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We discuss several techniques for the evaluation of the generalized Lyapunov exponents which characterize
the growth of products of random matrices in the large-deviation regime. A Monte Carlo algorithm that
performs importance sampling using a simple random resampling step is proposed as a general-purpose
numerical method which is both efficient and easy to implement. Alternative techniques complementing this
method are presented. These include the computation of the generalized Lyapunov exponents by solving
numerically an eigenvalue problem, and some asymptotic results corresponding to high-order moments of the
matrix products. Taken together, the techniques discussed in this paper provide a suite of methods which
should prove useful for the evaluation of the generalized Lyapunov exponents in a broad range of applications.
Their usefulness is demonstrated on particular products of random matrices arising in the study of scalar

mixing by complex fluid flows.
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I. INTRODUCTION

Products of random matrices arise in many physical mod-
els, of disordered media, of wave localization, and of chaotic
dynamics in particular. The main quantity of interest is the
largest Lyapunov exponent, which gives the rate of exponen-
tial growth of the products as the number N of factors in-
creases to infinity. The free energy of random Ising models,
for instance, is given by the largest Lyapunov exponent of a
product of matrices, as is the localization length of some
random Schrodinger operators. We refer the reader to the
book by Crisanti, Paladin, and Vulpiani [1] for a discussion
of these and other applications.

Often, it is necessary to go beyond the almost sure,
infinite-N growth of the matrix product captured by the larg-
est Lyapunov exponent, and examine finite-N fluctuations.
These are characterized by the distribution of the so-called
finite-time (or finite-N) Lyapunov exponents or, equivalently,
by the generalized Lyapunov exponents €(g), which give the
growth rate of the g-th moment of the norm of the matrix
product (e.g., [1-4]). At a mathematical level, the generali-
zation involved entails the passage from the (mutliplicative,
noncommutative) law of large numbers [5-7] to the corre-
sponding theory of large deviations ([8], and references
therein).

One area of application in which multiplicative large de-
viations and generalized Lyapunov exponents play a central
role is the transport, mixing and reaction of constituents in
complex fluid flows. In the last ten years or so, a number of
results have related the macroscopic dynamics of scalars and
fields in fluid flows to the large-deviation statistics of the
stretching by these flows (see [9], for an early review). Spe-
cifically, the generalized Lyapunov exponents associated
with the stretching have been found to control the decay rate
of purely advected passive scalars [9—14], the spatial distri-
bution of reacting scalars [15,16], the reaction rate of fast
reactions [17], the distribution of vorticity in certain turbu-
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lent flows [18,19], the clustering of inertial particles [20], the
magnetic field in kinematic dynamo models [21], etc. In
most of these applications, the complex fluid flows are mod-
eled by random processes which either are white in time
(Kraichnan—-Kazantsev flows), or consist of sequences of in-
dependent identically distributed (iid) processes (variously
termed renewing, renovating, or innovating flows). In the
latter case, the stretching is controlled by products of iid
random matrices of the type considered in this paper.

In many of these applications, it is necessary to evaluate
the generalized Lyapunov exponents for specific random ma-
trices. Very few exact results are available, however. As is
also the case for the usual Lyapunov exponent, given in fact
by €'(0), these are essentially limited to matrices satisfying
an isotropy property that reduces the problem to scalar mul-
tiplication [1,22,23]. Thus approximations to €(g), either per-
turbative or numerical, need to be obtained. Crisanti et al. [1]
review several techniques including Cook and Derrida’s
asymptotic results for large sparse matrices [24], the weak-
disorder expansion for near-identity matrices, the replica
trick (applicable when ¢ is even and positive), and the (heu-
ristic) microcanonical estimate. Cycle expansions [25,26]
provide yet another technique. However, these techniques are
limited to special ensembles of matrices: the microcanonical
and cycle-expansion estimates, for instance, are applicable to
ensembles drawn from a small number of matrices. There is,
therefore, a genuine need for numerical techniques that en-
able the estimation of €(g) for a broad range of matrix en-
sembles. The main aim of the present paper is to develop one
such numerical technique and to demonstrate its usefulness
by applying it to a few examples.

Several of the papers on fluid mixing cited above contain
numerical evaluations of the generalized Lyapunov expo-
nents corresponding to simple renewing flows, and in par-
ticular to the alternating sine map [27] that has become a
standard tool in the field. Most of these estimates are ob-
tained using a straightforward Monte Carlo sampling of ei-
ther the probability distribution of the finite-time Lyapunov
exponents, or of the g-th moments of the norm of the matrix
product. This approach, which we refer to as brute-force
Monte Carlo in what follows, is highly inefficient unless ||
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is small. This is because it attempts to sample events that
have an exponentially small probability as N— . Clearly,
what is needed is some form of importance sampling, which
focuses the computational effort on the realizations dominat-
ing the estimate of €(g). We propose and test a simple algo-
rithms that has this property. This algorithm, which we call
resampled Monte Carlo (RMC), falls in the category of se-
quential importance-sampling [28] or “go-with-the-winners”
strategies [29] used extensively in statistical physics and
elsewhere; it consists of a simple modification of the brute-
force computation adding a (random) resampling step which
drastically reduces the sample variance. As a result, it yields
accurate estimates of €(g) with ensembles that are orders of
magnitude smaller than those required for the brute-force
estimation. The algorithm is very close to the cloning/
pruning algorithm recently developed to estimate large-
deviation statistics for more general Markov chains [30,31].
However, our focus on products of matrices leads to an al-
gorithm that is particularly simple to implement and to ana-
lyze.

Recently, Haynes and Vanneste [14] used an alternative
approach to the brute-force Monte Carlo sampling for the
evaluation of €(g) for the alternating sine flow (see also
[16]). This approach relates €(g) to the eigenvalue of an
(infinite dimensional) eigenvalue problem that can be dis-
cretized and solved numerically, at least for 2 X2 and per-
haps 3 X 3 matrices. We review this approach, first to com-
pare its results with those of our RMC algorithm, but mostly
because the eigenvalue problem can be used to derive inter-
esting properties of €(g). One such property relates the func-
tion €(g) associated with an ensemble of matrices A to the
corresponding function associated with the complementary
ensemble of matrices A~'/|det A|"4. This relationship is of
great practical interest since considering A~!/|det A|'4 in-
stead of A can lead to more accurate estimates of €(g) for
some value of g. We demonstrate the usefulness of this ob-
servation in some examples.

