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The nonlinear propagation of low-frequency waves in a strongly coupled dusty plasma medium is studied
theoretically in the framework of the phenomenological generalized hydrodynamic �GH� model. A set of
simplified model nonlinear equations are derived from the original nonlinear integrodifferential form of the GH
model by employing an appropriate physical ansatz. Using standard perturbation techniques characteristic
evolution equations for finite small amplitude waves are then obtained in various propagation regimes. The
influence of viscoelastic properties arising from dust correlation contributions on the nature of nonlinear
solutions is discussed. The modulational stability of dust acoustic waves to parallel perturbation is also exam-
ined and it is shown that dust compressibility contributions influenced by the Coulomb coupling effects
introduce significant modification in the threshold and range of the instability domain.
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I. INTRODUCTION

The study of nonlinear wave propagation in dusty plasmas
has seen an explosive growth in recent years motivated to a
large extent by the novelty of the dusty plasma medium as
well as by its potential diverse applications in space plasmas,
astrophysical phenomena, and laboratory experiments on
dusty plasmas �1–4�. The massive and highly charged dust
grains invest the plasma with a variety of effects including a
host of collective modes and associated instabilities that are
not found in the usual two component electron-ion plasmas.
For example, in an unmagnetized dusty plasma, there exist
new low-frequency electrostatic modes—the dust acoustic
�DA� wave �DAW� �5� and the dust ion acoustic �DIA� �6�
waves which are distinct from the normal ion-acoustic waves
of a two component plasma. For the longitudinal DAW oc-
curring in the regime ���kvti�kvte�, the dust particles pro-
vide the inertia and the Boltzmann distributed electrons and
ions provide the thermal pressure effects. For the DIA waves,
the ions provide the inertia while the pressure of inertialess
electrons provides the restoring force for the sustainment of
oscillations. A further interesting feature of dusty plasmas is
that because of the large charges on the individual dust par-
ticles, the dust component of the plasma can easily be in the
strongly coupled regime in which the electrostatic energy of
dust particle interactions greatly exceeds the dust kinetic en-
ergy. The screened Coulomb coupling parameter �
��Zde�2 /aTdexp�−a /�d�= �Zde�2 /aTdexp�−�� �where Zde is
dust grain charge, a is the average inter grain distance, �
=a /�d is the measure of magnitude of the dust grain charge
screened by plasma, �d is Debye length in plasma, and Td is
the dust grain temperature� characterizing this ratio can be of
order unity or larger in such a strongly coupled dusty plasma.
This strong correlation among the dust particles leads to
physical effects such as formation of ordered dust crystalline
patterns �7�, etc., and many such effects associated with high
� have now been experimentally �8–10� observed and sev-

eral theoretical �11,12� and simulation �13,14� studies have
been undertaken for their understanding.

Collective oscillations in weakly coupled dusty plasmas,
such as of the DA and DIA modes, have been extensively
studied both theoretically �5,6� and experimentally �15,16�
and their linear properties are now fairly well understood
�17�. Their nonlinear behavior have also been well charted in
the usual weak amplitude limit by employing standard per-
turbation procedures �18–21�. For example, the nonlinear
evolution of the DA mode �18,19� in certain limits has been
shown to be governed by the Korteweg–de Vries �KdV�
equation. As is well known the KdV equation describes the
nonlinear propagation of small amplitude waves in a weakly
dispersive medium and it admits special exact solutions
called solitons which are stationary nonlinear structures re-
sulting from a balance between nonlinear wave steepening
effects and dispersion induced broadening. These nonlinear
wave structures remain undeformed in shape and size even
after collisions with other solitons and their velocities are
amplitude dependent. The nonlinear evolution characteristics
change significantly when dissipative effects are important in
the medium and instead of the symmetric soliton structures
one encounters nonlinear shock-like structures. The evolu-
tion of these structures are no longer governed by the KdV
equation but by a KdV-Burger-type equation. Several theo-
retical studies have considered the KdV-Burger model equa-
tion in the context of dusty plasmas while discussing dissi-
pation effects arising from viscosity, ion-dust collisions,
Landau damping, etc. �22�. There has also been a recent
experimental investigation of shock waves in dusty plasmas
�23�. Another interesting area of nonlinear investigation has
been that of the modulational instability �24� of finite ampli-
tude DA and DIA waves. In a weakly coupled dusty plasma
it has been shown that the evolution equation governing this
instability is the nonlinear Schrödinger �NLS� equation.

Linear wave propagation in strongly coupled dusty plas-
mas has also received a fair amount of attention in recent
years. A number of authors have studied the effects of strong
correlations of the dust particles on the linear dispersion
properties of low-frequency modes by using a variety of the-
oretical models �25–31�. These linear studies have revealed
that strong correlations introduce modifications to the modes
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such as new dispersion corrections, additional damping ef-
fects due to enhanced viscous contributions and the possibil-
ity of sustaining a transverse shear mode even in the fluid
state due to the presence of strong-coupling induced elastic
effects. Some of these predictions have been experimentally
verified including that of the existence of a transverse fluid
mode �32�. In contrast to the weak-coupling regime, there
have been very few studies of nonlinear wave propagation in
strongly coupled dusty plasmas. The difficulty arises mostly
in the treatment of the dust dynamics where an analytic treat-
ment of nonlinear effects in the strong-coupling limit is not
very straightforward. For example, if one models the dust
dynamics using a generalized hydrodynamic �GH� approach
�26� one has to deal with a nonlinear nonlocal equation of
momentum evolution. In this paper we try to overcome this
problem by deriving a simpler set of model nonlinear equa-
tions through the use of an appropriate physical ansatz on the
integrodifferential form of the GH equation. The reduced
equations are in the differential form with an additional time
derivative representing the viscoelastic time scale and are
amenable to standard perturbation analysis. We use the re-
ductive perturbation technique to derive nonlinear evolution
equations in various interesting physical regimes. In the
present work we confine our attention to just the DA mode
and examine its nonlinear behavior in parametric regimes
that are characterized by different features of strong-coupling
effects.

