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Alternative boundary conditions for Monte Carlo simulations based on self-consistent
correlations: Application to the two- and three-dimensional Ising models
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An alternative to periodic boundary conditions is developed and tested in Monte Carlo simulations of the
two- and three-dimensional Ising models. The boundary conditions are based on a mean-field approach that
incorporates consistency constraints for the magnetization and correlations between nearest neighbors by
means of an effective field and an extra coupling between nearest neighbors at the boundary of the simulation
box. During the simulation the self-consistent equations are solved, and statistics are accumulated to obtain
thermodynamic averages. In comparison with the standard periodic boundary conditions the method gives a
more accurate estimation of nonuniversal magnitudes, such as the transition temperature and the behavior of
the magnetization, but it cannot compete with the accuracy of other strategies such as finite-size scaling theory
or Monte Carlo renormalization group to obtain critical exponents.
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I. INTRODUCTION

The most extended choice for the boundary conditions in
Monte Carlo or molecular-dynamics simulations of infinite
periodic systems corresponds to periodic boundary condi-
tions. They work well far from a phase transition, but close
to a continuous phase transition the correlation length grows
without limit and all the singularities associated to the tran-
sition are rounded. Approximation methods, such as the
mean-field approach, constitute an alternative to simulations:
the periodic infinite system is reduced to a single unit and the
effect of the rest of the crystal is taken into account by re-
placing the interactions with its neighbors by effective fields
that fulfill a self-consistency condition.

Both approaches, simulations and mean-field approxima-
tions, can be combined by considering, instead of a single
site, a collection of sites and applying self-consistent fields at
the boundary of the system. For large systems only simula-
tion methods can be used to obtain statistical information of
the system and the resulting technique can be considered as a
simulation with self-consistent boundary conditions. This
kind of calculations has been already applied to Monte Carlo
simulations [1-4]; there is not rounding at the transition and
the critical point can be calculated unambiguously. Unfortu-
nately, the simulated systems correspond to the mean-field
universality class and more sophisticated techniques such as
finite-size scaling (FSS) [5] or coherent anomaly method
(CAM) [6] must be used to extract accurate estimates of the
critical temperature and critical exponents by performing
several simulations with different system sizes.

More elaborate versions of the mean-field approach that
extends the self-consistencies to correlations between differ-
ent sites have been developed for two-dimensional Ising
models in Refs. [7,8]. Unfortunately, their application is re-
stricted to systems of small size, the number of self-
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consistent equations to be solved increases prohibitively with
the size of the system, the prioritization of the dominant
couplings is not clear and, as a consequence, the generaliza-
tion to large systems and/or three dimensions is not feasible.
We propose a method that gives a simple way to handle any
system size and any dimension and that, in combination with
the Monte Carlo method, opens a simple way to explore
accurately the statistical properties of simple Hamiltonians.
The effective parameters correspond to a single effective
field and a single coupling between nearest neighbors at the
boundary. During a sequence of Monte Carlo simulations
two objectives are achieved: a system of two self-consistent
nonlinear equations is solved and statistics are accumulated
to obtain thermodynamic averages. Although this work is
focused on the Ising model in two and three dimensions, the
method can be, in principle, generalized to more complex
Hamiltonians.

II. EFFECTIVE FIELDS AND COUPLINGS WITHIN
MEAN-FIELD APPROXIMATION

The Hamiltonian of the Ising model in the presence of an
external field 4 can be described as

H=-J2 5i8; = » S;.
(i.j) i

Within the mean-field approximation the most basic the-
oretical treatment of such a model corresponds to the Weiss
[9] or Bragg-Williams [10] theory. A single spin (reference
spin) must be chosen, and the influence of the neighboring
spins is taken into account by considering an effective field
hes. The value of this field at a given temperature is obtained
by imposing the consistency between the thermal average
value of the reference spin and the applied effective field
(hegs=(s)). The generalization of this approach to larger sys-
tems is straightforward. Instead of a single spin one can se-
lect a collection of spins and replace the interactions with the