For large |g|, €(g) is controlled by exceedingly rare real-
izations of the matrix products, and hence it is difficult to
estimate reliably using Monte Carlo numerical methods,
even with importance sampling. An alternative, which we
pursue in this paper, is to take advantage of the largeness of
lg| to derive asymptotic estimates. Starting with the eigen-
value problem and using a WKB ansatz, we obtain the as-
ymptotics of €(g) for ensembles of bounded matrices and for
matrices with (not necessarily independent) Gaussian entries.
These asymptotic estimates, together with the RMC method,
the eigenvalue formulation, and the replica approach (which
we briefly discuss) provide a suite of methods which should
prove useful for the evaluation of the generalized Lyapunov
exponents of products of random matrices arising in a broad
range of applications.

The plan of the paper is as follows. In Sec. II, we review
the definition of the generalized Lyapunov exponents €(q)
and their connection with the large-deviation distribution of
the finite-time Lyapunov exponents. We also derive the ei-
genvalue problem from which €(g) can be inferred, and we
use it to relate €(g) obtained for the matrices A to its coun-
terpart obtained for the matrices A~!/|det A|"9. The RMC
algorithm is presented and analyzed in Sec. III; there we
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show that the algorithm leads to an unbiased estimate for the
g-th moment of the matrix product, and we derive an expres-
sion for the variance of this estimate. Section IV is devoted
to alternative methods for the evaluation of €(g), namely, the
numerical solution of the eigenvalue problem, the replica
method, and the large-|¢| asymptotic results. All the methods
discussed in the paper are tested on three examples of ran-
dom matrix ensembles in Sec. V. The paper concludes with a
discussion in Sec. VI. A pseudocode implementing the RMC
method, and some technical derivations are relegated to three
appendices.

II. GENERALIZED LYAPUNOV EXPONENTS
A. Definitions and basic properties

We consider N successive products of a vector X, € R? by
iild random matrices A, € R4 p=1,2,---,N. In other
words, we consider the recurrence

X, =A,X,;, n=12N. (1)
We assume that X, is determistic and normalized: X,=x
with [xo[|=1. The randomness of the matrices A, implies the
choice of a probability measure on R?*¢. We will not be
specific as to the properties of this measure; what we have in
mind, as illustrated by the examples of Sec. V, are random
matrices defined by a number of random parameters taken
from smooth distributions such as the normal or uniform
distributions.

Our focus is on the large-N behavior of | X,|. This can be
characterized by considering the generalized Lyapunov ex-
ponents

1
€(g) = lim —log E||X,|l, (2)
N—»ocN

where E denotes the expectation over the random matrices.
Note that these exponents are independent of x, for almost
all x, and realizations of the matrices A, (e.g., [1,4]). Corre-
spondly, the large-N asymptotics of the moments of | X,] is
given by

EXal7 ~ c,e™ @, 3)

for some c,. Note that in the commutative case d=1, Eq. (3)
is exact with ¢,=1. An alternative to the definition (2) of

{(q) that makes the independence on x, obvious is

1
€(q) = lim —log E||Ay--- A,
N*)OCN

’ (4)

where the matrix norm is the 2-norm, so that ||Ay- A || is the
largest singular value of Ay-+-A;.

The generalized Lyapunov function €(g), sometimes
termed free energy, obviously satisfies €(0)=0 and can be
shown to be convex. It is directly related to the statistics of
[Xyll for N>1 (e.g., [1,4]). These are usually described in
terms of the (largest) finite-N Lyapunov exponents
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1
Hy=loglay Al )

The large-deviation theory asserts that the pdf py of Hy is
approximately

pah) = eNe®), (6)

where =< denotes rough asymptotic equivalence, that is,
asymptotic equivalence of the logarithms as N— . The
function g, variously termed rate function, Cramér function
or entropy, is convex. It attains a minimum at the Lyapunov

exponent E, which satisfies

N—soo

for almost all realizations of the random matrices, and it can

be taken such that g(h)=g'(h)=0. Note that g is in fact in-
dependent of the norm chosen for Ay--+A;, and that the same
g would be obtained if Eq. (5) was replaced by Hy
=N"!log||X,|. Using the latter point, Laplace’s method can
be applied to write

E|[Xy[? < f Nahg=Na) gy — N supilah=g()]

and conclude from Eq. (2) that € and g are Legendre trans-
forms of one another,

t(q) = Slllp[qh -g(h)]. (8)

(Rigorous conditions on the probability measure for the A,
that guarantee that Egs. (6) and (8) hold are given in [8])

Since g’(h)=0, the Legendre relationship €'(g)=h gives

h=1¢0). )

B. Eigenvalue problem

The generalized Lyapunov exponents €(g) can be found
by solving a family of eigenvalue problems parameterized by
q. To see this, we consider

un(x)zEf(An'”Alx)’ (10)

for a given function f:R?—R. We now derive a backward
equation for u, by noting that

I/t,H,]()C) = Ef(An+1 o 'A])C) = Ef(An o ‘AIAX) = Eun(Ax),

where the last expectation involves the single matrix A only.
Thus, for an arbitrary f, the u,, satisfy the recurrence relation

uo(x) = f(x). (11)

In the particular case where f(x)=|x||9, so that u,(x)
=E||X,||, Eq. (11) admits solutions of the form

u,(x) = N"|lx|7v (@), (12)

1 (x) = Eu,(Ax), with

where é=x/|[x| € $47! is a unit vector. The scalar \ and func-
tion v are determined by introducing Eq. (12) into Eq. (11) to
obtain
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(Lyo)(@) =hv(e), (13)
where we have introduced the linear operator £, defined by
(Lp)(@) = Elaé]|?v(Aél||Aéd]). (14)

Comparing E||X,[|?=u,(x,) with Eq. (2) gives the following:
Proposition 1. The generalized Lyapunov exponent €(g)
is the logarithm of the largest eigenvalue \; of (13):

t(q) =log \,. (15)

Here we assume that the point of the spectrum with the larg-
est modulus is an eigenvalue, \;. This can be guaranteed
under certain assumptions. (See [8] where the eigenvalue
problem (13) is studied in order to establish central limit and
large-deviation results.) Note that since £, maps positive
functions to positive functions, \;>0.