The paper is organized as follows. In Sec. II we present
the GH model for the strongly coupled dust fluid and derive
a simple extension of this model to the nonlinear regime. In
Sec. III we describe a complete set of model equations to
describe the propagation of dust acoustic waves in strongly
coupled plasmas. In Sec. IV we use the standard reductive
perturbation technique on this model and show that depend-
ing on the relative ordering of the strong-coupling induced
effects the nonlinear evolution equation can take the form
of either the KdV or the KdVB equations. In Sec. V we
discuss the modulational instability of the DA mode in the
strongly coupled regime and show that the evolution equa-
tion is now the nonlinear Schrödinger equation. We compare
our results with past work carried out in weakly coupled
plasmas and discuss the differences in the threshold and in-
stability regime introduced by strong-coupling effects. A
brief summary of our results and some concluding remarks
are made in Sec. VI.

II. MODEL NONLINEAR DUST DYNAMIC EQUATIONS

A variety of approximate methods have been employed in
past studies �33–37� for the description of strongly coupled
dusty plasma dynamics. Among these various approaches,
one of the most convenient and physically appealing model
for investigating strong-coupling effects is the so-called GH
model �38�. This approach takes account of the strong corre-
lation effects in the dust dynamics through the introduction
of model viscoelastic coefficients in the hydrodynamic equa-
tions. The phenomenological GH model has been shown to
be valid over a wide range of � values �1����c, where �c
is the critical � for crystallization� and has been successfully

employed in a number of other strongly coupled media, e.g.,
liquid metals, etc. �39�. It has also been successful in predict-
ing linear dispersive effects and the existence of transverse
shear waves in a strongly coupled dusty plasma that is in the
liquid state �26�. Some of these theoretical predictions of the
GH model have also been experimentally established for
dusty plasmas �32,40�.

The application of the GH model has however been re-
stricted mainly to the study of linear problems and its use for
nonlinear problems poses certain operational and mathemati-
cal difficulties such as dealing with a nonlocal nonlinear
equation. Restricting ourselves to one dimensional perturba-
tions, the generalized nonlinear momentum equation in the
GH model takes the following integrodifferential form:

� �

�t
+ ud

�

�x
�ud +

1

Mdnd

�P

�x
+

ZdeE

Md

= �
−�

t

dt��
−�

�

dx��d�x − x�,t − t��ud�x�,t�� , �1�

where ud denotes the dust fluid velocity and P and E are the
pressure and electric field respectively. Md ,nd ,Td are the
dust particle mass, dust density, and dust temperature, re-
spectively. The quantity �d is identified as the nonlocal vis-
coelastic function which accounts for memory effects with
increasing values of the parameter �. We rewrite Eq. �1� as

L�x,t� = �
−�

t

dt��
−�

�

dx��d�x − x�,t − t��ud�x�,t�� , �2�

where the symbol L�x , t� stands for the left-hand side �lhs� of
Eq. �1�. Taking the Fourier transform in space of Eq. �2� we
get

L�q,t� = �
−�

t

dt��̄d�q,t − t��ūd�q,t�� , �3�

where q is the Fourier transform variable for x and the over-
bars indicate Fourier transformed quantities. The viscoelastic
function can be characterized in terms of a generalized vis-
cosity term and a relaxation time both of which can in gen-
eral be functions of q. A model expression for this function,
which has been proposed and discussed in some details in
�41� and has been shown to provide a good description of the
collective behavior of strongly coupled systems for both
high- and low-frequency limits and for all wavelengths, is

�̄d�q,t� = �̄d�q�
exp� −t

	�q� �
	�q�

, �4�

where �̄d�q� and 	�q� represent the generalized viscosity
term and the relaxation time, respectively. It is worth remark-
ing here that the above model presented by Murillo in �41�
has been derived by him from a general prescription that
seeks to overcome one of the fundamental weaknesses of the
hydrodynamic model, namely, that it does not correctly de-
scribe dynamical phenomena at moderate frequencies and
wave numbers. In his work he has extended the hydrody-
namic theory to finite frequencies and wave numbers through
the introduction of a nonlocal memory function ��q , t� that
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governs the evolution of the correlation function. The
memory function being a dynamical function itself is further
assumed to satisfy a nonlocal evolution equation. The
Murillo model expression for the memory function, as given
in Eq. �4�, has been derived by making the Markov approxi-
mation for the evolution of the memory function—in other
words by assuming that there are no temporal correlations
affecting the evolution of the memory function itself. As
demonstrated further in his paper, neglect of the non-
Markovian contributions is a good approximation as the
model results compare quite well with molecular dynamics
�MD� and experimental results.

