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Using the Weiss mean-field approximation theory and the particles’ transport theory for the spatially periodic
stochastic systems, we derive an exact analytical expression for the stationary probability current of a coupled
lattice system driven by dichotomous noise. It is shown that, for this coupled lattice system, the spatial
asymmetry of the system, the asymmetry of the dichotomous noise, and the coupling among nearest neighbors
are the ingredients for the stationary probability current. By applying our theory to two special models, we find
that (1) the coupling can lead to the directional transport of the particles (even when the potential and the
dichotomous noise are symmetric) and (2) the coupling among nearest neighbors can enhance the transport of
the particles in some circumstances. Our results are applied to a device of two-dimensional Josephson-junction

arrays and a large protein motors cluster.
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I. INTRODUCTION

The nonequilibrium phenomena caused by noise in non-
linear systems have recently attracted a great deal of atten-
tion in a variety of contexts [1]. Generally, these phenomena
involve a response of the system that is not only produced or
enhanced by the presence of the noise, but also optimized for
certain values of the parameters of the noise. One example of
these phenomena is the phenomenon of stochastic resonance
[2-4], wherein the response of a nonlinear system to a signal
is enhanced by the presence of noise and maximized for
certain values of the noise parameters or the input signal
parameters. Another is the “Brownian motor,” the one of
interest to us in this paper, wherein intrinsically unbiased
Brownian motion in stochastic spatial periodic potentials
with spatial asymmetry or noise asymmetry leads to a sys-
tematic drift motion whose magnitude and even direction can
be tuned by parameters of the noise [5]. Third is the nonequi-
librium transition for the systems with finite or infinite
coupled oscillators, which probably is a phase transition (the
first order or second order) or not [6,7]. For these systems,
the most exciting is that a re-entrant second-order phase tran-
sition has been found for a general spatially extended model
by Van den Broeck and his collaborators [6]. The fourth such
phenomenon is “resonant activation” which was first identi-
fied by Doering and Gadoua [8] and further studied by a
number of other authors [9-13]. Here, the mean first passage
time (MFPT) of a particle driven by noise over a fluctuating
potential barrier exhibits a minimum as a function of the
fluctuating potential barrier flipping rate, the noise transition
rate, or the input signal frequency.

In this paper, we will investigate the transport of particles
induced by dichotomous noise for a spatially periodic system
with locally coupled oscillators. The transport of particles
driven by dichotomous noise under a spatially periodic po-
tential still attracts a great deal of attention (see Refs.
[14-18] for examples and interesting results). In Ref. [14],
Kula et al. studied the transport of particles caused by the
additive dichotomous noise (in the absence of the thermal
noise). Subsequently, in Ref. [15], they reported their inves-
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tigation results for the transport of particles for the case with
the additive dichotomous noise together with the thermal
(Gaussian) noise. But they did not consider the case for the
system with coupled oscillators driven by dichotomous noise
(including additive dichotomous noise case and multiplica-
tive dichotomous noise case). Later, Klumpp er al. investi-
gated the noise-induced transport of two-coupled oscillators
driven by the dichotomous noise and thermal noise [16]. In
Ref. [17], Fogedby er al. also only studied the transport of
two-coupled particles subject to the dichotomous noise to-
gether with thermal noise. The main difference between
Refs. [16,17] is that the former studied a model with the
multiplicative dichotomous noise, while the latter investi-
gated a model with the additive dichotomous noise. In Ref.
[18], the transport of the particles for a linear-chain-coupled
system driven by multiplicative dichotomous noise was in-
vestigated by Igarashi et al., for which the oscillators were
locally coupled. But, up to now, the transport of particles
caused by dichotomous noise for the mean-field coupled sys-
tems has been little known.

In this paper, we will study the transport of particles in-
duced by dichotomous noise for a mean-field coupled system
which is a lattice one, in which every oscillator is driven by
multiplicative dichotomous noise and locally coupled with
the nearest-neighbor oscillators by mean field (after using the
Weiss mean-field approximation, see below).