The characterization (15) of the generalized Lyapunov ex-
ponents is useful for a number of purposes. First, it gives a
deterministic method for finding €(g) by solving an eigen-
value problem, analytically in simple cases and numerically
in less simple cases. Second, the eigenvalue formulation can
be used to examine the convergence of log E[Xy[? as N
— o and conclude, for instance, that the convergence is typi-
cally exponential, with an error proportional to |[\y/N\[",
where \, is the second largest eigenvalue of Eq. (13). Third,
the eigenvalue formulation makes it possible to establish
some useful properties of €(g), which we now discuss.

In Appendix A, we show that the adjoint of L, is the

operator E_q_d, where Zq is defined as £, in (13), but with

the matrix A replaced by A~!/|det A|'4. We then have the

following useful relationships between generalized

Lyapunov exponents of the matrices A, A~'/|det A|"¢ and
-

Proposition 2. Let

~ Ay -~ AT
{(g)=lim —log E————— and
N—»DON |det(AN' "A])l
1
€°(g) = lim —log E[JAy' -+~ AT, (16)
N*}’JoN

Then,
(i) €(g)=C(-g~d),
(ii) €(q)=€~(-g—d) if the matrices A, satisfy detA,=1,
(iii) €(g)=€(-g—d) if the matrices A, are symplectic.
Note that it follows from the first property that

¢(—d) =log E|det A|! (17)
which extends the well-known observation that [6,32]

O(-d)=0 if detA=1. (18)

The properties in proposition 2 are established in Appendix
A. They are useful in practice: because numerical methods
for the estimation of the Lyapunov exponents are more ac-
curate when |g| is small, estimates for €(g) with ¢ <—-d can

be obtained efficiently by evaluating €(—g—d). Also, the
replica method (described in Sec. IV B), which provides
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estimates of €(g) for g even and positive, can be used for
some negative values of ¢ when proposition 2 is exploited.

As a practical tool for the computation of generalized
Lyapunov exponents, the eigenvalue problem (13) appears
limited to small matrices with d=2 or d=3, because it re-
quires the discretization of an operator acting on functions of
d—1 variables. (See [14,16] and Sec. IV A below for some
implementations with d=2.) In the next section we describe
a Monte Carlo method that does not suffer from this limita-
tion.

III. RESAMPLED MONTE CARLO

The simplest Monte Carlo method for the estimation of
{(q), which we term brute-force Monte Carlo, consists in
computing the estimator

K
Zy = 2 Ay AT

where the bracketed superscript indexes K independent real-
izations of the sequences of random matrices A,,. Clearly,

EZ}D\,f = Nt s

so N~! log Z& estimates €(g). This method is hopelessly in-
efficient, however unless |g| is small. To see why, note that
the variance of ZN is given by

o1 1
var Zy = - var Xy = {E[X[P7 - (E[lxy])%}

NE(2q) 2N¢(q)

C4€ —cge

K

The convexity of €(g) then implies that exp[N€(2q)]
> exp[2N€(g)]. So the variance of Z% is exponentially large
in N, and a number of realizations K= exp{N[{(2q)
—2€(q)]} is in principle necessary for an accurate estimation
of €(gq).

The inefficiency of the brute-force Monte Carlo estimate
stems from the fact that for finite ¢, E[|Xy||? is dominated by
rare realizations which are undersampled unless K is expo-
nentially large. To remedy this, we can resample at each
iteration so that the dominant contributions to E||Xy||? are
represented by more realizations; this is the main idea behind
sequential importance sampling or “go-with-the-winners”
strategies [28,29]. We describe a particularly simple algo-
rithm for such a resampling strategy which we term resa-
mpled Monte Carlo (RMC).

A. Algorithm

Like the brute-force Monte Carlo, the algorithm relies on
N iterations and K realizations, calculating X% for n
=1,...,N and k=1, ...,K. The difference is that the realiza-
tions are dependent. Rather than Xik), it is convenient to use

the corresponding unit vector

PHYSICAL REVIEW E 81, 036701 (2010)

k
w_ X
"X

Starting with Eg‘)=x0 for k=1, ...,K, the algorithm proceeds
iteratively with two steps at each iteration n:

(i) Draw K random matrices Aﬁl"), and compute
AVEW

~ 1
P ML =W (1)

(ii) Resample by letting

A0
EQ=E"). (20)
Here, the J;k) are independent random variables taking values
in {1,---,K}, with
a¥ K
PUP=j)=—" where B,=> a¥. (21)
By k=1
The estimate of E||X,||? is then given by
1
Zy= K_Nﬁlﬁz - By- (22)

Note that the resampling step ensures that, at each iteration
n, the weight of each realization in the estimate of E|X, [ is
the same. Note also that the resampling is tailored to a spe-
cific value of g. Unlike in the brute-force Monte Carlo,
where the same ensemble can be used to estimate €(g) for a
range of values of g, the RMC approach requires a new
sampling for each value of ¢ (although it may be possible to
use the same sampling for a narrow enough range of ¢). In
several applications, though, €(g) is only required for a
single value of ¢ (e.g., [10,13,14]).

In Appendix B, we give a pseudocode for the RMC algo-
rithm. This illustrates the simplicity of the algorithm, and
should be useful for readers wishing to implement it in a
specific programming language.

B. Analysis

To analyze the algorithm further, we note that the NK
random matrices Aﬁ,k) involved in the computation form K
independent paths consisting of the N matrices that are mul-
tiplied in succession to obtain each E,(\',“). These paths are

A(I(k)) A(l(k) )

1),
NV AL

where the random variables I,(lk ,n=1,--- N are determined
by k and by the random variables J 2 accordlng to

I(k) — J(k)’ 11(\/7) J(IN

0 =l

JACEITE

The factors a() that are computed along the path that yields
E(k) are then

LN (k)
) _ ||A(In )A Ik .A(lllk )x()”q
NN <1k>> @ ol @)
|| nlAnz A 1 x”q

Note that the distribution of the I(k) is that same as that of the
J ®) since the distribution of the latter is independent of k;
thus
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V)
Bn

For a given realization of the matrices A,(f)

P(} =

for n=1,--- N

and k=1,---,K, the probability of a particular path
AZ(\IIN)’AI(‘\]IHTI)’ . AE/I)
is then
G 02) ... U
a’Va a
P(jj. - inlAY) = = (24)
BiBr " By
where
U)o AUD 1 K
G)_ ”A Aj xo” _ ()
a’n - and f,= a’n. (25
S AT = 2 09

Here we abuse notation slightly and use the same symbol «
to denote, in Eq. (23), a random variable that depend on both
the A and the /¥, and in Eq. (25) one that depend only on
the A K. the same abuse of notation is made for B.

