maxima at larger and smaller values of
work, respectively, the forward and reverse work densities
both drop towards the overlap region. Hence, any of both
densities sample the overlap region by rare events, only,
which are responsible for the behavior of the convergence
measure.

�2� Both densities decrease with increasing w and the
overlap region is well sampled by the forward work density
compared with the reverse density. Especially the “rare”
events w��f of forward direction are much more available
than the rare events w��f of reverse direction. Hence, more
or less typical events of one direction together with atypical
events of the other direction are responsible for the behavior
of the convergence measure. Likewise if both densities in-
crease with w.

�3� More generally, the work densities are some kind of
interpolation between the above two cases.

�4� Finally, there remain some exceptional cases. For in-
stance, if the forward and reverse work densities have differ-
ent support or if they do not obey the fluctuation theorem at
all.

With respect to the exceptional case, the convergence
measure fails to work, since it requires that the forward and
reverse work densities have the same support and that the
densities are related to each other via the fluctuation theorem
�1�.

In all other cases, the convergence measure certainly will
work and will show a similar behavior, regardless of the
detailed nature of the densities. This can be explained as
follows. In the preceding subsections, we have investigated
exponential and Gaussian work densities, two examples that
differ in their very nature. While exponential work densities
cover case number two and Gaussians cover case number
one, they show the same characteristics of a. This means that
the characteristics of the convergence measure are insensi-
tive to the individual nature of the work densities as long as
they have the same support and obey the fluctuation theorem.

To this end, we want to point to some subtleties in the text
of the actual paper. While the measure of convergence is
robust with respect to the nature of work densities, some
heuristic or pedagogic explanations in the text are written
with regard to the typical case number one, where the over-
lap region is sampled by rare events, only. This concerns
mainly Sec. II where we speak about effective cut-off values
in the context of the neglected tail model. These effective
cut-off values would become void if we would try to explain
the bias of exponential work densities qualitatively via the
neglected tail model. Also the explanations in the text of the
next section are mainly focused on the typical case number
one. This concerns the passages where we speak about rare
events. Nevertheless, the main and essential statements are
valid for all cases.

The most important property of a is its almost simulta-

neous convergence with the free-energy estimator �f̂ to an a
priori known value. This fact is used to develop a conver-
gence criterion in the next section.

V. CONVERGENCE CRITERION

Elaborated the statistical properties of the convergence
measure, we are finally interested in the convergence of a
single free-energy estimate. In contrast to averages of many
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independent running estimates, estimates based on individual
realization are not smooth in N, see e.g., Fig. 1.

For small N, typically Û�
�II� underestimates U� more than

Û� does, pushing a close to its upper bound. With increasing

N, �f̂ starts to “converge;” typically in a nonsmooth manner.

The convergence of �f̂ is triggered by the occurrence of rare
events. Whenever such a rare event in the important tails of

the work densities gets sampled, �f̂ jumps, and between

such jumps, �f̂ stays rather on a stable plateau. The measure
a is triggered by the same rare events, but the changes in a
are smaller, unless convergence starts happening. Typically,

the rare events that bring �f̂ near to its true value are the rare
events which change the value of a drastically. In the typical
case, these rare events let a even undershoot below zero,

before �f̂ and a finally converge.
The features of the convergence measure,

�1� it is bounded, a� �−1,1− Û��,
�2� it starts for small N at its upper bound,
�3� it converges to a known value, a→0,
�4� and typically it converges almost simultaneously with

�f̂,
simplify the task of monitoring the convergence signifi-

cantly, since it is far easier to compare estimates of a with
the known value zero than the task of monitoring conver-

gence of �f̂ to an unknown target value. The characteristics
of the convergence measure enable us to state: typically, if it

is close to zero, �f̂ has converged.
Deviations from the typical situation are possible. For in-

stance, �f̂ may not show such clear jumps, neither may a.

