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Spatial shift of lattice soliton scattering in the Fermi-Pasta-Ulam model
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Spatial shift produced in scattering process of lattice soliton is studied in the Fermi-Pasta-Ulam model with
anharmonic-limit potential. Kink-shaped and antikink-shaped lattice solitons are excited by kicking one single
particle. Different behaviors are discovered in two types of head-on collision: kink-kink-shaped collision and
kink-antikink-shaped collision. In both cases, the spatial shift not only depends on the scattering pair of lattice
solitons but also depends on their collision configuration, i.e., their phase difference. To make a comparison
between integrable and nonintegrable lattices, and also to check our method, the Toda model is revisited.
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About half a century ago, Fermi et al. discovered the fa-
mous paradox of Fermi-Pasta-Ulam “(FPU) recurrence” [1],
relating directly to the fundamental, physical, and math-
ematical problem of energy equipartition and ergodicity in
nonlinear systems, which led to the birth of soliton science
[2]. By reducing the FPU model to Korteweg—de Vries
(KdV) equation in continuum limit, Zabusky and Kruskal
numerically observed the named “soliton” [3]. Besides the
remarkable stability of soliton, they also noticed that the
space-time trajectory of soliton deviates from straight line
when one passes through another one. This is a Brief Report
about the spatial shift of soliton. Subsequent studies rigor-
ously confirmed these observations and clarified that the spa-
tial shift is essentially connected with the phase shift of soli-
ton that occurred in the scattering process [4]. Making no
distinction, it is usually called phase shift in the following
studies [5]. The spatial (or phase) shift is an intrinsic prop-
erty of soliton, which contains the asymptotic information on
the effect of soliton interaction and thus is an interesting
entity in itself.

So far, almost all of the studies about the spatial shift of
soliton focus on those appearing in continuous nonlinear sys-
tems which are integrable or nearly integrable [6]. In these
systems, solitons may interact without exchanging energy
and momentum simply by producing phase shifts. For this
situation, soliton interaction can be well described by the
phase shift. More than that, such an interaction limits the
accessible phase space of system [7], and thus the phase shift
can be used to determine correct counting of system state,
which provides a basis for a full configurational approach to
the statistic mechanics [8].

Recently, solitary waves appearing in discrete nonlinear
systems, especially in nonlinear periodic lattices, have been
attracting increasing research attention [9]. To contrast their
properties with solitons in the continuous systems, they are
often referred to as “lattice soliton,” “L-soliton” for short in
this Brief Report. On the one hand, experimental evidences
reveal that L-soliton may present in a variety of systems,
e.g., solids [10], biological molecules [11], optical materials
[12], etc., where discreteness plays an important role and
thus the continuous approximation is not appropriate. For
insight into the dynamical and thermodynamical properties
of these systems requires knowledge of the detailed informa-
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tion of L-solitons. On the other hand, as one type of dynami-
cal energy localization, L-soliton shows a close connection
with the anomalous energy transport phenomena [13]. In
fact, such dynamical driven localized modes provide a new
window into the underlying simplicity of nonequilibrium
processes and thus are of importance in establishing the con-
nections between dynamical behaviors and statistical proper-
ties [9].

L-soliton can be excited in perfect nonlinear lattices, as a
result of the interplay between discreteness and nonlinearity,
which has been predicted for about two decades in theory
[14]. In practice, L-soliton is first reported in a special expo-
nential lattice, i.e., the famous Toda model, which is inte-
grable and has the kink-shaped solution [15]. Detailed stud-
ies reveal that such a solution behaves the same as that
obtained in continuous system, including its spatial shift [4].
For generic nonlinear lattices, however, it was not until re-
cently that L-solitons are worked out [16]. Although the ex-
act solutions of such L-solitons are still lacking, long-lived
ones appear in various numerical studies [17]. Such a long-
lived L-soliton behaves quite different from its counterparts
obtained in the integral systems: energy transfer carries out
when they interact with each other; phase difference sensi-
tively affects the scattering process. These nonsolitonlike be-
haviors, generally attributed to the effect of discreteness, are
significant in understanding those fundamental hypotheses of
statistical mechanics, e.g., the equipartition of energy and
ergodicity of phase space, and thus are desired to be studied
quantitatively. Just recently, conservation laws of momentum
and energy have been established for the scattering of
L-solitons [17]. Unfortunately, as a dominant factor in the
interaction of L-solitons, the phase shift still lack quantitative
study.

In this Brief Report, we quantitatively study the spatial
shift of L-solitons which is the resulting signature of phase
shift that occurred in their scattering process. FPU lattice
with anharmonic-limit potential is employed as the paradig-
matic model since it has been proven to be more suitable for
studying the behavior of L-soliton [17]. Because exact solu-
tions of L-soliton still have not been found, numerical
method will be applied.