A partial time derivative of Eq. �3� yields

�L�q,t�
�t

= �̄d�q,0�ūd�q,t� − �
−�

t

dt�
�̄d�q,t − t��ūd�q,t��

	�q�
,

�5�

where we have used Eq. �4� to substitute ��̄d�q� /�t
=−��̄d�q� /	�q�2�exp�−�t− t�� /	�q��. Performing the opera-
tion ��3�+	�q��5��, we get

�1 + 	�q�
�

�t
�L�q,t� = �̄d�q�ūd�q,t� , �6�

where we have used Eq. �4� to substitute for �̄d�q ,0�. For the
model memory function �4� the above evolution equation,
Eq. �6� represents the most general form for the nonlinear
momentum equation. The nonlinear terms are embedded in

L̄�q , t� whose inverse Fourier transform has the convective
derivative term. The strong-coupling effects show up as an
additional time derivative term �the second term on the lhs�
and through the � dependence of various transport coeffi-
cients such as the generalized viscosity �d and the compress-
ibility 
d. To recover the standard Navier-Stokes equation
from Eq. �6� we need to take the limit of 	�q� �

�t �1 which is
the weak-coupling limit �when the relaxation time is short
compared to the wave period� and take the following form
for the viscosity term �̄d�q�:

�̄d�q� =
� 4

3� + ��q2

Mdnd0
, �7�

where � ,� are the shear and bulk viscosity coefficients. To
study finite 	 effects one needs to know the functional form
of 	�q� and solve the resultant operator form of Eq. �6�. In
general the wave-number dependence of the relaxation time
	�q� is most pronounced at short wavelengths. For longitu-
dinal oscillations it can be modeled as 	�q�=	me−�2q2

, where
� is a constant that needs to be determined from experimen-
tal observations or MD simulation data. Equation �6� is in
general quite difficult to handle with even this simple model
for the relaxation time. However we can easily deduce the
physical effects arising from this model term by considering
the long-wavelength limit in which one can approximate 	�q�
as 	�q�		m�1−�2q2�. The �2q2 terms are clearly seen to
result in additional dispersive corrections. For simplicity we
will at present ignore these additional dispersive corrections
and treat 	�q�=	m as a constant. The resultant nonlinear dif-
ferential equation on taking the inverse Fourier transform of

Eq. �7� with the model form of �̄d�q� given by Eq. �7� is

�1 + 	m
�

�t
�
� �

�t
+ ud

�

�x
�ud +

1

Mdnd

�P

�x
+

ZdeE

Md
�

=
��

Mdnd0

�2ud

�x2 , �8�

with ��= � 4
3�+��. In general the memory relaxation time 	m

and the various transport coefficients such as � ,�, etc. in the
above equation are functions of � and thereby introduce vari-
ous strong-coupling effects in the collective properties of the
system. In addition to the above generalized momentum
equation, the complete GH model consists of the continuity
equation and the energy equation. For wave propagation
studies in a dusty plasma these need to supplemented by the
dynamical equations of the electron and ion species and the
Maxwell equations that couple the field quantities to dynami-
cal physical perturbations in density, momentum, and tem-
perature. In the next section we will consider an appropriate
complete set of equations for investigating the nonlinear
propagation of the dust acoustic mode and derive suitable
evolution equations in various limits.

III. MODEL EQUATIONS FOR THE DUST
ACOUSTIC MODE

For the low-frequency ���kvthe ,kvthi� dust acoustic
waves we can assume the electrons and ions to behave as
light fluids compared to the dust fluid and model them by
Boltzmann distributions,

ne = ne0 exp� e

kBTe
� , �9�

ni = ni0 exp�−
e

kBTi
� . �10�

The dust dynamics can be modeled by the generalized mo-
mentum equation derived in the previous section and the dust
continuity equation. We neglect temperature perturbations
and hence do not consider the energy equation. This approxi-
mation is justified since the basic character of the dust acous-
tic wave is not affected by the dust temperature which is
assumed to be much smaller than the electron and the ion
temperatures. Furthermore, the dust dynamics is essentially
adiabatic, i.e., ��kVthd, where Vthd

is the dust thermal ve-
locity. In this limit we can assume ��k2�, where � is the
thermal conductivity of the dust component and dust tem-
perature changes and fluctuation effects can be neglected;


1 + 	m
�

�t
�
� �

�t
+ ud

�

�x
�ud +

1

Mdnd

�P

�x
−

Zde

Md

�

�x
�

=
��

Mdnd0

�2ud

�x2 , �11�

�nd

�t
+ ud

�nd

�x
+ nd

�ud

�x
= 0. �12�

The set is completed by the Poisson equation,
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�2

�x2 = − 4�e�ni − ne − Zdnd� . �13�

In the above equations, nj�j=e , i ,d� denotes the number den-
sity of different species with nj0 being their equilibrium val-
ues, Zde is the charge on a dust grain, kB is the Boltzmann
constant, and e is the electron charge. Te�Ti� is the electron-
�ion� temperature and  is the electric potential. It is to be
noted that the equilibrium number densities are related by the
following charge neutrality condition:

ni0 = Zdnd0 + ne0. �14�

It is convenient to reduce the above set of equations to a
dimensionless form. For this we introduce the following nor-
malizations, ̄=e /kBTi, n̄=nd /nd0, n̄i=ni /ni0, n̄e=ne /ne0,
t̄=�pdt, ū=ud /�D�pd, x̄=x /�D, 	̄m=�pd	m, and �̄�

=�� /Mdnd0�pd�D
2 . Here the dust plasma frequency is defined

as �pd
2 =4��Zde�2nd0 /Md0, the plasma Debye length is

�D
2 =kBTi /4�Zdnd0e2, �d

2=kBTd /4�Zdnd0e2, �i=Ti /Te, 
e
=ne0 /Zdnd0, and 
i=ni0 /Zdnd0. The normalized equations
obtained by dropping the overbar notation are then given by