It will be shown that, for this system, the spatial asymme-
try, the asymmetry of the dichotomous noise, and the cou-
pling among nearest neighbors are ingredients for the non-
zero stationary probability current. By applying our theory
proposed in this paper to two special models, it will represent
that the coupling among nearest neighbors can lead to the
directional transport of the particles (even when the potential
and the dichotomous noise are symmetric) and in some cir-
cumstances, the coupling can enhance the transport of the
particles (i.e., the coupled particles can move faster than the
single ones). The setup of the paper is arranged as follows.
We will first present the general model of the system and
derive its master equation in Sec. II. Then, in Sec. III, an
exact analytical expression for the stationary probability cur-
rent will be derived (some discussions will be given in this
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section). After that, using our theory, in Sec. IV, two special
models will be investigated. Afterwards, in Sec. V, we will
connect our results to two real systems, i.e., a device of two-
dimensional (2D) Josephson-junction arrays and a large pro-
tein motors cluster. Finally, some conclusions and discus-
sions will be given in Sec. VI.

II. GENERAL MODEL AND ITS MASTER EQUATION

We consider the lattice model with a set of scalar vari-
ables {x;}, in which x; is the variable defined on lattice point
i(i=1,2,...,L" of a lattice in & dimensions. The equations
of the Brownian particles for the system considered by us in
the paper are (in the dimensionless form and in the Stra-
tonovich case)

§=f(0) + 8()E0 - 53 (=),
J

d d
f(xi)=_d_in1(xi)’ g(xi)=—d_in2(x;), (1)

where the sum over j runs over the set of 24 nearest neigh-
bors of site 7, the system is only in one period, i.e., nT+c
=x;=nT+d (n=0,1,2,3,... and the period T=d-c), U,(x,)
and U,(x;) are spatially periodic functions of x; with period
T=d-c, D' is a coupling constant, and () is a zero-mean
dichotomous noise which takes values —a and b (a,b>0)
whose transition rate from —a to b is y; and vice versa is y,.
Here, we present the Weiss mean-field approximation

s={(x)=F(s). (2)

In the literature, the above equation is called the Weiss mean-
field approximation [19], which has been extensively applied
[6,7,20], although it may happen that this approximation was
first published in Ref. [19]. In this approximation, all the
oscillators have an identical evolution given by the following
stochastic equation with the mean field s:

x=f(x) +g(x) &) - D' (x - s). 3)

The master equations for the probability density distribu-
tion of Eq. (3) are [21]

0-'tP+(x»_ Cl,S,l) = T Oy ()C) - ag(x) - D,x + D’S]P+(x,— d,S,l)

+ 7P (x,b,s,1) = 1 PH(x,— a,s,1), 4)

P~ (x,b,s,t) == d,[f(x) + bg(x) = D'x + D's|P™(x,b,s,t)
+ v P (x,— a,s,t) — y,P~(x,b,s,1). (5)

Let P(x,s,t)=P*(x,—a,s,f)+P (x,b,s,t) and w(x,s,t)=
—aP*(x,-a,s,t)+bP (x,b,s,t), where P(x,s,t) is the prob-
ability density of the system studied by us. From Egs. (4) and
(5), we can get

d,P(x,s,t) == d[f(x) = D'x+ D's|P(x,s,1) — d.g(x)w(x,s,t)
== 3dJ(x,s,1), (6)
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Iw(x,s,t) == d[f(x) =D'x+ D's + Olw(x,s,t)
D 1
- —ﬁxg(x)P(x,s,t) - _W(X,S,t), (7)
T T

with the probability current
J(x,s5,t) =[f(x) = D'x+D's]P(x,s,1) + g(x)w(x,s,1), (8)

where D=ab/ 7 is the noise’s strength, 7=1/(y,+7,) is the
correlation time of the noise, and =b—a which is defined as
the asymmetry parameter of the dichotomous noise [14,22].

Now, what we are interested in is the stationary probabil-
ity current. In the next section, we will derive it.

