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Bremsstrahlung is correlated with high-energy electrons in laser-heated plasma �K. Brueckner, Phys. Rev.
Lett. 36, 677 �1976��. Since the result is important to the National Ignition Campaign �NIC� we reconsider the
derivation, and the energy dependence of the Gaunt factor�s�. We find an expression for bremsstrahlung we can
Abel invert, and we demonstrate the accuracy of the transform with a simple numeric exercise.
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Radiation at high-energy ��10 keV� is a signature for
energetic electrons �20–500 keV� and laser-plasma interac-
tions �LPI�. Typically, the correlation is made with �a�, a
transform by K. Brueckner �1,2�, and �b�, a model by W.
Kruer �3�. The result pertains to inertial-confinement-fusion
�ICF� because fast electrons ��150 keV� penetrate low-Z
ablator �Be or CH� and preheat deuterium-tritium �DT� fuel.
Since �1� is inaccurate �4,5�, �3� is specific �the author as-
sumes a Maxwell-boltzmann distribution for hot electrons�,
and the National Ignition Campaign �NIC� will assess pre-
heat using x-ray diagnostics, we re-examine �1� and present
new formula to reduce x-ray data.

The transform derived by Brueckner �1� is presented first.
The bremsstrahlung emitted by a fast electron per unit path,
per unit energy �6� is
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The change in energy per fast electron, per unit path �6� is
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The relevant Gaunt factor�s� are
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and
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Combining Eqs. �1� and �2�, the radiation emitted by a fast
electron with initial energy �o is
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and the energy radiated by a distribution, ne, is
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Since the inverse to Eq. �4� is unknown, we differentiate it in
h� �twice�. If the integrand is well behaved �4� the first de-
rivative with respect to h� is
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the second is
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Here, K. Brueckner substitutes ln �c with its ‘average’; the
same is done for ln �r. If we use the notation in �1� and
define
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and
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we find
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Now, if Eqs. �10� and �11� are substituted in Eq. �6�, we find
the Brueckner estimate to ne=ne�Erad�,

d3Erad

d�h��3 =
�Z

mc2ne�h�� . �12�

Unfortunately �as noted in �4,5�� we should not substitute
ln �r with a constant.

Instead, we seek a formula with the energy dependence of
ln �r. To start, we substitute ln �c with a series,

1

ln �c
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and study its convergence in n. With little effect to
d1�rad /d�h��1, d2�rad /d�h��2, and d3�rad /d�h��3, we truncate
the series at n=0 �7�. Equation �3� is simplified to
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If we integrate Eq. �14� �8� we find

d1�rad

d�h��1

2mc2

�Z��o�
=

�o

�h��0 �− 
 + �1 + 
2�atanh 
� , �16�

d2�rad

d�h��2

2mc2

�Z��o�
=

�o

�h��1 �− 
 − �1 − 
2�atanh 
� , �17�

and

d3�rad

d�h��3

2mc2

�Z��o�
=

�o

�h��2 �+ 
−1� , �18�

with 
= �1−h� /�o�1/2 �9�. Looking at Eq. �16� �and Eq. �9��
we find the error in Eq. �8� �see Fig. 1�. Bremsstrahlung is
overpredicted at h���o; it is underpredicted at h���o.
Now, we find a new transform if we note d2�rad /d�h��2=0 at
h�=�o. If we write Eq. �6� as
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we can Abel invert to find
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For a fit we well resolve,
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FIG. 2. The x-ray spectra given by Eqs. �1�–�4� �+� and Eq. �22�
���.

0 100 200 300 400 500

hν (keV)

10−7

10−6

10−5

10−4

10−3

10−2

10−1

n
e

(k
J/

ke
V-

ke
V

)

FIG. 3. The bi-Maxwellian �+�, and the estimates given by Eqs.
�12� ��� and �20� ���.
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FIG. 1. The x-ray spectra for a single electron.
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d1Erad
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i

Iif i�h�� ,

we apply Eq. �20� �the NIC will resolve d1Erad /d�h��1 with
10 x-ray measurements from 20–500 keV�. For a fit to lim-
ited data this is not done, but we still require an estimate of
the fast electron energy, the characteristic energy per fast
electron, and the risk to the DT fuel. In this circumstance we
estimate ne, but only if we assume the shape of the fast
electron distribution, as in �3�. If we substitute Eq. �14� in
Eq. �4� and assume a Maxwell-boltzmann distribution for hot
electrons,

ne��o,Ef,Tf� =
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�1/2
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� , �21�

we find
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where Tf is the fast electron temperature, �=h� /Tf, and Ef is
the fast electron energy �the product of the fast electron
count, N, and the average energy per fast electron, 3Tf /2�.
With this approach we estimate the fast electron distribution,
but only if the data can be fit to Eq. �22� �10�.

Now, we test the relative merit�s� of Eqs. �12�–�22�
against the x-ray spectra from Eqs. �1�–�4� for the bi-
Maxwellian,

be��o� = ne��o,Ea,Ta� + ne��o,Eb,Tb� , �23�

with Z=79, �
=100 eV, Ea=20 kJ, Ta=30 keV, Eb
=2 kJ, and Tb=75 keV. The spectra from Eqs. �1�–�4� is
shown in Fig. 2, and the estimates given by Eqs. �12� and
�20� appear in Fig. 3. Here, we see Eq. �12� is a reasonable
estimate to Eq. �23�, but the bi-Maxwellian is underpredicted
at h��T, and overpredicted at h�→0. Since Eq. �9� is a
poor estimate to d1�rad /d�h��1 �see Fig. 1� this is expected;
Eq. �20� is a much better fit to be. Still, Eq. �20� is less than
exact, because ln �c is evaluated at �o �ln �c is fixed�. This
simplification introduces small errors at ���o, but larger er-
rors at ���o �or, at h���o�. Generally, this results in the
overprediction of a distribution �and the bi-Maxwellian� at
small h� �see Fig. 3�.

Given these result�s� we consider the uncertainty in Eq.
�20�. If hydrodynamic effects are negligible �1� we focus on
the plasma background, the x-ray spectra, and the inverse
transform. Z and �
 are set by the background. Since the
uncertainty in �Z /2mc2 is 10%–20%—and the uncertainty in
d1Erad /d�h��1 is similar—the error we introduce with Eq.
�18� should be insignificant �it is usually �10%�. In this case
the uncertainty in the fast electron distribution is estimated
from the background �and/or the x-ray spectra� independent
of the simplification to ln �c.

This work performed under the auspices of the U.S. De-
partment of Energy by Lawrence Livermore National Labo-
ratory under Contact No. DE-AC52-07NA27344.
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