To compute the expected value of functions f of Zy pro-
duced by the algorithm, we note that the corresponding ex-
pectation, E’ is a combination of the expectation E over the
random matrices A( and of the expectation over the random
variables J(k) Usmg Eq. (24) to compute the latter expecta-
tion leads to

K a&ll)aglz) a(/N
E'f(zy)=E e S B s 26
f(Zy) 12“ YT fzy),  (26)

where zy=6,,* By/ K", and the a,(,i") and B, defined as in
Eq. (25).
Using Eq. (26), it is immediate to establish

Proposition 3. Zy is an unbiased estimator for E||X,|/%:

This follows from the computation
! K
E'Z,= K_NE- 2 a a(’z) %
Ji e in=l
! K
= K_NE 2 AV - AVl = EflAy -+ Ayxol
J1senin=1

which uses Egs. (22), (25), and (26).

In order to estimate the error of Zy, we obtain the follow-
ing expression:

Proposition 4. The expected value of Z3 is

E'Zy
| K K ;
=E 2 X AR AT A AT
Tl IN—I; A!j;ﬁl
(28)

This is obtained from
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K

E,ZN_KZNE E Yl)agz)...

az(\Jz'N),Blﬂz By

on using the definition (25) of the S,.

Expression (28) makes clear why the variance of Zy is
much smaller than that of Z&. Only KV terms of the K>V
terms in Eq. (28) lead to contributions term proportional to
exp[N€(2¢)] (those for which j=j, - jy=j)) with all the
others leading to much smaller contributions with, in particu-
lar, [K(K—1)]N proportional to exp[2N€(g)] (those for which
J1#j, iy #jr). In contrast, in E(Zy)?, all the terms are
proportional to exp(N€¢(2q)).

The improvement can be evaluated explicitly in the scalar
case d=1. Admittedly, this is an uninteresting case as far as
the numerical evaluation of €(g) is concerned, since Eq. (2)
holds exactly for finite N, but it is instructive nonetheless.
For d=1, the asymptotic relation (3) holds exactly for all N
and with ¢,=1. It follows that the terms in Eq. (28) can be
evaluated explicitly: if j,=j, for [ values of k and j; # j; for
the remaining N—1 values,

€(2q)+2(N-1)¢(q)

B APl AR - 4l = f

Since there are (l}/)KN(K— 1)¥! such terms, Eq. (28) becomes

1

S (N
E’le\/: K_N ( l )(K_ 1)N—lel€(2q)+2(N—l)€(q)

= KLN[ef(Zq) + (K =1)e2t@

The variance is then

[e%’(q)(K + ,yq)]N _ KNe2N€(q) N

_ — 2N€(q)
var Zy = KN que D,
where we have introduced
¥, = et 2a)-26(g) _ (29)
Thus the relative variance of Zy is
var ZN Ny, (30)
(Ezy)* K

and the Monte Carlo estimation of E||X,||? by Zy requires
only that K> N rather than K> exp{N[€(2q)-2€(q)]} as is
the case for the brute-force Monte Carlo. This drastic gain
in computational efficiency is expected to apply also for
matrices with d>1: the noncommutativity is likely to
modify Eq. (30) only through the introduction of an N- and
K-independent factor on the right-hand side.

Although we have found that the RMC algorithm per-
forms very well for a broad range of random-matrix prod-
ucts, it is useful to have alternative methods of evaluating
€(q) at one’s disposal. This provides independent checks for
the RMC results or, in the case of asymptotic approximation
for |g|> 1, makes it possible to estimate €(g) when the RMC
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approach becomes unreliable. Such alternative methods are
discussed in the next section.

IV. OTHER ESTIMATES
A. Solving the eigenvalue problem (13)

For d=2 or 3, it is practical to compute €(g) as the largest
eigenvalue of the eigenvalue problem (13) for functions v on
S9-1 Here, we describe an implementation for d=2. In this
case, the unit vector é can be parameterized by an angle 6,
and v can be expanded in a Fourier series, which we write as

M-1
v(6) =Re E v,e"?,
n=0

and truncate at some M. A straighforward discretization of
the eigenvalue problem (13) is then obtained by collocation
at points 6,=27m/M ,m=0,---,M—1. This leads to the
generalized matrix eigenvalue problem

Pv =\Quv, (31)

where v=(v, ... ,vM_])T, and the M X M matrices P and Q
have entries given by

Pmn = EHAé(em)”qein@(e’") and an = einﬁm’ (32)

where é(6,)=(cos 6,,,sin 6,,)T and ©(6,,) is defined by
cos ©(6, Aé(6,,

(. ( )>=—6A( ) (33)
sin ©(6,) /) [Aé(6,)|

The expectation in the definition of P can be computed using
a Monte Carlo approach, and the eigenvalue problem solved
using a standard technique.

B. Replica method for positive even ¢

A useful method, known as the replica trick (see [1], and
reference therein), makes it possible to compute €(g) for ¢
positive and even by finding the largest eigenvalue of a gd
X gd (deterministic) matrix. To see how this can be achieved,
observe that the g-fold tensor product X,, with itself satisfies

X 1=AIX, (34)
where A9 is the g-fold Kronecker product of A, with itself.
Taking the expectation then leads to

EX’1=EASIEX>Y (35)

n—1-

Therefore
EXy = etdy, (36)

where u, is the largest eigenvalue of the gd X gd matrix
EA®?, and y e R% is the corresponding eigenvector. Since

n 9
for ¢>0 even, [|[X,/|” is obtained from Xy by contraction,
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t(g)=p, for g>0 -even. (37)

The result extends to the case of odd ¢ when the matrices A
have only non-negative entries.