II1. STATIONARY PROBABILITY CURRENT

In the limit of r—w0, i.e., for the stationary state,
P(x,s,t)— P(x,s) and J(x,s,t) —J=const. Then from Egs.
(7) and (8), we have

J=[f(x) =D'x+D's]P(x,s) + g(x)w(x,s), 9)

ALf(x) =D'x+D's + Olw(x,s) + ang(x)P(x,s) + lw()c,s)

=0. (10)
From Eq. (9), we can get
J f(x)=D'x+D's

)= o ()

P(x,s). (11)

Substituting Eq. (11) into Eq. (10), one obtains
A(x,s)P(x,s) — d.B(x,s)P(x,s) =JC(x), (12)

where  A(x,s)=[f(x)-D'(x-s)]/[7g(x)], B(x,s)=—[f(x)

=D’ (x=5)+0][f(x)=D'(x-s)]/g(x)+Dg(x)/7, and C(x,s)

=1/[7g(x)]+d{[f(x)-D'(x-s)+ 0]/ g(x)}/dx.
For convenience, we define

x+nT A(x’,s) ,

X
c+nT B(.X’,S) '

P(x,5) = (13)
in which n=1,2,3,... and T is the period of U; and U,.
Then, dividing both sides of Eq. (12) by e¢?** and noting
dyd(x,s)=A(x,s)/B(x,s), we can get [5]

B(x,s)P(x,s)
% etlﬁ(m)

_C (x,5)
=J ) -

(14)

Integrating Eq. (14) from c+nT to d+nT, one gets

A
_ _ —¢(d.s)
J—N[l <1+B(c,s))e :|, (15)

where N:B(c,s)P(c,s)/ffC(x,s)e‘¢(X'S)dx, which is the nor-
malization constant for the stationary probability distribution
[cf. Eq. (16)], and A=D'T[2f(c)-2D'(c-s)+6]/g(c)
—(D'T)?/g(c).

Substituting Eq. (15) into Eq. (14) and integrating it from
c+nT to x+nT, one can get
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PLACR)
B(x,s)

P(x,s)=N {jg Clx',s)e P 9)=0 =) dlds) g1

x+nT

+
B(C’S) c+nT

C(x',s)e“b(d"‘)_‘/’(",’s)dx' , (16)

where 6'(x—x') is the Heaviside step function and N the
normalization constant.

In terms of the Weiss mean-field approximation, we ne-
glect the fluctuation in the neighboring sites. Then, from Egs.
(2) and (16), we can get [6,7,19]

5= % xP(x,s)dx, (17)

which is a self-consistency equation whose solution yields
the dependence of s on the other parameters. Then, from Eqs.
(15)—(17), we can determine the stationary probability cur-
rent of Eq. (1) or Eq. (3).

In what follows, we present both general and particular
solutions for the stationary probability current J. From Eq.
(15), we can find that the condition for the nonzero stationary
probability current (i.e., J#0) is

A
1 ~dds) £ 1, 18
( * B(c,s) )e (18)

namely,

J‘d+nT " f(x) _ D,(X _ S)
et = f(0) =D’ (x=5) + O][f(x) - D' (x = 5)] + Dg(x)

#1n(1+ ) (19)

B(c,s)

First, let us consider the case in Ref. [14], in which Kula
et al. studied the transport of particles caused by the additive
dichotomous noise. When D’'=0 and g(x)=1, Eq. (3) be-
comes the model investigated in Ref. [14]. In this case, Eq.
(19) becomes

d+nT f(x)
J o™ 20
From Eq. (20), we can find that the nonzero stationary prob-
ability current can be gotten only when spatially periodic
potential U,(x) is asymmetric or the dichotomous is asym-
metric (i.e., 87 0). If the spatially periodic potential and the
dichotomous noise are both symmetric [suitably selecting ¢
and d, we have U (c+d-x)=U,(x), i.e., flc+d—x)=—f(x)],
the left-hand side of Eq. (20) equals zero, which can be eas-
ily obtained after using f(c+d—x)=—f(x). Then, Eq. (20)
does not hold and the stationary probability current J equals
zero. In this case, our result accords with the one in Ref.
[14].