1 + 	m
�

�t
�
� �

�t
+ u

�

�x
�u + �Td

Ti
�2 1

zdnd

d�d

�n

�x
−

�

�x
�

= ��
�2u

�x2 , �15�

�n

�t
+ u

�n

�x
+ n

�u

�x
= 0, �16�

�2

�x2 = �n + 
e exp��i� − 
i exp�− �� . �17�

In writing down Eq. �15� we have expressed the pressure
term in terms of the compressibility coefficient 
d, where

d= 1

Td0

�P
�n �T and �d is the adiabatic index. A model depen-

dence of 
d on � is given by �26�


d = 1 +
u���

3
+

�

9

�u���
��

, �18�

where the function u���, the so-called excess energy, can be
written as

u��� = a���� + b����1/3 + c��� + d����−1/3 �19�

for a Yukawa fluid �25�.
The coefficients up to order �4 are given by

a��� =
�

2
− 0.899 − 0.103�2 + 0.003�4,

b��� = 0.565 − 0.026�2 − 0.003�4,

c��� = − 0.207 − 0.086�2 + 0.018�4,

d��� = − 0.031 + 0.042�2 − 0.008�4. �20�

The set of Eqs. �11�–�13� for �=0 �the unscreened case�
have been previously analyzed in the linear limit to study the

propagation characteristics of various low-frequency waves
in a strongly coupled dusty plasma �26�. For the DA mode
the linear dispersion relation is given by

1 +
1

k2�p
2 −

1

�2 − �d
dk2��
2 + i�k2 ��

1−�	m

= 0, �21�

where �p
2 =�e

2+�i
2 and �� corresponds to dust screening

length. Finite � effects were considered by Rosenberg et al.
�25�. Here, we analyze the general case with a finite value of
�.

It is clear from the above that strong-coupling modifica-
tions enter through the contributions of terms due to �� ,
d
and 	m. Solution of the linear dispersion relation shows that
there are additional dispersive corrections to the DA arising
through the 
d and �� contributions as well as damping due
to the viscosity term �� which supplements the usual damp-
ing due to dust neutral collisions. The relaxation time 	m
provides a characteristic time scale to distinguish between
two classes of modes, those with �	m�1 called the hydro-
dynamic modes and modes with �	m�1—the so-called ki-
netic modes. The dispersion curves of the DA mode for vari-
ous values of � show that in the long-wavelength limit the
frequency � typically varies linearly with k with the disper-
sive corrections being proportional to the cubic power of k.
For a linear dispersive behavior of this kind it is well known
that the weakly nonlinear behavior of such waves are likely
to be governed by a KdV-type equation. The question of
interest then is to investigate the effect of the additional dis-
persion terms �due to 
d and ��� and also the dissipation
term �due to ��� on the nonlinear behavior of the DAW. We
carry out such an analysis in the next two sections. Another
interesting strong-coupling feature of the linear dispersion
relation is that in the range of 1���10, 
d can change sign
causing the dispersion curve to turn over at a certain value of
k with the group velocity going to zero and then to negative
values. In this region it would be interesting to examine the
strong-coupling induced effect brought about by compress-
ibility changes on the modulational instability of the DA
mode. We carry out such an analysis in Sec. V. We should
like to mention here that further modifications to the linear
dispersion relation of the DAW in the strongly coupled re-
gime can occur if additional effects such as dust charge fluc-
tuations, wave-number dependence of the relaxation time,
etc. are taken into account, as has been discussed by Xie et
al. in a series of papers �29–31�. Such modifications would
then also influence the nonlinear propagation properties of
the DAW by contributing to the dispersive or dissipative co-
efficients of the propagation equations. However since the
primary objective in our present work is to present a nonlin-
ear extension of the GH model, we have adopted a minimal
description for the linear system and neglected these addi-
tional contributions. They can be the subject of interesting
future explorations of the nonlinear GH model.

IV. NONLINEAR EVOLUTION OF DAW
IN THE LONG-WAVELENGTH REGIME

We begin our analysis of the nonlinear set of Eqs.
�15�–�17� by employing the standard reductive perturbative
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method of expanding the variables n, u, and  in terms of a
small parameter � as

n = 1 + �n�1� + �2n�2� + �3n�3� + ¯ , �22�

u = �u�1� + �2u�2� + �3u�3� + ¯ , �23�

 = ��1� + �2�2� + �3�3� + ¯ , �24�

and introduce the stretched variables � and 	 such that �
=�1/2�x−Mt� and 	=�3/2t, where M is the wave frame speed
normalized to the dust acoustic speed. The operators �

�x , �
�t ,

and �2 /�x2 then take the following forms:

�

�x
= �1/2 �

��
,

�2

�x2 = �
�2

��2 , �25�

�

�t
= − M�1/2 �

��
+ �3/2 �

�	
. �26�

We will use Eqs. �22�–�24� in Eqs. �15�–�17� and make use
of Eqs. �25� and �26� to expand them to various orders in �.
It is also important to fix the ordering of the various transport
coefficients, e.g., 
d and �� as well as 	m before proceeding
on the expansion. We consider below two different limits
based on such relative orderings of 	m, the viscous contribu-
tion due to �� and the dispersive terms.