Occasionally, �f̂ and a, may also fluctuate exceedingly
strong. Thus, a single value of a close to zero does not guar-
antee convergence of the free-energy estimate as can be seen
from some few individual events in the scatter plot of Fig. 14
that fail a correct estimate while a is close to zero. A single
random realization may give rise to a fluctuation that brings
a close to zero by chance, a fact that needs to be distin-
guished from a having converged to zero. The difference
between random chance and convergence is revealed by in-
creasing the sample size, since it is highly unlikely that a
stays close to zero by random. It is the behavior of a with
increasing N, that needs to be taken into account in order to

establish an equivalence between a→0 and �f̂→�f .
This allows us to state the convergence criterion: if a fluc-

tuates close around zero, convergence is assured, implying

that if a fluctuates around zero, �f̂ fluctuates around its true
value �f , the bias vanishes, and the mean-square error
reaches its asymptotics which can be estimated using Eq. �8�.
a fluctuating close around zero means that it does so over a
suitable range of sample sizes, which extends over an order
of magnitude or more.

VI. APPLICATION

As an example, we apply the convergence criterion to the
calculation of the excess chemical potential 
ex of a

Lennard-Jones fluid. Using Metropolis Monte Carlo simula-
tion �34� of a fluid of Np particles, the forward work is de-
fined as energy increase when inserting at random a particle
into a given configuration �35�, whereas the reverse work is
defined as energy decrease when a random particle is deleted
from a given Np+1-particle configuration. The densities
p0�w� and p1�w� of forward and reverse work obey the fluc-
tuation theorem �1� with �f =
ex �20�. Thus, Bennett’s ac-
ceptance ratio method can be applied to the calculation of the
chemical potential.

Details of the simulation are reported in Ref. �20�. Here,
the parameter values chosen read: Np=120, reduced tempera-
ture T�=1.2, and reduced density ��=0.5.

Drawing work values up to a total sample size of 106 with
fraction �=0.9 of forward draws �which will be a near-
optimal choice �32��, the successive estimates of the chemi-
cal potential together with the corresponding values of the
convergence measure are shown in Fig. 16. The dashed hori-
zontal line does not show the exact value of 
ex, which is
unknown, but rather the value of the last estimate with N
=106. Taking a closer look on the behavior of the conver-
gence measure with increasing N, we observe a near unity
for N�102, indicating the low N regime and the lack of
observing rare events. Then, a sudden drop near to zero hap-
pens at N=102, which coincides with a large jump of the
estimate of 
ex, followed by large fluctuations of a with
strong negative values in the regime N=102 to 104. This
behavior indicates that the important but rare events which
trigger the convergence of the 
ex estimate are now sampled,
but with strongly fluctuating relative frequency, which in
specific cases causes the negative values of a �because of too
many rare events�. Finally, with N�104, a equilibrates and
converges to zero. The latter is observed over two orders of
magnitude, such that we can conclude that the latest estimate
of 
ex with N=106 has surely converged and yields a reliable
value of the chemical potential. The confidence interval of
the estimate can safely be calculated as the square root of Eq.

�6� �one standard deviation� and we obtain explicitly 
ex̂=
−2.451�0.005.

Interested in the statistical behavior of a for the present
application, we carried out 270 simulation runs up to N
=104 to obtain the average values and standard deviations of
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ex̂ and a which are depicted in Fig. 17. The dashed line
marks the same value as that in Fig. 16. Again, we observe
the same qualitative behavior of a as in the foregoing ex-
amples of Sec. IV, especially a positive average value of �a�
and a convergence to zero which occurs simultaneously with
the convergence of Bennett’s acceptance ratio method.

VII. CONCLUSIONS

Since its formulation a decade ago, the Jarzynski equation
and the Crooks fluctuation theorem gave rise to enforced
research of nonequilibrium techniques for free-energy calcu-
lations. Despite the variety of methods, in general little is
known about their statistical properties. In particular, it is
often unclear whether the methods actually converge to the
desired value of the free-energy difference �f , and if so, it
remains in question whether convergence happened within a
given calculation. This is of great concern, as usually the
calculations are strongly biased before convergence starts
happening. In consequence, it is impossible to state the result
of a single calculation of �f with a reliable confidence inter-
val unless a convergence measure is evaluated.