C. Large-|q| asymptotics

For large |g|, numerical methods that involve taking ex-
pectations by sampling become inefficient, and it is useful to
develop analytic or semianalytic methods that take advantage
of |g|>1 to provide an asymptotic estimate for €(g). The
eigenvalue problem (13) is a good starting point. Since the
expectation is an integral over the random parameters that
define the matrix ensemble, we can attempt to approximate
this integral for |¢|> 1 using Laplace’s method. A dominant-
balance argument suggests that the eigenfunction v(é), which
depends implicitly on g, should have the asymptotic WKB
form

v(é) ~ 7(8)e™, (38)

where w and z are independent of ¢. Substituting this into
(13) gives

Az(8)e™® = Eeq(IOgHAéHW(Aé/HAéH))Z(Aé/”Aé”) _ (39)

When the values of ||A|| are bounded, the expectation on the
right-hand side is dominated by the matrices maximizing the
argument of the exponential (assuming a nonzero probability
density for the maximizing matrices). Concentrating on the
case ¢>>0, this gives

w(é) = sup(logl|Aé + w(Aé/|Aé])) - . (40)
A

for some constant «, where the supremum is over the support
of the probability measure of the random matrices. Note that
w is defined up to the addition of an arbitrary constant. Equa-
tion (40) can be interpreted as a nonlinear eigenvalue prob-
lem, with w as the eigenfunction and « as the eigenvalue. If
this eigenvalue problem has a solution, the largest value of «
governs the rough asymptotics of A; and hence the asymp-
totics of €(g), with the result

€(q) ~ Kq. (41)

Note that this behavior implies that the rate function g(4) of
the finite-time Lyapunov exponents has a vertical asymptote
for h=k. Therefore « is also given by the maximum possible
(largest) finite-time Lyapunov exponent:

k= lim sup l10g||AN-~~A1||. (42)
N—w Ap-AyN
It would of course be difficult to attempt to determine « by
sampling the right-hand side of this expression. In general,
k=sup, log||A|, with the equality holding only in special
cases; see Appendix C.

The result (41) can be refined by noting that Laplace’s
method applied to Eq. (39) leads to the expectation of a term
of the form exp(-¢(A—A.,A—A,)), where A, is the maxi-
mizer in Eq. (40) and (-,-) is some scalar product (both A,
and (-,-) depend on ¢). Carrying out the expectation
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yields a factor g2, where D is the dimension of the support

of the measure. It follows that
D
€(q) ~ Kq—glogq+0(l). (43)

This asymptotics implies that g ~—D log(x—h)/2, which de-
scribes the manner in which g(h) approaches the vertical
asymptote at h=k.

When ||A|| is unbounded, the matrices A dominating the
expectation in Eq. (39) are controlled by a balance between
the argument of the exponential, which grows with [|A[|, and
the probability density of A, which should decrease with [|A]|
if €(q) is to be finite. This means that one needs to apply
Laplace’s method for movable maxima (e.g., [33]) and con-
sider the g-dependent maximum of

log||Aé|| + w(Aé/||Aé]) + g~" log 7(A), (44)

where 7(A) is the probability density of A, and w depends on
q. For instance, if 7(A) is Gaussian, this maximum corre-
sponds to matrices A with O(¢"?) entries, leading without
further calculations to

\ = edlog "1/2, hence €(q) ~ glog q. (45)

Correspondingly, g(h)=<e" for h>1.
V. EXAMPLES

A. Two-dimensional sine map

In studies of transport and mixing by complex fluid flows,
numerous authors have used the random sine map proposed
by Pierrehumbert [27] as a model of a completely chaotic,
nondivergent flow. In two dimensions, this map is given by

Yne1 =Ynt b Sin()Cn+l + ¢2)’
(46)

Xpe1 =Xyt a Sin(yn + ¢1)9

where a and b are fixed parameters, and the random angles
¢, and ¢, are independent and uniformly distributed in
[0,27r]. The Jacobian matrix A(x,.|,Vn.1)/ d(x,,y,), whose
statistics are independent of (x,,y,), is given at (0,0) by

A 1 a cos ¢,
" | b cos(sin ¢y + ¢py) 1 +ab cos ¢, cos(sin ¢, + ¢y) |
(47)

It satisfies det A=1 and hence, since d=2, is symplectic.

The generalized Lyapunov exponents corresponding to
the ensemble of matrices A generated by ¢, and ¢, charac-
terize the separation of nearby particle in the sine flow. Re-
markably, their knowledge makes it possible to predict, in
some cases at least, the rate of decrease in the variance of a
passive scalar released in the flow [10,11,14,19]. Specifi-
cally, this rate is given by g(0) and, in view of the Legendre
duality of g(h) and €(q), by —€(g.), where g. is such
that €'(q.)=0. Because of property (iii) of proposition 2,
q.=—1.

In the literature, €(—1) has been evaluated using brute
force Monte Carlo [12,13] and solving the eigenvalue prob-
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FIG. 1. Generalized Lyapunov exponents of the product of the
random matrices (47) with a=b=r. The result of the RMC method
(solid line) are compared with those of the brute-force Monte Carlo
method (dashed line), and of the numerical solution of the eigen-
value problem (dotted line). The inset displays a close up of the
region —2=¢=0.

lem [14,16]. Here we apply the algorithm of Sec. III to dem-
onstrate its efficiency. In Fig. 1, we compare €(q) obtained
for a=b= using different numerical methods: brute force
Monte Carlo, RMC, and numerical solution of the eigen-
value problem using 128 Fourier modes and 128 collocation
points. For the latter two methods, we have used a relatively
small ensemble, with K=1000, while for the brute force
computation we have used the much larger K=10°. The
number of matrix multiplication N was taken as 100 for the
RMC but only N=50 for the brute-force computation which
is restricted to moderate values of N. Also shown are the
very reliable estimates obtained for g=2, 4 and 6 using the
replica method. The figure illustrates how impractical the
brute force computation is to estimate €(g) for, say, ¢>2 and
q<<0. The other methods, by contrast, provide good esti-
mates for a wide range of g. Based on the comparison with
the replica estimate, the RMC algorithm, which for the pa-
rameters chosen is the faster by a factor of about 5, appears
to be the more accurate method. The inset in the figure
zooms on the range g € [-2,0] to emphasize the substantial
differences in the estimates in that region leading, in particu-
lar, the inaccuracy in the estimates of €(—1) needed for
decay-rate predictions in the passive-scalar problem. In this
regard, we note that a sequence of 500 RMC computations
gives the average and standard deviation €(—1)
=-0.5916 = 0.0056.