To show the reliability of numerical method, we begin
with computing the spatial shift of soliton in Toda model
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which is described by H=3Y [5+V(x,,—x)] with V(x)
=e“+x-1 [15]. Here, x; is the displacement of ith particle
and p; is the momentum. It is known that such a system has
kink-shaped solutions, xn=ln%, with velocity v=27w
[4], where w= *sinh(5) and the « determines the extremum
of the displacement of particle, denoted by /4, when a soliton
passes through.

In our numerical studies, the Toda model is initialized as
pi=0and x;=0 for i=1,...,N. The soliton is then excited by
kicking one single particle, e.g., p;=c [17,18]. To study soli-
ton scattering, we apply one kick p;=c; at =0 and the other
pj=c, at t= 5 under free boundary condition. Particles i and j
should be chosen properly to make sure expected collisions
take place. As an example, we consider a system with N
=378 and take p;=5 and py=-10 at r=0. Figures 1(a) and
1(b) show the snapshots of system at = 70. One may notice
that there are two supersonic localized excitations, i.e., soli-
tons, denoted by « and 3, and each of them is accompanied
by a subsonic “tail.” These are agreed with previous reports

[15]. The soliton velocity is obtained by vzﬁ(i *j),
where x!" is the position of ith particle at which p; reaches its
extremum and #;" is the corresponding time. Parameter % (or
k) is measured directly.

Figure 1(c) shows the collision process of the solitons
excited above. To get a better view, the tails have already
been wiped off by setting p;=0 and x;=/,(g), where h,g) is
the maximal displacement of ith particle induced by soliton
a(p). Recording x}" and 1", one can get their space-time tra-
jectories. As is already known, the soliton preserves its shape
and velocity before and after collision and only suffers some
spatial shift; thus, the corresponding trajectories are parallel,
as shown in Figs. 1(c) and 1(d). The spatial shift of soliton «,
denoted by AS,, is marked on Fig. 1(d), which can be mea-
sured by extrapolating the space-time trajectories of soliton.

The spatial shift directly measured from the space-time

FIG. 1. A pair of solitons ex-
cited by p;=5 and py=-10 in
Toda model: (a) the snapshot of
particle momentum; (b) the snap-
shot of particle displacement; (c)
the scattering process; the (d) the
space-time trajectories.

trajectory (e.g., AS,) should be separated into two parts
AS,=A, * hg, (1)

where positive sign is taken for v,v5>0 and [v,|>[vgl, i.e.,
soliton « is the faster one in the overtaking collision; other-
wise, minus sign is taken. The reason is as follows. For kink-
shaped solitons, ith particle has two equilibrium positions,
i.e., x;,=0 and x;=h [12]. Before collision, ith particle has
already switched from x;=0 to x;=hg because soliton
passed. This fact leads the position of soliton « to addition-
ally shift i after it interacts with the soliton g. Since hg only
reflects the property of soliton S, it is reasonable to remove it
from AS, to get information of soliton interaction. The A,
reveals the relative phase shift of soliton « [4,8]. Here, we
should mention that A, is independent of time delay & in
Toda model.

Figure 2 shows the results of A, for different %,. Here, we
fix soliton B as |hg=3.46 corresponding to |c|=5 and
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FIG. 2. A, with different h, obtained by numerical method
(stars for head-on collision, circles for overtaking collision) and
exact two-soliton solutions (solid line), fixing |h |~ 3.46.
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change soliton a with h,>0: overtaking collision is consid-
ered for hB>0; head-on collision is considered for hﬁ<0.
For comparison, results obtained by the numerical method
mentioned above and by the exact two-soliton solutions re-
ported in Ref. [4] have been shown. Clearly, they are per-
fectly matched with each other. Up to now, we have shown
how numerical method is applied to measure the spatial shift
of soliton and have checked its reliability. We then apply it to
study the spatial shift of L-solitons scattering in FPU model.

The anglarmonic-limit version of FPU model, described as
H=3Y, %+J—l(x,-+1—xi)4], is adopted, which shows great su-
periority to study the dynamics of L-solitons [17]. This sys-
tem has two types of L-soliton solutions [16]: one is kink-
shaped solution moving in the same direction as that of the
particle; another is antikink-shaped solution whose moving
direction is opposite to that of the particle. Examples are
shown in Figs. 3(a) and 3(b), obtained in the system with
N=410 by taking kicks p;=5 and py=10 at r=0, respec-
tively, denoted as a and B. Here, the « is a kink-shaped
L-soliton and S is a antikink-shaped one. Both are accompa-
nied by smaller L-solitons that will be wiped off to get a
better view of the collision process as it does in the Toda
model.