©2010 The American Physical Society


http://dx.doi.org/10.1103/PhysRevE.81.036703

ETXEBARRIA, CAPILLAS, AND ELCORO

spins outside the system by an effective field. There are sev-
eral alternatives to choose the reference spins: a single spin,
the whole system or any set of spins inside the system. In
general, if A is the set of n reference spins, the value of the
effective field is obtained from the following self-consistent
condition:

<(To>=i > ()= hegy (1)

nOS[EAO

The Bethe approximation [11] handles more correctly the
local fluctuations and represents an improvement of the pre-
vious scheme. The minimal system consists of one spin (ref-
erence spin) and all its first neighbors at the boundary of the
system (fest spins), and the effective field that replace the
missing bonds of the boundary spins is tuned to give the
same mean value for the reference and test spins. For larger
systems not all the spins at the boundary are equivalent, and
their mean values must be averaged to obtain the effective
field from a self-consistent equation.

Nevertheless, there is no reason to choose the test spins at
the boundary of the system; they can be selected from any
region of the system and the choice of the boundary spins
may not be the best alternative, as we will see in the next
section. As in the generalization of the Weiss approximation
above, there is no restriction to choose the reference spins.
Thus, if A, is the set of n, reference spins and A corresponds
to n test spins, the self-consistent equation to be solved can
be expressed as

=t S ()= S ()=o), @)

nOsieAO nsl-eA

Both methods provide a certain level of uniformity for the
average values of the spins over the whole system but due to
the missing bonds of the boundary, correlations ((y)=(s;s;))
between adjacent spins are very different for spins at the
central region of the system and those that are close to the
boundary. A much more homogeneous distribution of the
correlations can be achieved if, following the spirit of the
mean-field approach, an effective coupling term of the form:

HK:—K E SiSj (3)
(i,))eAp

is added between pairs of nearest neighbors at the boundary
of the system (Ap).

The value of the effective coupling can be obtained again
from a self-consistent equation that relates m, reference cor-
relations (y e {)) and m test correlations (y e ) for differ-
ent sets of spins:

To=—3 (==3 (=M. @

mOyieQO myl-eﬂ
Under the conditions of Eqgs. (2) and (4) the statistical
behavior of a finite collection of spins should resemble more
the infinite periodic system under study, and although there
are some exceptions [12], for closed form approximations
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[13] the general trend is that increasing the system size re-
sults in an improvement of the estimation of the critical tem-
perature.

One of the advantages of the mean-field approaches is
that an estimation of the transition temperature can be di-
rectly obtained as the solution of nonlinear equations. The
Hamiltonian of a collection of Ising spins in an external field
h can be written in mean-field (Weiss) approximation as [6,7]

H=Hy—hS — h2,
with

H0= _JE SiSi,
(i)

S: 2 Sis
i
and
2= E ZiSis
ieAp

where z; is the number of missing bonds of the s; spin at the
boundary. For a small applied field # the mean value of a
spin may be expressed as

(80 = (50 + Bh({s5:S)o = (500(S)0) + Bhegr({s:2)o = (s0{=)0)»

where the symbol ( ), represents the average value calculated
with H,,. At the critical temperature T, {s;)0=0, and close to
the critical point we have

(1) = B(h{s;8) + hege{5:2)0) -

According to the Weiss approach, the average mean value
of the reference spins must be equal to the effective field [Eq.

D]
(o0 = B aS)o + her{ 002 )0) = hegys (5)

and at the transition temperature the susceptibility must show
a divergence:

dhete  BLapSho
dh 1= BLogS)

Thus, the critical temperature can be obtained from the fol-
lowing equation:

_ 1
- <(702>0.