A. ��mš1,��ÈO(1)

In this limit we note that in the expansion of the nonlinear
momentum Eq. �15� the viscous contributions enter at the
lowest order and have a dispersive nature. We will neglect
the pressure contributions since their dispersive contributions
are small for the long-wavelength limit. Thus to the first two
lowest orders in �, from each of the Eqs. �15�–�17�, we ob-
tain the following set of equations:

��� − M2	m�
�2u�1�

��2 = M	m
�2�1�

��2 , �27�

��� − M2	m�
�2u�2�

��2 = M	m
�2�2�

��2 − M	mu�1��
2u�1�

��2

− M	m� �u�1�

��
�2

− 	m
�

�	
� ��1�

��
�

− 2M	m
�

�	
� �u�1�

��
� , �28�

�

��
�u�1� − Mn�1�� = 0, �29�

�n�1�

�	
+

�

��
�u�2� − Mn�2�� +

�

��
�n�1�u�1�� = 0, �30�

�
e�i + 
i��1� + n�1� = 0, �31�

�2�1�

��2 = n�2� + �
e�i + 
i��2� +
1

2
��i

2
e − 
i���1��2.

�32�

Eliminating the variables n�2�, u�2�, and �2� in terms of n�1�

by making use of Eqs. �27�, �29�, and �31�, we find that it
leads to the following equation:

A
�4n�1�

��4 + B
�2

��2 �n�1��2 + C
�

�	
� �n�1�

��
� = 0. �33�

Integrating once in �, we find that Eq. �33� leads to the fol-
lowing evolution equation which is of the KdV form:

A
�3n�1�

��3 +
B

2
n�1��n�1�

��
+ C

�n�1�

�	
= 0, �34�

where the coefficients A ,B, and C of the Kdv Eq. �34� are
given as follows: where �M2=1 /	m���+	m / �
e�i+
i���

A =
M

�
e�i + 
i�
, �35�

B = M +
M

2

��i
2
e − 
i�

�
e�i + 
i�2 −
M3

2
� 	m

�� − M2	m
� , �36�

C = 
1 −
2M2	m

��� − M2	m�
+

	m

��� − 	mM2��
e�i + 
i�
� .

�37�

It should be pointed out that in the usual weak-coupling
limit, assuming an ordering of ��1, leads to a KdV-
Burger-type equation and consequently the breakup of KdV
solitons into nonlinear shocklike solutions �22,23�. In the
present case the additional time derivative arising from the
strong-coupling contribution changes the nature of the non-
linear wave propagation permitting soliton formation even
when ��1. The viscous term provides an additional disper-
sive contribution to the propagation. Physically the existence
of a large value of 	m �such that �	m�1� implies strong
memory effects in the medium and therefore the predomi-
nance of elastic effects. The limit �	m�1, often referred to
as the “kinetic regime,” is particularly relevant for the very
strong-coupling regime �e.g., close to crystallization� where
both 	m and �� can be quite large. We next consider the limit
of �	m�1, the so-called “hydrodynamic regime” and exam-
ine the effect of viscosity on nonlinear DA wave propaga-
tion.

B. ��m™1,��ÈO(�1Õ2)

In this limit, substitution of expansions Eqs. �22�–�24� in
Eqs. �15�–�17� with the pressure term neglected in Eq. �15�,
leads to the following equations in the first two lowest order
in � for the momentum equation while those for the continu-
ity and Poisson’s equation remain the same as Eqs.
�29�–�32�:

− M
�u�1�

��
=

��1�

��
, �38�
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�u�1�

�	
− M

�u�2�

��
+ u�1��u�1�

��
−

��2�

��
= ��

�2u�1�

��2 . �39�

We eliminate the variables u�2�, �2�, and n�2� from Eqs. �38�,
�39�, and �29�–�32�, similar to the previous section in terms
of n�1� leading to the following equation: where M2

=1 / �
e�i+mui�

D
�n�1�

�	
+ En�1��n�1�

��
+ F

�3n�1�

��3 + G
�2n�1�

��2 = 0. �40�

It is seen that Eq. �40� is the Kdv-Burger’s equation. The
coefficients of the above equation are given by

D = 2M , �41�

E = 3M2 +
��i

2
e − 
i�
�
e�i + 
i�2 , �42�

F =
1

�
e�i + 
i�2 , �43�

G = − ��M . �44�

In this limit the viscosity contribution is truly dissipative and
one can expect shocklike nonlinear solutions of the dust
acoustic mode. In a strongly coupled plasma viscosity is a
sensitive function of the coupling parameter � as well as the
screening parameter �. For weakly coupled plasmas viscos-
ity is a diminishing function of �. As past theoretical and
MD simulations studies have shown �� decreases as a func-
tion of � �42,43� and displays a broad minimum in the region
of 1���10. The present limit of nonlinear DAW propaga-
tion is relevant in this regime. As � increases further ��

begins to rise again. Very close to the crystallization point
�near �	�c� there is a sharp and very large rise in �� which
is attributed to a change in the momentum transfer mecha-
nism in the presence of short-range order �42�. In this regime
the KdV equation derived in the previous section becomes
the appropriate nonlinear propagation equation. The charac-
teristics of the nonlinear propagation of the dust acoustic
wave can thus provide a means of qualitatively marking the
various regimes. It should be pointed out however that the
actual viscosity as opposed to the normalized viscosity can
have a different scaling with � depending on the amount of
screening in the system and can thus make a quantitative
deduction of viscosity from the wave propagation character-
istics somewhat difficult.