Figure 3(c) shows the collision process of the L-solitons
produced above. One can notice that some new waves are
excited during the collision. This means that the total energy
of above L-solitons is reduced but not necessarily implies
every one of them loses its energy. Previous studies reveal
that the smaller L-soliton gains energy in the scattering pro-
cess, while the bigger one loses energy [17]. Since the en-
ergy is changed, the speed of L-soliton will be different be-
fore and after the collision, and thus the corresponding
space-time trajectories are no longer parallel as shown in
Figs. 3(c) and 3(d). Of course, collision also produces spatial

FIG. 3. A pair of L-solitons
excited by p;=5 and py=10 in
FPU model: (a) the snapshot of
particle momentum; (b) the snap-
shot of particle displacement; (c)
the scattering process; and (d) the
space-time trajectories.

shifts. As an example, spatial shift of L-soliton a, AS,, is
marked on Fig. 3(d), which can be directly measured by
extrapolating the space-time trajectories.

This Brief Report focuses on studying the spatial shift
produced from two types of head-on collisions: (1) collision
between the same types of L-solitons; (2) collision between
different types of L-solitons. Again, the directly measured
spatial shift (e.g., AS,) should be separated by (1) to obtain
the information of L-soliton interaction as it is mentioned in
the case of Toda model. Minus sign will be taken.

First, motivated by previous reports [17], we study the
relationship between A, and 6. Some typical results are
shown in Fig. 4(a), which reveal them to be clearly periodic.
In fact, such behavior originates in the discrete nature of
lattice. For a certain pair of L-soliton, different J is equiva-
lent to different collision configuration because head-on col-
lision is essentially an exchange effect. Let us suppose that
particles i, and iz belong to L-soliton « and S, respectively.
During the scattering process, there must be a time ¢, when
particle i, and ig reach the same velocity v. Here, i
=i,=1 or *£2. When 1>t particle i, will belong to
L-soliton 3 and iz will belong to a; the exchange (or colli-
sion) is finished. It is easy to find the following special con-
figurations: (a) ig=i, =2 and v.=0, AS,, reaches the maxi-
mal value; (b) ig=i,* 1 and vc=min{v:-’l,v:-”}, AS,, reaches
the minimal value; and (c) i =i, T 1 and v,=0, AS,, reaches
the intermediate value. Here, vﬁ" and vf" are the maximal
velocity that particle i, and ig can reach. The periodicity
reflects the period of lattice model.

Then, we study how the spatial shift depends on the scat-
tering pair of L-solitons. For this purpose, the mean value
(A,) is of more significance than the prompt value. Without
loss of generality, we change the L-soliton a with i,>0 and
fix B as |hg|~2.96 corresponding to |c|=>5: kink-kink-shaped
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collision takes place when h;<<0; kink-antikink-shaped col- Ag, ~ \Ecl (tamx,) = \661 AS ©)

lision happens when /15>0. Results are shown in Fig. 4(b).
Each (A,) is gained by averaging over several periods of A,,.
Clearly, (A,) decreases with the increase in &, for both types
of collision. Meanwhile, the difference is also apparent: there
always is (A,)>0 for kink-kink-shaped collision; while
(A)>0 for h,<hg and (A,)<O0 for h,>hg in the case of
kink-antikink-shaped collision. These behaviors have not
been observed in the continuum approximation [4].

Finally, we emphasize here that A, cannot be directly
regarded as the relative phase shift of soliton a because
L-soliton « is intrinsically changed to another one « after the
collision. To obtain the information of phase change, based
on prior knowledge [16,19], we suppose the kink-shaped
solution of FPU model satisfies u(x,t)=®(xx + wt). Here, w
is inverse of the period that a particle reaches its maximal
displacement starting from when it began to move. Numeri-
cal studies suggest that w=ch+c,, where ¢;=~0.085 37 and
¢,~0.002 56. Considering the previous result v=f=%
[17,18], one can get Kzf(c1h+cz). Then, the phase differ-
ence between L-soliton « and @ can be written as A,
= V’gcl(xa—xa)+v'§cz(2—2—%), setting the collision time f.
=0. Since the second term of right-hand side is negligibly

small compared to the first one, above equation can be re-
duced to

Therefore, A, approximately reveals the phase change of
L-soliton « caused by the collision.

In summary, we have studied spatial shifts of L-soliton in
the FPU model with anharmonic-limit potential. It is found
that the spatial shift not only depends on the collision pair of
L-solitons but also depends on their collision configuration,
i.e., their phase difference. For a given pair of L-solitons, the
spatial shift periodically changes with the delay time 6. More
importantly, it is discovered that the behavior of spatial shift
obtained in kink-kink-shaped collision is very different from
that obtained in kink-antikink-shaped collision. These prop-
erties are essentially different from that of the solitons satis-
fying the KdV equation which is one continuous approxima-
tion of FPU model.
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