For the Bethe-like approximation the constraint of Eq. (5)
is replaced by imposing the same mean value on the refer-
ence and test spins [Eq. (2)]:

h{(og = 0)8)g + he{ (09— 0)2)y =0, (7)

and the singularity of the susceptibility at the critical point
gives the relation to obtain the critical temperature:

(09— 0)2)y=0. (®)

As stated above, the inclusion of self-consistencies among
correlations at different regions of the system can be

Be (6)
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achieved by adding effective couplings between nearest
neighbors at the boundary [Eq. (3)], and the Hamiltonian of
the system becomes

H=H"—hS - h2,
with

H*=H0+HK=—]ESZ'SJ'—K 2 Sl‘Sj.
(i) (i.j)eAp

In this case, the statistical averages must be performed with
respect to H*=Hy+Hy. The critical temperature and the ef-
fective coupling can be obtained by solving a system of two
nonlinear self-consistent equations analogous to Egs. (4) and

®) [7]:
(09— 0)2)" =0, (9a)

(T =()"=0, (9b)

where ( )* represents the average value calculated with H*.
The first equation gives the condition for the divergence of
the susceptibility at the critical point and the second one
improves the homogeneity of the correlations at different re-
gions of the system.

III. PRELIMINARY CALCULATIONS WITH SMALL
SYSTEMS

We have done an initial test to compare the efficiency of
the different schemes using a small system of 6 X6 spins.
The nonlinear equations have been solved using the MATH-
EMATICA software, which gives any desired accuracy for
such a small sets of spins. The test and reference spins and
correlations can be chosen almost arbitrarily at any region of
the system. Obviously, the influence of the missing bonds is
much stronger at the boundary of the system than at the
central region, and the statistical behavior of the internal
spins should resemble more faithfully the real behavior of a
spin embedded in an infinite periodic system. In conse-
quence, we have chosen the reference spins and reference
correlations at the center of the system, as shown schemati-
cally in Fig. 1. The critical temperatures given in Table I
have been calculated according to three different schemes of
self-consistency: the Weiss (W) approximation [Eq. (6)], the
standard Bethe (B) approximation for different test spins
[Eq. (8)] and the Bethe approximation with constraints that
include correlations (C) for different sets of test spins and
test correlations [Eq. (9)] as explained in Fig. 1.

As can be seen in Table I the Weiss approximation gives a
modest estimation of the critical temperature for such a small
sizes as compared with the Bethe approximation that can
reach a relative error of 9—10 % when the test spins that are
not located at the boundary of the system. The improvement
due to the inclusion of the self-consistency in the C between
adjacent spins is remarkable, the overestimation of the tran-
sition temperature is lowered by a factor of two approxi-
mately with respect to the Bethe approximation. The best
results (C-3c and C-5¢) correspond to the test spins and cor-
relations that are closest to the symmetry axes shown in Fig.
1.
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FIG. 1. Test and reference spins and correlations for a system
with 6 X 6 spins. o and I’ are the reference spin and correlation
close to the center of the system. The rest of labels corresponds to
test spins (numbers) and test correlations (letters). Except for the
three and five spins, we have only drawn a single representative of
all the symmetry equivalent test spins and test correlations. The
dashed lines are the symmetry axes perpendicular to the boundaries.

IV. SOLVING THE SELF-CONSISTENT EQUATIONS BY
MONTE CARLO SIMULATIONS

Larger systems cannot be solved using any analytical
method, but all the magnitudes and derivatives required to
find a solution to the constraint equations can be expressed in
terms of statistical averages. Therefore, the self-consistency
constraints can be solved by combining Monte Carlo simu-
lations and an algorithm to solve systems of nonlinear
equations—the Newton-Raphson method in this work. The
derivatives of the nonlinear equations with respect to S
=1/kgT and K (effective coupling between spins at the
boundary) that must be obtained to solve the self-consistent
Eqgs. (9) can be expressed in terms of statistical averages that

TABLE 1. Transition temperatures for the combinations of Fig.
1. In the first column W stands for the Weiss approximation, B for
the Bethe approximations, and C for the present method that incor-
porates constraints in the correlations. Figure 1 shows the labels of
the test spins and correlations. For instance, C-2b indicates that spin
2 and correlation “b” (between spins 2 and 3) have been used re-
spectively as test spin and test correlation in the self-consistent
equations. The third column corresponds to the percentage of over-
estimation in the transition temperatures with respect to the exact
value kpT,./J=~2.2692 [14].