V. NONLINEAR EVOLUTION OF DAW
IN THE SHORT-WAVELENGTH REGIME

It is well known that the DAW can suffer a modulational
instability at short wavelengths such that a slow parallel
modulation of a finite amplitude monochromatic plane wave
can grow and in some limits lead to the formation of an
envelope soliton pulse. The evolution equation then takes the
form of a nonlinear Schrödinger equation. A number of re-
cent studies have examined the modulational instability of

the DAW in the weak-coupling regime and have considered
the effect of oblique propagation. In this section we will
investigate the modulational instability of the DAW in the
strong-coupling limit in the hydrodynamic regime ��	m
�1�. In particular we are interested in the regime where the
linear dispersion curve of DAW turns over and 
d contribu-
tions are important. The turnover can also be influenced by
dispersive contributions from viscosity as seen from the lin-
ear dispersion relation �21�. We restrict our calculation to
cases where the viscosity contribution is small compared to
the compressibility contribution. As discussed in �26� simu-
lation and model calculations typically show ��0.08 for
�10, whereas 
d1 in that region. We will also therefore
neglect viscous dissipation effects by a suitable choice of
ordering. We consider Eqs. �15�–�17� but now include the
next order term 2 in the Poisson’s equation, which in di-
mensionless variables is given by


 �2

�x2 − �� − �2 = �n − 1� . �45�

The parameters � and � are given by

� = �
e�i + 
i� , �46�

� =
1

2
�
e�i

2 − 
i� . �47�

We now introduce the slow space and time scales for the
envelope evolution modulating a fast carrier wave through
the stretched variables defined by

� = �1�x − �t� , �48�

	 = �1
2t . �49�

where �1 is a small parameter and � is the group velocity of
the wave along it’s propagation direction. It should be noted
that the smallness parameter �1 employed in this section is
distinct from � used in the previous section and the two
expansions are valid in different parameter regimes. In Sec.
IV the typical wave number k�1/2 whereas in the present
section the typical wave number is given by k�1. Since we
are considering the short-wavelength regime in this section
k1�k and hence �1��. We then expand the variables n ,v ,
in terms of the expansion parameter as

n�x,t� = 1 + �
n=1

�

�1
n �

l=−�

�

nl
n��,	�exp�il�kx − �t�� , �50�

u�x,t� = �
n=1

�

�1
n �

l=−�

�

ul
n��,	�exp�il�kx − �t�� , �51�

�x,t� = �
n=1

�

�1
n �

l=−�

�

l
n��,	�exp�il�kx − �t�� . �52�

Using the stretched variables �Eqs. �48� and �49�� the opera-
tors �

�x , �
�t , and �2

�x2 are given by
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�

�x
=

�

�x
+ �1

�

��
, �53�

�

�t
=

�

�t
− �1�

�

��
+ �1

2 �

�	
, �54�

�

�x2 =
�

�x2 + 2�1
�2

�x � �
+ �1

2 �2

��2 . �55�

Using expressions �48�–�55� we expand Eqs. �15�, �16�, and
�45� to obtain the nth-order reduced equations as follows:

− il�ul
�n� − �

�ul
�n−1�

��
+

�ul
�n−2�

�	
+ A
d�d�ilknl

�n� +
�nl

�n−1�

��
�

− �ilkl
�n� +

�l
�n−1�

��
� +

1

2 �
n�=1

�

�
l�=−�

�

ilkul−l�
�n−n��ul�

�n��

+
1

2

�

��
�

n�=1

�

�
l�=−�

�

ul−l�
�n−n�−1�ul�

�n�� = 0. �56�

Here assumption is taken as ��Td /Ti�2�1 /zdnd�
��Td /Ti�2�1 /zdnd0�=A�,

− il�nl
�n� + ilkul

�n� − �
�nl

�n−1�

��
+

�ul
�n−1�

��
+

�nl
�n−2�

�	

+ �
n�=1

�

�
l�=−�

�

ilk�ul−l�
�n−n��nl�

�n��� + �
n�=1

�

�
l�=−�

�
�

��
�u�l−l��

�n−n�−1�
nl�

�n���

= 0, �57�

− �� + l2k2�l
�n� − nl

�n� + 2ilk
�l

�n−1�

��
+

�2l
�n−2�

��2

− �
n�=1

�

�
l�=−�

�

�l−l�
�n−n��l�

�n�� = 0. �58�

For first order �n , l=1� it is seen that we obtain the fol-
lowing equations:

− i�n1
�1� + iku1

�1� = 0, �59�

− �� + k2�1
�1� − n1

�1� = 0, �60�

− i�u1
�1� + ikA
d�dn1

�1� − ik1
�1� = 0. �61�

The linear dispersion relation for the DA mode in the strong-
coupling limit using Eqs. �59�–�61� is then given as

�2 = k2
A
d�d +
1

� + k2� . �62�

It is seen that this dispersion relation agrees with the one
obtained by Kaw and Sen �26� in the strong-coupling limit
and the standard dispersion relation of DA wave in the weak-

coupling limit in an unmagnetized dusty plasma as derived
Rao, Shukla, and Yu �5� if we revert back to the dimensional
form. From Eqs. �59�–�61� we can express the first-order
quantities u1

�1� and 1
�1� in terms of n1

�1�. In the second order
�n=2, l=1�, we obtain corrections to the first-order quantities
in terms of a function, n1