Second, let us consider the multiplicative noise case with-
out coupling (i.e., D'=0). Now, Eq. (19) reads
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fd+nT W f(x)
c+nT - T[f(x) + H]f(X) + Dg(x)z

From Eq. (21), it can be found that the nonzero stationary
probability current appears in the case when U,(x) is asym-
metric, U,(x) is asymmetric, or the dichotomous noise is
asymmetric. If U;(x) and U,(x) are symmetric simulta-
neously together with a=b (i.e., the dichotomous is symmet-
ric) [suitably selecting ¢ and d, we have U(c+d-x)
=U,(x) and U,(c+d-x)=U,(x), i.e., f(c+d—x)=—f(x) and
glc+d-x)=—g(x)], now Eq. (21) is false and the stationary
probability current equals zero [this can be easily gotten after
using f(c+d-x)==f(x) and g(c+d—-x)=-g(x)].

Finally, let us consider the multiplicative noise case with
D’ #0. Now, from Eq. (19), we can observe that the asym-
metries of U; and U,, the asymmetry of the dichotomous
noise (i.e., the nonzero value of #=a->b), and the presence of
the coupling among the nearest neighbors (in the presence of
the mean field) are all ingredients for the nonzero stationary
probability current. If U, and U, are symmetric, a=b, and
D' =0, no nonzero current emerges since the symmetry of the
system cannot be broken. Here, we should note a special
case, i.e., the one with U; and U, being symmetric and the
dichotomous noise being symmetric but D’ # 0 (or the addi-
tive noise case with U; being symmetric and a=b but D’
#0). In this case, though U, and U, are symmetric (or U, is
symmetric for the additive noise case) and the dichotomous
noise is symmetric, the presence of the coupling can produce
symmetry breaking of the system and therefore a nonzero
stationary probability current can be caused (see Sec. IV B in
the following).

# 0. (21)

IV. SPECIAL MODELS

In this section, using our above theory, we will investigate
two special models. One is for the case with U;(x) and U,(x)
being asymmetric, the dichotomous being asymmetric, and
D’ #0. The other is for the additive noise case [i.e., g(x)
=1] with U,(x) being symmetric and the noise being sym-
metric but D’ #0.

A. Model 1

For this special model, U,(x), U,(x), and the dichotomous
noise are all asymmetric, and coupling constant does not
equal zero. For convenience and simplicity, here we take
U,(x) and U,(x) to be piecewise linear (see Fig. 1). Then [cf.
Fig. 1] when —-0.5=x=k, we can get

A(x,s)=[-2/2k+1)=D'(x-s)]/T,
B(x,s)=D/7—[-2/2k+1)=D'(x—s) + 0][- 2/(2k + 1)

-D'(x-s)],

C(x,s)=1/7-D’, (22)
and when k=x=0.5, we can get

A(x,s)=[2/(1=2k)-=D'(x—s)]/7,
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FIG. 1. U,(x) and U,(x) for model I.

B(x,s)=D/7—[2/(1 =2k) = D'(x—s) + 0][2/(1 - 2k)
-D'(x-s)],

Clx,s)=1/7-D’. (23)

The stationary probability current can be gotten by substitut-
ing Egs. (22) and (23) into the formulas (13) and (15)—(17).

For this model, according to the above analyses in Sec.
III, we know that three aspects (i.e., the asymmetry of the
potential, the asymmetry of the dichotomous noise, and the
presence of the coupling among nearest neighbors) are ingre-
dients for the nonzero stationary probability current. Now,
every ingredient can cause the symmetry breaking of the
system and therefore produce a nonzero current in the sta-
tionary state. Based on Egs. (13), (15)-(17), (22), and (23),
in Fig. 2 we plot some results of the stationary probability
current J versus the noise’s strength D for different values of
the coupling (D' =0, 0.5, 1, 2, 3, 5, and 7, respectively) with
the other parameters k=0.3, 7=0.01, and 6=-0.7. From this
figure, we can get some characteristic features for the trans-
port of particles of model I. First, we can observe that, for