6X6 kgT.1J T.—T./T. 100
W 2.7953 23.2
B-1 2.5188 11.0
B-2 2.5011 10.2
B-3 2.4994 10.1
B-4 2.4751 9.1
B-5 2.4688 8.8
C-la 2.4964 10.0
C-2b 2.4296 7.1
C-3c 2.3853 5.1
C-4d 2.4131 6.3
C-5e 2.3765 4.7
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FIG. 2. Evolution of the convergence of the critical temperature
(B,), effective coupling (K,), and the values of (f;)=((oy—0)2)*
and (f,)=(y)*—(I')* during 20 iteration of the Newton-Raphson
algorithm. The size of the system is 6 X 6 X 6 and for each iteration
10° Monte Carlo steps have been performed.

are available during a standard Monte Carlo run. If
fi=(op—0)2 and f,=T,—T we have for i=1,2:

%=<H*>*<f,~>*—<f1*f,->*, (10a)
IO Byt (10b)

The main drawback of the Monte Carlo method is the
uncertainty associated to the estimation of the statistical
magnitudes. The derivatives of Eq. (10) correspond to corre-
lations among four spins and their accuracy must be well
controlled in order to obtain a minimal convergence of the
Newton-Raphson method. When the errors are small enough,
the application of successive iterations gives a series of val-
ues of B and K that are scattered around the solution and can
be used to obtain an estimation of the critical temperature
and its standard error. Figure 2 shows the typical evolution of
the first 20 iterations of the Newton-Raphson procedure. For
each iteration a Monte Carlo simulation with 10° steps have
been performed. The convergence is achieved after three it-
erations and the rest of the points may be used to estimate
the desired statistical properties. However, a minimum accu-
racy in the estimation of the derivatives is needed; for this
system we have found that for Monte Carlo simulations with
less that 10* steps the method fails to converge.

In consequence, during a sequence of Monte Carlo simu-
lations two goals are achieved, the nonlinear equations [Eq.
(9)] are solved approximately and the physical quantities of
interest are calculated as in standard Monte Carlo runs.

V. RESULTS

We have applied the method to several square and cubic
systems of dimension L¢ for d=2,3 and even L. This sys-
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20 40 60 80 100 120

FIG. 3. Percentage of the overestimation in the transition tem-
peratures with respect to the exact value kgT™/J=~2.2692 [14] for
several two-dimensional square systems and different approxima-
tion schemes: Weiss (open circles) and the present method for depth
0 (closed circles), depth 1 (squares), and depth 2 (diamonds).

tems are analogous to the previously studied 6 X 6 case. The
value of the reference spin is obtained from the average of
four (or eight in three dimensions) symmetry-equivalent
spins at the center of the system as in Fig. 1. For the test
spins, we have considered three sets of average values and
correlations. The first set (depth 0) corresponds to the eight
(24 in three dimensions) equivalent spins at the center of the
sides (faces) in the boundary of the system and the four (24
in three dimensions) correlations between first neighbors.
Figure 1 can be used to illustrate the two dimensional case;
the eight test spins are the analogous in a larger system of the
sites labeled by “3,” and the four test correlations are calcu-
lated between the pairs 3-3 of adjacent spins (“c” correla-
tions). The second set (depth 1) is composed by a similar
choice, but one lattice spacing deeper into the system. In Fig.
1 they correspond to the eight spins labeled by “5” and the
four correlations of type “e.” The third set (depth 2) is simi-
lar to the previous ones as we go one lattice spacing deeper
into the system and it cannot be defined in Fig. 1 due to the
small size of the system shown.

Transition temperatures and effective couplings have been
obtained by solving the Eq. (9) by the combination of Monte
Carlo calculation and the Newton-Raphson algorithm, and
the discrepancies in the estimation of the critical temperature
are shown in Figs. 3 and 4 for two and three-dimensional
cases, respectively. As in the test with small systems, increas-
ing the depth of the test spins and correlations gives more
accurate estimations of the transition temperatures. For the
two-dimensional system it is enough to set L=60 (depth 2) to
obtain a relative error close to 1%. The results of the three-
dimensional cases are even more remarkable: for
L=6 the relative error is less than 1% and the estimation of
the critical temperature is much better than the obtained with
the Weiss approximation (~6%) for the same system size
(out of the scale of Fig. 4).
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FIG. 4. Percentage of the overestimation in the transition tem-
peratures with respect to the very accurate value kgT"/J=~4.5115
[15] for several three-dimensional cubic systems and approxima-
tions: Weiss (open circles) and the present method for depth 0
(closed circles), depth 1 (squares), and depth 2 (diamonds).