�2��� ,	� and �n1
�1��� ,	� /��. It is seen

that in this order we obtain the compatibility condition, i.e.,

� =
��

�k
=

k

�

A
d�d +

�

�� + k2�2� . �63�

To next order, i.e., �n=2, l=2� the expansion equations are
given by

− 2i�n2
�2� + 2iku2

�2� + 2iku1
�1�n1

�1� = 0, �64�

− 2i�u2
�2� + 2ik�A
d�dn2

�2� − 2
�2�� + iku1

�1�u1
�1� = 0, �65�

− �� + 4k2�2
�2� − n2

�2� − �1
�1�1

�1� = 0. �66�

Using the Eqs. �64�–�66� we can obtain the second-harmonic
mode of the carrier wave in terms of the nonlinear self inter-
action term n1

�1�n1
�1�. These second-harmonic quantities are

given by

n2
�2� = 
 1

2k2

�2

k2 �� + k2��� + 4k2� +
�

3k2�� + k2��n1
�1�n1

�1�,

�67�

u2
�2� =

�

k

 1

2k2

�2

k2 �� + k2��� + 4k2� +
�

3k2�� + k2�
− 1�n1

�1�n1
�1�,

�68�

2
�2� = �−

3

2

�2

k2 − ��2

k2 − A
d�d�
 1

2k2

�2

k2 �� + k2��� + 4k2�

+
�

3k2�� + k2���n1
�1�n1

�1�. �69�

The zeroth harmonic mode due to the self interaction is de-
termined from the l=0 components of the n=3 order equa-
tions and are found to be given by

n0
�2� =

1

��2 − 1/� − A
d�d�
2��

k
+

2�

��k2 + ��2 +
�2

k2 ��n1
�1��2,

�70�

u0
�2� = � �

��2 − 1/� − A
d�d�
2��

k
+

2�

��k2 + ��2 +
�2

k2 �
−

2�

k ��n1
�1��2, �71�

0
�2� =

1

�
� 1

��2 − 1/� − A
d�d�
2��

k
+

2�

��k2 + ��2 +
�2

k2 �
+

2�

�k2 + ��2��n1
�1��2. �72�
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From above evaluations and l=1 component of the third-
order equations, one obtains the following nonlinear
Schrödinger equation for the first-order amplitude of the per-
turbed plasma density n1

�1��A:

i
�A

�	
+ P

�2A

��2 + Q�A�2A = 0. �73�

The coefficients P and Q of the above equation are given by

P = �1

2
�
��� − 3k2�

��� + k2�3 +
A
d�d

�
−

�2

�
� . �74�

The coefficient Q is the sum of the contribution from the
zeroth harmonic and the second-harmonic terms for the non-
linear term �A�2A and is given by

Q =
k

2
I −

2k�

��k2 + ��
J −

k2

2�
L , �75�

where the terms I, J, and L are given by

I = 
�� +
�

k
� 1

��2 − 1/� − A
d�d��2��

k
+

2�

��k2 + ��2 +
�2

k2 � −
3�

k
+

2�

k
� 1

2k2

�2

k2 �� + k2��� + 4k2� +
�

3k2�� + k2��� , �76�

J =
1

��k2 + ��
 1

��2 − 1/� − A
d�d��2��

k
+

2�

��k2 + ��2 +
�2

k2 � +
2�

�k2 + ��2�
+

1

k2 + �

3

2

�2

k2 + ��2

k2 − A
d�d�� 1

2k2

�2

k2 �� + k2��� + 4k2� +
�

3k2�� + k2��� , �77�

L =
�

k 
� �

��2 + 1/� − A
d�d�
2��

k
+

2�

��k2 + ��2 +
�2

k2 � −
2�

k � +
�

k 
 1

2k2

�2

k2 �� + k2��� + 4k2� +
�

3k2�� + k2�
− 1�� . �78�

In the above coefficients, it is seen that P��1 /2��� /�k
��1 /2��2� /�k2 and Q contains the contribution from the
zeroth- and second-harmonic carrier wave. When 
d is set to
zero, it is possible to show, with a little bit of straightforward
but tedious algebra, that the above expressions for P and Q
reduce to those derived by Amin et al. �24� for the limit of
parallel propagating waves �i.e., for �=0 in their expres-
sions�. Our main interest is to examine the influence of the
dust thermal contribution arising through 
d which can be-
come important in the strongly coupled regime. As is well
known, the criterion for modulational stability of the enve-
lope wave, described by the nonlinear Schrödinger Eq. �73�,
is given by the sign of the product PQ. The wave is modu-
lationally stable if PQ � 0. For PQ � 0 the wave can
become modulationally unstable particularly to long-
wavelength perturbations with a threshold wave number �24�
given as Kcr=�2�P /Q��a0�, where a0 is the perturbation am-
plitude. We have investigated the influence of the 
d term on
the modulational stability question by numerically determin-
ing the marginal curve PQ=0 over a range of values of 
d
and k. In evaluating the expressions for P and Q we have
used typical values of �=0.8,�=−3.6,A=1.0, �d is taken to
be 5/3 and � is determined from the linear dispersion rela-
tion for a given value of k. As discussed in �26� the negative
contribution of 
d can give rise to an unphysical instability at
large values of k—an artifact of the model chosen to evaluate

d. For each value of � �and corresponding 
d�, we therefore
restrict ourselves to a range of k for which the linear disper-
sion relation gives a real value of �. Our results are consoli-

dated in the form of a stability diagram shown in Fig. 1,
where the solid curve represents the loci of all points in 
d
and carrier wave-number k space where PQ=0. The region
below the curve is the modulationally unstable region. We
see that 
d has a significant influence on the modulational
stability domain. With decreasing values of 
d the unstable