We have used the example of the two-dimensional sine
flow with g=—1 to assess the dependence of the variance of
the RMC estimate Zy on the number of realizations K and on
the number of iterations N. We have estimated this variance
by performing 500 computations of Zy for 9 combinations of
the parameters K and N. The results are reported in Table I.
Unsurprisingly, the sample variance scales roughly like 1/K;
more interestingly it also scales like N in agreement with the
behavior (30) obtained in the scalar case. The behavior (30)
can be tested further: since €(-2)=0, y_;=exp[-2€(-1)]
—1=2.26, which compares reasonably well with the various
estimates of var Zy/(EZy)?> that can be obtained from
Table 1.

Returning to Fig. 1, we note that the estimates of €(g)
appear less accurate for negative ¢ unless |g|=<1; this can
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TABLE I. Estimation of the normalized variance var Zy/(EZy)?
for the RMC method applied to the matrices (47) for ¢g=—1 and for
different values of the number of realizations K and number of
iterations N.

K= 500 1000 2000
N=20 0.12 0.052 0.027
N=40 0.24 0.12 0.059
N=280 0.62 0.23 0.10

easily be remedied, however, by using the third property in
proposition 2, namely, €(g)={(—g—-2), so that the only nega-
tive range that needs to be considered is g € [-1,0].

The estimation of €(g) is truly challenging for large q.
Here, we briefly consider it for the matrices (47) in order to
assess both the reliability of the RMC method, and the
asymptotic estimate (43). Figure 2 shows €(g) for the matri-
ces (47) with a=b=r, and with a=7 and b=/8. In both
cases, €(g) can be approximated according to Eq. (43) with
D=2 (since the matrices are defined by 2 random angles ¢,
and ¢,). The value of k should be derived by solving Eq.
(40). The case a=b is special, however. It can be verified in
this case that the maximum of ||Aé|| is achieved for matrices
A and unit vectors é such that Aé/||Aé||=¢. As a consequence,
we have that

k=log sup|A| for a=b. (48)
A

This result, which holds for any matrix ensemble such that
Aé/||Aé||=¢é for A and é maximizing ||Aé|, is established in
Appendix C. It enables a simple evaluation of xk when a=>b,
giving k=2.467. The corresponding asymptotic estimate Eq.
(43) is compared in Fig. 2 with the numerical estimates ob-
tained using the RMC and replica methods. The O(1) term in
Eq. (43) is determined by matching the asymptotic and nu-
merical results for the largest value of g on the figure. The
figure demonstrates the validity of the asymptotic estimate; it
also illustrates the reliability of the RMC method (used here

25
20
151

l
10+

KON

FIG. 2. Generalized Lyapunov exponents of the product of the
random matrices (47) with a=b=m (circles), and a=m and b
=/8 (squares). The result of the RMC method (solid lines) are
compared with the large-g asymptotic estimate (dashed lines), and
the results of the replica method (symbols).
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FIG. 3. Tterates w®(6) for k=1,2,3 in the numerical solution of
the problem (40) determining « for the matrices (47) with a=1r and
b=m/8.

with an ensemble of K=1000 matrices), which provides ac-
curate estimates of €(g) for g as large as 12, at least for
matrices considered here.

The simple result (48) is very special. In general, when
a# b, the right-hand side of Eq. (48) is a strict upper bound
for k. There is then no explicit expression for «, and the
problem (40) must be solved for both x and w(é). We have
implemented a numerical solution of this problem for the
matrices (47). The implementation relies on an iteration: suc-
cessive iterates w("),k= 1,2,---, regarded as functions of the
angle 6 parameterizing ¢, are represented using the truncated
Fourier series

M-1
w®(6) =Re >, whe?,

n=1

from which the average (n=0) term is omitted in order to fix
the arbitrary constant in the definition of w. The iteration
scheme

M-1
W (,) 4 oD = sup(lognAé(em)n £ w;k>em®<9m>) ,
A

n=1

(49)

where ©(6,,) is defined in Eq. (33), determines w**") on the
grid points 6,,=2m/M, with «**) fixed using the condition
of zero average for w**!). The supremum is evaluated nu-
merically by finding the maximum over a finite number of
matrices A obtained for values of ¢; and ¢, on a grid. An
inverse Fourier transform then gives wff“), and the iteration
can continue. Figure 3 shows the first three iterates of this
method applied in the case a=m and b=m/8. The functions
w®(6) are defined for #=[0,27] and m-periodic; here we
show an interval of € around the maxima of these functions.
The first iterate, corresponding to the lowest curve, is simply
w(0)=sup, log|A (é(6))||. The next two iterates illustrate
the rapid convergence of the method; after 4 iterations, con-
vergence is achieved, and the estimate k=1.061 is obtained;
this is substantially less than log sup,||A[|=1.385. The valid-
ity of our asymptotic formula and evaluation of x are con-
firmed by Fig. 2, which shows an excellent match between
the asymptotic and numerical estimates of €(g). A similar

036701-8



ESTIMATING GENERALIZED LYAPUNOV EXPONENTS FOR ...

match was found for other values of a and b.

B. Three-dimensional sine map

In order to explore matrices that are not symplectic but
have determinant 1, we consider the stretching by the
volume-preserving map of R?,

PHYSICAL REVIEW E 81, 036701 (2010)

Xpy1 =Xyt a Sin(yn + ¢l)’ Yn+1 =Ynt b SiIl(Zn + ¢2)s
Zn+l = Zn +c Sin(xn+l + 4)3)’ (50)

where the ¢;,j=1,2,3 are independent uniformly distributed
in [0,247]. This map generalizes to three dimensions the two-
dimensional alternating sine map (46). The corresponding
Jacobian matrix at the origin is

1 a cos ¢ 0
A= 0 1 b cos ¢, |. (51)
c cos(a sin ¢y + ¢3) ac cos ¢ cos(a sin ¢, + ¢p3) 1