By choosing the test spins closer to the center of the sys-
tem (increasing the depth) the estimation of the transition
temperatures is better, but it must be mentioned that this
improvement entails a decrease in the precision in the calcu-
lation of the derivatives and a larger number of Monte Carlo
steps must be performed to have a good convergence toward
the solution of the self-consistent equations.

Figure 5 points up the advantages of the inclusion of the
self-consistency in the correlations to estimate the evolution
of the magnetization with temperature close to the critical
point. The absolute value of the order parameter obtained by

0.4 &
(Imi)
0.3

0.2

0.1

FIG. 5. Evolution of the absolute value of the magnetization
with the temperature for different three-dimensional system sizes
calculated by standard Monte Carlo simulations with periodic
boundary conditions (open circles), the present method with depth 0
(closed circles), and depth 1 (squares) and the very accurate results
(solid line) of Ref. [15].
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TABLE II. Estimation of the critical temperatures and critical
exponents of the susceptibility calculated by applying CAM theory
to a sequence of different system sizes for the two- and three-
dimensional Ising models.

2D 3D
T, b T, Y
Depth 0 2.266(1) 1.820(3) 4.5226(7) 1.166(1)
Depth 1 2.267(2) 1.804(4) 4.517(1) 1.142(2)

standard Monte Carlo simulations with periodic boundary
conditions is also shown for comparison. The behavior of the
simulations with constrained mean values and correlations is
much closer to the exact behavior of the Ising model even for
smaller system sizes, the rounding effect due to the finite size
of the system is not present and the transition temperature
can be located easily, showing that close to a phase transition
the present method gives a better estimation of nonuniversal
magnitudes than the periodic boundary conditions.

As the method involves a mean-field approximation, the
critical exponents are not correct, but, in principle, CAM
theory [6] can be used to obtain accurate estimations of
them. Close to the critical temperature T<CL) the susceptibility
for a system of size L has the form

L

o T
L L L)’
T-1L

where Y, is the critical coefficient. If the series are well
behaved, for a sequence of different sizes, the critical coef-
ficient has a singularity:

_ 1
T Ao ()

where T, is the exact critical temperature. The critical expo-
nent of the susceptibility can be obtained by y=1+¢.

Following Ref. [7], we have obtained the critical coeffi-
cients of the susceptibility (y) for the system sizes repre-
sented in Figs. 3 and 4 and fitted the values according to Eq.
(11) to extract an estimation of the critical temperature and
critical exponent of the susceptibility for the two- and three-
dimensional Ising systems. As can be seen in Table II, the
transition temperatures are quite accurate but the estimation
of the y exponent obtained from convergence of the series
constructed with the present method are not satisfactory. Ad-
ditional simulations with larger systems combined with an
FSS analysis of the data should give a more reliable evalua-
tion of the potentiality of the method to estimate more accu-
rately transition temperatures and critical exponents.

VI. CONCLUSIONS

The application of self-consistent constraints to correla-
tions between nearest neighbors improves the estimation of
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nonuniversal magnitudes (transition temperatures and behav-
ior of the order parameter) in small systems in comparison
with standard periodic boundary conditions. The procedure
involves a Monte Carlo simulation to perform two tasks si-
multaneously: the self-consistent equations are solved to ob-
tain the parameters of the mean-field Hamiltonian (an effec-
tive field and an effective coupling) and statistics are
acquired such as in a standard Monte Carlo run. The method
opens the possibility of obtaining reliable estimations of
transition temperatures and other non universal quantities by
performing inexpensive simulations with systems of small
size. However the estimation of critical exponents seems to
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be out of the scope of the method in comparison with more
powerful techniques such as series expansions, Monte Carlo
renormalization group, or finite-size scaling.
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