03
0.2 [

01|

0.044

0148 7
-0.24

0341}

-0.4

0

FIG. 2. Probability current J vs the noise strength D for different
values of the coupling (D' =0, 0.1, 0.5, and 1, respectively) with the
other parameters k=0.3, 7=0.01, and #=-0.7 for model L.
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the parameters selected by us in Fig. 2, there are some peaks
and wells to appear for the stationary probability currents
versus the noise’s strengths. We calculated a lot of cases for
the currents as the function of the noise’s strengths between
D'=2 to D'=3 (such as D'=2.205, D'=2.21, D'=2.215,
D'=222, D'=2.225, D'=2.23, and so on) with the same
other parameters as in Fig. 2. We found that, there is a criti-
cal value D) of the coupling constant, when D' <D/, a peak
can emerge for the current versus the noise’s strength, while
when D' > D), a well can appear for the current versus the
noise’s strength. For the selected parameters in Fig. 2, the
critical value D;, approximately equals 2.2. Second, for the
selected parameters in Fig. 2, if the coupling constant is
larger than the critical value Dy, by controlling the noise
strength, a current reversal can be gotten (we can see the
appearance of current reversal for the curves of D'=3, 5, and
7 in Fig. 2). Third, we can find that, for the fixed parameters
in Fig. 2, there is a small region for the noise strength in
which the current curves intersect. For the fixed parameters
in Fig. 2, this small region is from D;=2.3 to D,=~2.85.
When D> D,, the coupling among the nearest neighbors can
enhance the transport of particles (i.e., with increasing the
value of the coupling constant, the current can be increased),
while when D <D, the coupling among the nearest neigh-
bors can weaken the transport of particles (i.e., with the in-
crease of the value of the coupling constant, the current can
be decreased), in case that the current reversal does not hap-
pen (if the current reversal happens, our study shows that,
with increasing the coupling constant, the negative transport
can also be increased, see curves of D'=3, 5, and 7 in Fig.
2).

Some analyses for Fig. 2 are given below. The sign of the
stationary current J for smaller values of D as a function of
D’ depends on the shape of the potential. For a potential (U,
plus U,) as in Fig. 1, in the case of larger values of the
coupling, it is simpler to jump to the left than to the right.
Then, the stationary flux (i.e., the stationary current) moves
in the direction from the right to the left and the value of J is
negative (which can be seen in Fig. 2). The reason is that for
a larger coupling plus a littler noise, the distance to reach the
potential peak is more important than the maximal force
needed (i.e., the slope of the potential). For smaller values of
the coupling and still smaller noise, the slope of the potential
is more important than the distance to reach the peak of the
potential. This leads to the shift in the direction of the sta-
tionary flux from the left to the right and the stationary prob-
ability current J is positive (which can be observed from Fig.
2). Also for Fig. 2, for large D, the coupling always increases
the flux (yet, the value of |J| is always smaller than at the
extremum point). As a result, the stationary flux originated
from the coupling (with a littler noise) reflects more different
physics than the stationary flux originated from the noise
with some coupling. At the point D=D,, a transition occurs
between the two regimes.

The nonzero stationary probability current J for model I is
produced by the nonzero values of D', 6, and k (i.e., the
coupling constant among nearest neighbors, the asymmetry
degree of the dichotomous noise, and the asymmetry degree
of the potential) and has a nonlinear complicated depen-
dence on D', 6, and k. To determine the nonlinear relation-
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ship between J and D', 6 and k, one should make a lot of
numerical simulations relied on Egs. (15)—(17) for the model
I. But, we believe that it is unnecessary to do this work since
Egs. (15)—(17) can give the nonlinear complex dependence
for J on D', 6 and k, and our main purpose of the model I is
to show that the stationary probability current can be gotten
when D’, 6, and k are nonzero.

B. Model II

In this section, we consider a special model with g(x)
=1 (i.e., the additive noise case), U, being symmetric, and
the dichotomous noise being symmetric (i.e., =b—a=0),
but D' #0. We take U,(x) as the one in Fig. 1 but with k
=0. Then, we have

Alx,s)=[-2-D'(x-s)]/7,
B(x,s)=D/7—[-2-D'(x-$)][-2-D'(x-s)],
Clx,s)=1/7-D’,

when -05=x=0, (24)

A(x,s)=[2-D'(x-s)]/7,
B(x,s)=D/7=[2-D'(x-5)][2-D'(x-s)],
C(x,s)=1/7-D’,
when 0=x=0.5. (25)

Then, substituting Egs. (24) and (25) into the formulas (13)
and (15)—(17), we can calculate the stationary probability
current.