The results of several numerical computations with these
matrices are displayed in Fig. 4. In the main panel, we show
three different estimates of €(g), all obtained using the RMC
method with N=100. The first (solid line) applies the RMC
method to the matrices A with an ensemble size K=1000; the
second (dotted line) also uses the RMC method but with the
much smaller ensemble size K=100. The results illustrate the
difficulties that arise when evaluating numerically €¢(g) for
q<<0: for g=-2 in this case, the numerical estimates appear
to be very unreliable, and the situation does not improve
much when the number of realizations is increased from K
=100 to K=1000. The problem is easily remedied, however,
using property (ii) of proposition 2: by applying the RMC
algorithm to A~' rather than to A, we estimate €7 (g); this
estimate, which proves accurate for g=-2, then provides
a reliable approximation for €(g) with g=-1 since €(q)
={~(—=g—-3). The curve of {(-g—3) is shown by the dashed
curve in Fig. 4. The best estimate of €(q) should be read as

FIG. 4. Generalized Lyapunov exponents of the product of the
random matrices (51) with a=b=c=1. The RMC estimates of €(q)
obtained for N=100 with an ensemble size K=1000 (solid line) and
K=100 (dotted line) are compared with an estimate of €~ (—g—3)
obtained by applying the RMC method to A~! with K=1000
(dashed line). The results of the replica method, applied to A
(circles) and A~! (squares) are also indicated. The solid and dashed
curves in the inset, which displays a close up of the region -3 =g
=0, have been computed using K=5000.

the dashed curved for g=-1 and the solid curve for g=-2.
For definiteness, one could choose the point g=-d/2
=-3/2 for the transition between the two approximations.

C. Gaussian matrices

As a last example, we consider the case of Gaussian ma-
trices. When all the entries are independent N(0,0?) vari-
ables, the statistics of [|Aé| are independent of é, which leads
to the explicit expression

d d
€(q) =log E||Aé|| = %10g(20'2) +log I‘(%) —log F<5>,

(52)

for ¢>—d, with €(q)= for g=-d [1]. No such explicit
expressions are available when the entries are correlated,
however, and €(g) needs to be estimated numerically. Here,
we examine the case of symmetric matrices with iid N(0, o?)

FIG. 5. Generalized Lyapunov exponents of the product of
8 X8 symmetric matrices with independent, zero mean and
variance-one Gaussian upper-triangular entries. The RMC estimates
for €(q) obtained with K=2000 (dashed line) and K=4000 (solid
line) realizations are compared with the RMC estimates for 0 (-q
—8) obtained with K=2000 (dash-dotted line) and K=4000 (dotted
line, almost indistinguishable from the dash-dotted line). The rep-
lica estimate for g=2 is indicated by the circle.
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upper-triangular entries. As in the case of independent en-
tries, €(g) =2 for g<-d, and so we can expect difficulties in
estimating €(g) for values of ¢ slightly larger than —d, say
for g=-d/2. It is indeed the case, as Fig. 5 demonstrates for
d=8: the figure shows the direct estimates for €(g) obtained
using the RMC algorithm with 2000 and 4000 realizations.
The differences between the results for g=-d/2 hints at
their inaccuracy, as does an examination of the variance of
these estimates. More obviously, the estimates fail to capture
the rapid growth of €(q) as ¢——d. Once again, we can
invoke proposition 2 to remedy this problem, at least par-
tially. Applying the RMC algorithm to the matrices

A7"/|det A|Y4 to estimate €(q), then use the equality €(q)

={(—g—d) gives a much better approximation for ¢(g) in the
range —d =g =<-d/2. Thus, the approximation for €(g) ob-
tained in this manner with K=2000 and K=4000 are very
close to one another and provide a satisfactory estimate for g
close to g=—d=-8, though the divergence at —d remains
difficult to capture. Note that the large-g asymptotics (45)
has been verified to apply to the symmetric Gaussian matri-
ces with d=8 considered here; it is easy to check directly
from Eq. (52) that it is satisfied for matrices with iid Gauss-
ian entries.

VI. DISCUSSION

Motivated by the key role played by the large-deviation
statistics of Lagrangian stretching in controlling several as-
pects of fluid mixing, this paper examines the generalized
Lyapunov exponents of products of independent random ma-
trices. Such products appear in this context when renewing
flows, that is, sequences of simple iid steady flows, are used
to model complex fluid motion. Products of random matrices
appear of course in many other areas such as disordered me-
dia and wave localization.

The main aim of the paper is to present and test a reliable
numerical procedure for the evaluation of the generalized
Lyapunov exponents. The procedure proposed remedies the
undersampling problem that affects the straightforward,
brute-force Monte Carlo estimation by introducing a resam-
pling step, which ensures that the variance of the estimate
scales linearly with N, the (large) number of matrix multipli-
cations, rather than exponentially. The algorithm chosen,
which we term resampled Monte Carlo, is a particularly
simple example of sequential importance sampling; its effi-
ciency could be improved, e.g., by resampling every few
iterations only, or by modifying the resampling method (see
[28] for alternative approaches).

In particular, resampling methods can be devised on the
model of the prune-enriched Rosenbluth method (PERM)
method used in the simulation of polymer chains ([29,34,35]
and references therein). In this method, the resampling is
carried out only for realizations whose weight (i.e., contribu-
tion to the estimate of E||X,[|? in our context) exceeds or falls
below two chosen thresholds. If a weight exceeds the upper
threshold, the realization is cloned a number of times, with
the weight of each clone divided accordingly; if a weight
falls below the lower threshold, the realization is either
pruned with probability 1/2 or has its weight doubled. We
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have implemented a method of this type, using also a random
pruning to keep the number of realizations constant. The
results are similar to those obtained with the RMC method,
but the PERM-like method proved somewhat slower in the
examples we considered. However, we have made no at-
tempt at optimizing the choice of the parameters that appear
in the method (threshold values and number of clones). The
PERM method has the advantage of potentially alleviating
the problem of sample impoverishment, which occurs for
large N when most of the realizations share the same early
history. This problem does not appear to be serious for the
computations of the generalized Lyapunov exponents of the
matrix ensembles we treat in this paper, because convergence
is achieved at moderately large N. Perhaps a more significant
advantage of the PERM method in our context is that it can
be implemented in a depth-first version, where the successive
matrix multiplications are performed for a single realization
at a time. The drastically reduced memory requirements of
depth-first approaches make them suitable for the computa-
tions of the generalized Lyapunov exponents of very large
matrices.