In this paper, we presented and tested a quantitative mea-
sure of convergence for two-sided free-energy estimation,
i.e., Bennett’s acceptance ratio method, which is intimately
related to the fluctuation theorem. From this follows a crite-
rion for convergence relying on monitoring the convergence
measure a within a running estimation of �f . The heart of
the convergence criterion is the nearly simultaneous conver-
gence of the free-energy calculation and the convergence
measure a. Whereas the former converges towards the un-
known value �f , which makes it difficult or even impossible
to decide when convergence actually takes place, the latter
converges to an a priori known value. If convergence is de-
tected with the convergence criterion, the calculation results
in a reliable estimate of the free-energy difference together
with a precise confidence interval.

APPENDIX A

The derivation of inequality �10� relies on the close con-
nection between the overlap U� and the overlap area A,

U� =
 p0p1

�p0 + �p1
dw �
 p0p1

�� + ��max�p0,p1	
dw

=
 min�p0,p1	dw = A , �A1�

U1/2 = 2
 1

1/p1 + 1/p0
dw � 2
 min�p0,p1	dw = 2A .

�A2�

Together with the inequality 1
2X�N , 1

2 ��X�N ,�� of Bennett
�23�, we obtain

1 − 2A
NA

�
1 − U1/2

1

2
NU1/2

=
1

2
X�N,

1

2
� � X�N,�� �

1

N

1

��
� 1

A
− 1�
�A3�

which directly yields inequality �10�.

APPENDIX B

Inequality �21� can be obtained as follows. Noting that
tc�w��

1
� and bc�w��

1
� , cf. Eq. �14� we have

2Û� = t�f̂

�1�
+ b�f̂

�0�
� �t

�f̂

2
�1�

+ �b
�f̂

2
�0�

= Û�
�II� �B1�

and further,

Û�
�II� = Û�

2 + ��t�f̂ − Û��2
�1�

+ ��b�f̂ − Û��2
�0�

� Û�
2 ,

�B2�

which results in Eq. �21�.

APPENDIX C

The error bars in Figs. 1 and 16 are obtained via the
error-propagation formula for the variance of Bennett’s ac-
ceptance ratio method.

A possible estimate �̂ep
2 of the variance of the two-sided

free-energy estimator obtained from error propagation reads

�̂ep
2 =

1

n1

t
�f̂

2
�1�

− t�f̂

�1�2

t�f̂

�1�2 +
1

n0

b
�f̂

2
�0�

− b�f̂

�0�2

b�f̂

�0�2
. �C1�

Alternatively, �̂ep
2 can be expressed through the overlap esti-

mates Û� and Û�
�II� of first and second order, Eqs. �16� and

�19�,

�̂ep
2 =

1

��N

Û�
�II� − Û�

2

Û�
2

. �C2�

In the limit of large N, �̂ep
2 converges to the asymptotic mean

square error X�N ,��, Eq. �6�. An upper bound on �̂ep
2 follows

from inequality �23�:
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FIG. 17. Statistics of estimates of the excess chemical potential
shown are the average value and the standard deviation �as error
bars� in dependence of the sample size N. The statistics of the
corresponding values of the convergence measure is shown in the
inset.
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�̂ep
2 � 2 −

1

��N
. �C3�

Finally let us mention that the convergence measure a, Eq.
�20�, is closely related to the relative difference of the esti-

mated asymptotic mean square error X̂, Eq. �8�, and �̂ep
2

a = �1 − Û��
X̂ − �̂ep

2

X̂
. �C4�

APPENDIX D

Consider the family �̂�c� of �f estimators, parameterized
by the real number c �23�

�̂�c� = c + ln
tc

�1�

bc
�0� . �D1�

For any fixed value of c, �̂�c� defines a consistent estimator

of �f , �̂�c� →
N→�

�f ∀c. For finite N, however, the perfor-

mance of the estimator strongly depends on c. The �optimal�
two-sided estimate �2� is obtained by the additional condition

�̂�c�=c such that tc
�1�

=bc
�0�

holds, and thus c=�f̂. A pos-
sible measure for the sensibility of the estimate �̂�c� on c is
it’s derivative with respect to c. Using �

�c tc=−�tcbc,
�
�cbc

=�tcbc, and �tc+�bc=1, we obtain

�

�c
�̂�c� = − 1 + �

tc
2

�1�

tc
�1� + �

bc
2�0�

bc
�0� . �D2�

Taking the derivative at c=�f̂ directly results in the conver-
gence measure a,

�

�c
�̂�c���f̂ = − a . �D3�
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