For model 1II, as we analyzed in Sec. III, though the po-
tential and the dichotomous noise are both symmetric, the
presence of the coupling among nearest neighbors can in-
duce the symmetry breaking and therefore cause the nonzero
flux of the particles (in the stationary state). In Fig. 3(a), we
plot the stationary probability current J as a function of the
noise strength D for different values of D’ (D'=0.1, 0.5, and
1, respectively) with the other parameter 7=0.01 (now k=0
and 6=0). This figure represents the appearance of the sta-
tionary probability current induced by symmetry breaking
caused by the coupling among nearest neighbors. With the
absence of the coupling (i.e., D'=0), no current can be pro-
duced (since now no symmetry is broken). In addition, from
the figure, we can see that, for the parameters selected by us
in this figure, with increasing the noise strength (maintaining
the coupling to be unchanged), the current can be increased,
and when D — o, it tends to a saturated value J,. [When D’
equals 0.1, J; is about 0.004; when D’ equals 0.5, J is about
0.02; and when D' equals 0.1, J is about 0.04. These points
are marked by us in Fig. 3(a).] Moreover, an important thing
is that, for this model in Fig. 3(a), our large number of nu-
merical simulations shows that the coupling can enhance the
transport of the particles (i.e., the increase of the value of the
coupling constant with the other parameters maintaining un-
changed can lead to the increase of the stationary probability
current), which can be observed from Fig. 3(a). Figure 3(b)
is the representation plotted for J/J, versus D with the same
parameters as the ones selected by us in Fig. 3(a).

Here, we must mention that Figs. 3(a) and 3(b) show that
the stationary probability current seems monotonous to de-
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FIG. 3. (a) Probability current J as a function of the noise
strength D for different values of D' (D’=0.1, 0.5, and 1, respec-
tively) with the other parameter 7=0.01 (now k=0 and 6=0) for
model II. (b) J/Jy vs D for model II with the same parameters as in

(a).

pend on the noise’s strength D (note that #=0 and k=0). But
this is only for the parameters selected by us in Figs. 3(a) and
3(b). Actually, J nonlinearly depends on all the parameters as
shown by Egs. (15)—(17). To illustrate this point of view, in
Fig. 4, we plot J versus D with D’'=0.5 and 7=1.4. Figure 4
can represent the nonlinear dependence of J on D, which is
nonmonotonous. In addition, for the parameters selected in
Fig. 4, there is an odd point in the vicinity of D=5.75,
which is due to the result of the zero denominator in Eqs.
(15)—(17) for the selected parameters D' =0.5 and 7=1.4.

204

[ ]
D'=0.5, t=1.4 \
[ ]
154 \
‘a..\
- 10
5- %
L ]
:
0 - .
0 3 6 9

FIG. 4. J vs D with D' =0.5 and 7=1.4 for model II.
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V. CONNECTION TO REAL SYSTEMS

In this section, we apply our results to two practical ex-
amples whose dynamics satisfies Eq. (1). One is a device of
2D Josephson-junction arrays in Refs. [23,24]. The other is a
large protein motors cluster.

A. Device of 2D Josephson-junction arrays

We consider a device of 2D Josephson-junction arrays in
Refs. [23,24]. Here, we assume that (1) for every site i of the
lattices, the number of its nearest neighbors is large enough
so that we can use the approximate mean-field theory
[6,7,19] and (2) for every Josephson junction, its insulating
material thickness L; satisfies L;<<\;, where \; is the coher-
ence length for the electron pairs to move into the insulating
material [which can be gotten by the following method: the
external electric current added to the arrays and the follow-
ing current 7(¢)—1, added to every site i should be small
enough in comparison to (i/(2eR)){d¢;/dt),, see Eq. (27)
and Ref. [25]], so that we can get the approximate relation-
ship sin(¢;— ¢;) = ¢;— ¢; in which ¢ is the phase for the site
i of the 2D Josephson-junction arrays in Refs. [22,23]. Then,
according to Refs. [23,24,26], in the time-dependent
Ginzburg-Landau (TDGL) dynamics [26], we have (not con-
sidering the magnetic field)

dob.
B~ TS (G )+ 26)

where I" is a dimensionless constant which determines the
time scale of relaxation and J, denotes the strength of the
Josephson coupling between the site i and the nearest-
neighbor sites j. The summation in Eq. (26) is over all near-
est neighbors.