We have emphasized that the RMC method, and indeed
all methods based on “go-with-the-winners” strategies have
resampling strategies that are tailored to a particular value of
q. When estimates of €(g) are desired over a range of values
of g, the computational efficiency could be improved by us-
ing the same ensemble, and hence the same resampling, for
several values of ¢ within a narrow interval, rather than a
separate ensemble for each value of g. We do not pursue
these improvements here, preferring to focus on the simple
version of the algorithm, which can be easily analyzed and
already provides a dramatic improvement compared with the
brute-force Monte Carlo used by many authors.

In addition to providing a numerical method for the evalu-
ation of the generalized Lyapunov exponents, the paper dis-
cusses some of their properties and, in particular, the rela-
tionship between the exponents associated with an ensemble
of matrices A and those associated with the corresponding
ensemble of matrices A~'/|det A|"/9. This relationship is use-
ful in practice to estimate €(g) for negative ¢, when a direct
application of our algorithm to the matrices A can be inac-
curate. We also examine the asymptotic form of €(g) for
|g/>1 and illustrate, on a specific example, how this form
can be obtained by semianalytical means. Asymptotic results
of this type usefully complement the direct numerical esti-
mates of ¢(g) which require very large samples as |g| in-
creases.

We conclude this paper by indicating a few possible ex-
tensions of the work reported. While the paper focuses on the
largest generalized Lyapunov exponents, which encode the
large-deviation statistics of the largest finite-N Lyapunov ex-
ponents, analogous statistics for lower Lyapunov exponents
(proportional to the logarithm of smaller singular values of
Ay-++A)) are of interest. It would therefore be useful to de-
velop an efficient numerical method to evaluate the corre-
sponding generalized Lyapunov exponents. Work along these
lines is currently in progress. Another useful extension con-
cerns product of correlated matrices. The algorithm pre-
sented in Sec. III uses the independence of the matrices only
to take a sequential approach, and hence it can be employed
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for dependent matrices provided that the dependence is on
the past only, that is, that A, remain independent of A, for
k>n. More involved dependence would require a rethink of
the algorithm. Since the literature on fluid mixing makes
extensive use of white-in-time velocity fields as an alterna-
tive to renewing flows, it would also be desirable to develop
methods for the efficient evaluation of generalized Lyapunov
exponents in the context of linear stochastic differential
equations (see [36] for recent analytical results). Finally, we
note that the methods discussed in this paper apply to large
matrices (d> 1) and so could be employed to study the large-
deviation statistics of discretised infinite-dimensional sys-
tems as arise, for instance, in the problem of passive scalar
decay [37].
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APPENDIX A: PROOF OF PROPOSITION 2

We first obtain the adjoint in L,($%™") of £,. Denoting by
dé the volume element on S9!, we cons1der two arbitrary
functions v(¢é) and w(é) and compute

f w(é)L,v(é)deé
Sd—l

=E f lAéaw(é)v(Aél|Aé])de
Sd—l

—E f A~ e[ hw(a~1e A~ el)w (e
Sd—l

where we have changed integration variable from é to é’
=Aé/|Aé] and  used  that  dé=||Aé|?dé’/|det A|
=[|A7'é’|[dé" /|det A (cf. [32]). This gives the adjoint of £,

as
Li=L (A1)
where the operator Zq is defined by
Atell e
(Lp)(@)=E—" dora "4 lel|aTe)). (A2)

Note that E is equivalent to £,, with the matrices A re-
placed by A !/|det A|"9. Thus, accordmg to proposition 1,

€(g) defined in Eq. (16) is the logarithm of the largest eigen-
value of Zq. The first part of proposition 2 follows from the

fact that £, and L;:Z_q_d have the same spectrum. The
second part is a particular case of the first for det A=1.

We establish the third part of the proposition by showing
that

€(q) =€ (q) for symplectic matrices.

Recall first that the matrices A are symplectic if d is even,
and
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ATJA=] h J—(O H)
=), where =\_y 0/

with [ the d/2Xd/2 identity matrix. Now, we define the
operator 7 acting on functions on S%°! according to

(Jv)(&) =v(Jé)
and compute

(JL)(@) =E[AJé||v(ATel|ATe])
=E|JAT¢|7v(JAT e/ JATe))
=E[ATé|w(JA T é/|ATTe))
=E[A7Te|«(Tv) (A Tel|ATTell) = (£, Tv) (@),

where E is the analog of £, Wlth AT replacing A. This
computatlon shows that £, and cr , have the same spectrum,
hence €(q)=¢"T(g). The results follows from observing that
¢~ T(q)=£"(g) since they can be expressed as expectation of
the largest singular values of Ay'---A7' and Ay'---A7T,
which coincide.

APPENDIX B: PSEUDOCODE FOR THE RMC METHOD

We give below a pseudocode for the RMC algorithm. The
notation is as in Sec. IIl A except for the omission of the
superscripts (k) and subscripts n when these are unnecessary
for the numerical implementation. The variables ¥ are in-
troduced to perform the random resampling (20) and (21)
using the uniformly distributed random variables e.

fix g

E®=(1,0,..,0)T, k=1,...K (unit vectors in R%)

for n=1to N (loop over iterations)
for k=1 to K (loop over realizations)

draw random matrix A
W=AE®/|AED||
®) = | AEW|ja
end
YO=3F aP, k=1,...K
=K
for k=1 to K
draw € uniformly in [0, B3,]

(resampling)

j=min{l {1, ...,K}| /Y- €=0}
0= F0)
end
end
==V, log B,)/N-log K [estimate of €(q)]

end

APPENDIX C: BOUNDS ON «

Starting from Eq. (40), we write k as
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x = sup[log|A¢] + w(Aé/||Aé])] - w(@), (c1)
A

which holds for any é. Taking é=¢,,, where ¢é,, maximizes w
gives

Kk = sup log||Aé,,
A

>

and in particular

Kk =< sup log||Aé| = log supl||Aé| = log supl|A||.
éA A A

This is also obvious from the fact that | = sup, 4[|Aé[|“. On
the other hand, denoting by ¢é, and A, the maximizers of
[Aé|, and evaluating Eq. (C1) at é=¢., we have that
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K = log||A.é.|| + w(A.é./||Aé.]) —w(é.)
= log supl|A[| + w(A.é./||Aé.]) —w(é.).
A

A consequence is that w(A,é,/||A.é,]) =w(é,). In the special
case where

A*é* _
e

A

€,

the two inequalities obtained imply that

K = log sup|/A||.
A
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