k

µ d

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

UNSTABLE

STABLE

FIG. 1. Modulationally stable and unstable regions of the dust
acoustic wave in the parameter space of 
d and carrier wave num-
ber k. Decreasing 
d implies increasing � and therefore stronger
coupling effects.
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region expands and this trend continues into the region
where 
d becomes negative. The decrease in 
d corresponds
to increasing values of � as is evident from expressions
�18�–�20�. These expressions also show a dependence on the
screening parameter �. However the changes in 
d due to �
for a given value of � are not very significant as illustrated in
Fig. 2. Here we have plotted the variation in 
d with � for
the one component plasma �OCP� model �26� as well as for
various values of � in the Yukawa model. Thus as the dust
component gets increasingly correlated due to strong-
coupling effects, the nonlinear dust acoustic wave can be-
come modulationally unstable over a wider range of carrier
wave numbers. The nonlinear saturation of such waves can
give rise to envelope soliton structures. As is well known
�20�, in the stable region a finite amplitude DAW cannot
form an envelope soliton but could form a shocklike struc-
ture or a dark soliton which are both stationary solutions of
the NLSE for PQ�0. Since 
d can be controlled by chang-
ing � �e.g., by cooling or heating the dust component� and to
some extent by changing � �through a change in the sur-
rounding plasma properties� an interesting experiment to do
would be to look for changes in the characteristics of a sta-
tionary nonlinear DAW structure as a function of � and �.

VI. SUMMARY AND CONCLUSIONS

We have investigated the nonlinear propagation of small
amplitude dust acoustic waves in a strongly coupled dusty
plasma medium. The dust medium is modeled by the phe-
nomenological generalized hydrodynamic equations. A set of
simplified nonlinear equations are derived from the original
nonlinear integrodifferential form of the GH model by em-
ploying an appropriate physical ansatz. Thereafter character-
istic evolution equations for finite small amplitude dust
acoustic waves are obtained in various propagation regimes
with the help of standard perturbation techniques. Our pri-
mary motivation has been to study the influence of dust cor-
relations as manifested in the various transport coefficients

such as ��, 
d, etc., on the nature of the nonlinear solutions.
For this we have considered some of the familiar nonlinear
solutions that have been earlier studied in the context of
weakly coupled dusty plasmas. A well-known result from
these earlier studies is that in the presence of any weak dis-
sipation in the system �e.g., finite viscosity� small amplitude
DAW propagation is governed by the KdVB equation which
gives shocklike solutions. In a strongly coupled system this
scenario can get altered due to the introduction of memory
effects. If the randomizing time due to collisions is longer
than the memory time 	m then the viscous term displays elas-
tic properties and provides additional dispersion to the wave.
Consequently the nonlinear propagation equation in this case
turns out to be the KdV equation which can support soliton
solutions. Shocklike solutions will only exist in the regime
where the memory time is short and the viscous term plays a
dissipative role. Thus strong-coupling effects as represented
by the relaxation time period 	m introduce a threshold for the
transition from KdV solitonlike solutions to KdVB shocklike
solutions. A similar result is found for the modulational sta-
bility of dust acoustic waves to parallel perturbation where it
is found that dust compressibility �
d� contributions under
the influence of Coulomb coupling effects can introduce sig-
nificant modifications in the threshold and range of the insta-
bility domain. Specifically we find that with decreasing val-
ues of 
d the unstable region expands and this trend
continues into the region where 
d becomes negative. The
decrease in 
d corresponds to increasing values of � which
implies that as the dust component gets increasingly corre-
lated due to strong-coupling effects, the nonlinear dust
acoustic wave can become modulationally unstable over a
wider range of carrier wave numbers. The unstable and
stable regions admit different nonlinear saturated solutions—
the unstable region can give rise to envelope soliton struc-
tures, whereas in the modulationaly stable region one can
only sustain shocklike structures or dark solitons. For a given
carrier wave number the transition from one region to the
other can be effected by inducing a change in the transport
coefficient through a change in �. Our calculations in this
paper have been restricted to the DAW but one can expect
similar effects to occur for other low-frequency dusty plasma
modes as well. Since the Coulomb coupling parameter in a
dusty plasma can be easily controlled, e.g., by heating or
cooling the dust component, it would be interesting to look
for these “signatures” in the propagation characteristics of
finite amplitude low-frequency waves in controlled labora-
tory experiments. Such investigations would provide an un-
derstanding of nonlinear wave propagation in strongly
coupled systems. We would like to mention here that the
strong-coupling induced changes in the viscosity can be
masked by effects arising from a high level of dust neutral
collisions. A quantitative measure of the competition be-
tween these two effects had been obtained for the linear
propagation characteristics of dust acoustic waves in a
strongly coupled dusty plasma �26�. An experimental confir-
mation of such a distinction was also subsequently demon-
strated �40� by measuring the linear wave dispersion charac-
teristics in different neutral pressure regimes. It is suggested
that similar experiments on propagation of nonlinear waves

1 2 3 4 5 6 7 8 9 10
−0.2

0

0.2

0.4

0.6

0.8

Γ

µ d

OCP value
κ=0.0
κ=0.2
κ=0.4
κ=0.6

FIG. 2. Comparison of plots of variation in 
d with � for the
OCP model and the Yukawa model with different values of the
screening parameter �.
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be carried out with the minimal neutral density necessary to
be in the strong-coupling regime but with low collisional
drag effects in order to detect the effects of strong coupling
on viscosity through changes in their propagation character-

istics. Such experiments could provide useful insights into
the scaling of viscosity with � and complement other re-
cently proposed methods of direct measurement of viscosity
using particle imaging methods �44�.
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