Afterwards, we put every site of the lattices into a fluctu-
ating dichotomous electric current 7(z), which can be gotten
by using the devices in Refs. [27,28] and a constant electric
current —I;,. Then, Eq. (26) becomes (neglecting the thermal
noise)

do:
W TS G0 -d (@D
J

in which #7(7) takes values ¢ and d (¢ >d>0), the transition
rate from ¢ to d is \; and vice versa is \,, and I,=(1/2)(c
+d).

To correspond to Eq. (1), we assume that A\;=A,=\ and
make the following transformation. Set 7(z)=g+{(r), where
g is a constant, {(r) is a dichotomous noise, which takes
values E and —E (E>0), and the transition rates from E to
—E for {(t) and vice versa are both A. Using the relations
between 7(¢) and (1), we can get g=(1/2)(c+d) and E
=(1/2)(c—d). Taking ensembles average of 7(t)=g+{(r), we
can obtain ({(¢))=0. We can also derive the correlation func-
tion of (1): (L(){(t"))y=(E*/Dexp[-|t—t'|/7], with T
=1/(20).

Substituting 7(r)=g+{(¢) into Eq. (27), we get
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FIG. 5. Fluctuating potential barrier of the proteins motor.

do.
hf = —TJo > (=) + (). (28)
J

Equation (28) corresponds to the additive noise case of Eq.
(1) with f(x;)=0. So, according to our analyses in Sec. III
and the results for the model II in Sec. IV, we can conclude
that (1) we can get nonzero values of the voltage (V,),
=(1/(2e)){d¢;/ dr), for every column in the 2D Josephson-
junction arrays, even though the dichotomous noise {(7) is
symmetric [since (d¢;/dt);#0 [24], which can be easily
seen from Eq. (19)], and (2) the coupling can enhance the
voltage (V;), in some circumstances.

B. Large protein motors cluster

For the proteins motor, when it moves along a biopolymer
(which is a linear highway with a periodic array of fixed
charges), its dynamic equation for the position satisfies (if we
do not consider the thermal noise) [29]

h =-9,U(x,1), (29)
dt

where U(x,r) is a fluctuating potential barrier, which is
caused by the repeated binding of ATP and release of ADP
when a protein motor moves along the biopolymer.

In Fig. 5, we plot the fluctuating potential barrier U(x,7)
(see Ref. [29]). We can observe that the force F=—d,U(x,1)
fluctuates between F{=—(E+AE)/a and F{=—(E-AE)/«a
on the interval (0, @) and between Fy=(E+AE)/(1-a) and
F,=(E-AE)/(1-a) on the interval («,1). The flipping rate
of the fluctuating potential barrier is .

The force F=-3,U(x,t) can be rewritten as the following
form:

- a,U(x,1) = = 8,U(x) + m(1), (30)

in which U(x) is the solid lines barrier depicted in Fig. 5 [i.e.,
the determined asymmetric potential barrier (which is
ratchet)], 7,(7) is a dichotomous noise which takes values
AE and —AE, and the transition rates for 7,(¢) from AE to
—AE and vice versa are 7y. Substituting Eq. (30) into Egq.
(29), we get

dx
=) + ), (1)
where w(x)=-0,U(x).

Below, we consider a large protein motors cluster. We
assume that it is composed of n single protein motors and n
is large enough so that we can use the approximate mean-
field theory [6,7,19]. Similarly, as in Refs. [30-32], we as-
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TRANSPORT AND ITS ENHANCEMENT CAUSED BY COUPLING

sume that only nearest motors can be coupled and the cou-
pling force F, between the motor i and the motor j satisfies
Fy==Dy(x;~x;) (the motor i and the motor j are the nearest
ones) [31]. Then, we have

)+ )~ Do (=), (32)
! j

where the summation is over all nearest neighbors and D, is
the coupling constant.

Equation (32) can correspond to Eq. (1). So, according to
our above analyses in Sec. III, we can conclude that the
asymmetry of the potential U(x) and the coupling among the
nearest motors can break the symmetry of the system and
therefore produce a nonzero flux (i.e., the stationary prob-
ability current) of the protein motors, even though the di-
chotomous noise is symmetry. A special case for Eq. (32) is
that the potential U(x) is also symmetry. Now, according to
our results in Sec. IV for the model II, we can conclude that
the coupling among the nearest motors cannot only produce
a nonzero flux of the protein motors but also enhance the
movement of the proteins motors in some circumstances
(i.e., increasing the coupling can lead to the increase of the
average velocity of the proteins motors and the coupled pro-
tein motors can move faster that the single one), which ac-
cords with the theoretical results in Ref. [30] and the experi-
mental results in Ref. [32] for the coupled protein motors
(that the coupled motors can move fast than the single one in
some circumstances).

Up to now, the protein motor clusters have been studied
little (so they have been known little), especially the interac-
tion between the nearest neighbors of these motors. Gener-
ally, the interaction between the nearest neighbors is re-
garded as the one in Refs. [30,31] and in Eq. (32). If it is
regarded as the state electric one in which the interaction
force among the nearest neighbors i and j is proportional to
(x,-—xj)‘z, the theoretical results will not accord with the ex-
perimental ones [30-32]. Of course, it remains to be further
studied if this interaction is a long-distance one or a short-
distance one experimentally.

VI. CONCLUSIONS AND DISCUSSIONS

In conclusion, in this paper, by applying our theory (see
Sec. IIT or see below) to two special models (see Sec. V),
we have shown that (1) the coupling among nearest neigh-
bors can lead to the directional transport of the particles
[even sometimes in a perfectly symmetric system (i.e., the
potential and the dichotomous noise are both symmetric)]
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and (2) the coupling can enhance the transport of the par-
ticles (i.e., the coupled particles can move faster than the
single ones) in some circumstances. Using the Weiss mean-
field approximation [6,7,19] and the particles’ transport
theory for the spatially periodic stochastic systems proposed
in Refs. [5,21], we have derived the exact analytical expres-
sion for the stationary probability current for the coupled
lattice system. The theory proposed by us is that, for the
coupled lattice system in the present paper, the spatial asym-
metry of the system, the asymmetry of the dichotomous
noise, and the coupling among different nearest neighbors
are the ingredients for the stationary probability current.
Now, every ingredient can break the symmetry of the system
and therefore can produce the transport of particles. In the
presence of the spatial symmetry of the system, the symme-
try of the dichotomous noise, and the zero value of the cou-
pling constant, no stationary probability current can be
caused (since no symmetry-breaking appears). In addition,
our results are applied to a device of 2D Josephson-junction
arrays and a large protein motors cluster.

Finally, in this paper, we did not consider the thermal
(Gaussian) noise (white and not colored) [33]. If we add a
thermal (Gaussian white) noise in Eq. (1) [34], the above
method for the derivation of the exact analytical expression
of the stationary probability current of the system will not be
applicable, even the spatial functions U,(x) and U,(x) are
piecewise linear. Besides, the other author’s methods, such
as Kula et al. [14,15], Igarashi et al. [18], Kolomeisky et al.
[30], and so on, are also void for the derivation of the ana-
lytical expression of the stationary probability current (exact
or approximate) of the system, owing to the complexity in-
duced by the coupling part in Eq. (1). So, it makes us avoid
the complexity (produced by the coupling part) and the con-
sequent impossibility of the derivation of the exact analytical
expression of the s stationary probability current that we do
not consider the thermal noise. All the same, the results that
the coupling among the nearest neighbors can produce and
enhance the transport of the particles can be gotten by us by
applying our theory to the two special models. Of course, it
remains to be proved if the coupling can cause and enhance
the transport of the particles in other mean-field-coupled
models, except for our two special models in the paper.
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