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In present study, the transition of thermocapillary convection from the axisymmetric stationary flow to
oscillatory flow in liquid bridges of 5cst silicon oil (aspect ratio 1.0 and 1.6) is investigated in microgravity
conditions by the linear instability analysis. The corresponding marginal instability boundary is closely related
to the gas/liquid configuration of the liquid bridge noted as volume ratio. With the increasing volume ratio, the
marginal instability boundary consists of the increasing branch and the decreasing branch. A gap region exists
between the branches where the critical Marangoni number of the corresponding axisymmetric stationary flow
increases drastically. Particularly, a unique axisymmetric oscillatory flow (the critical azimuthal wave number
is m=0) in the gap region is reported for the liquid bridge of aspect ratio 1.6. Moreover, the energy transfer
between the basic state and the disturbance fields of the thermocapillary convection is analyzed at the corre-
sponding critical Marangoni number, which reveals different major sources of the energy transfer for the
development of the disturbances in regimes of the increasing branch, the gap region and the decreasing branch,
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I. INTRODUCTION

A liquid bridge consisting of a liquid column supported
between two differently heated solid rods (see Fig. 1) was
initially introduced to mimic half of the floating zone tech-
nique for the interests of space materials science. It now has
become one of the typical models for the investigation of the
principles of thermocapillary convection experimentally and
theoretically. With an applied temperature difference (AT),
the temperature gradient of the gas/liquid interface tension
drives the thermocapillary convection in the liquid bridge.
With the increasing AT, the thermocapillary convection
transfers form an axisymmetric stationary flow to an asym-
metric stationary flow in liquid bridges of low-Prandtl-
number fluids or to an oscillatory flow in liquid bridges of
high-Prandtl-number fluids. The corresponding marginal in-
stability boundary depends on a set of parameters. One of the
most sensitive parameters is the volume ratio of the liquid
bridge [1-5]. In microgravity conditions, a cylindrical liquid
bridge is only a special case. The gas/liquid interface (usu-
ally noted as free surface) shape could be convex or concave.
The curvature variation in the longitudinal direction of the
free surface alters the equilibrium of the forces and then the
onset of oscillatory thermocapillary convection. The volume
ratio is defined as the ratio of the volume of liquid column to
that of a cylindrical case of the same height and diameter:

1 (L
V= —f r*(2)dz,
R*),

where h(z) is the free-surface boundary in the region of
0=z=L and R the radius of the corresponding cylindrical
one (see Fig. 1). For liquid bridges of low-Pr fluids, the
marginal instability boundary exhibits a convex trend; i.e.,
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the critical Marangoni number first decreases and then in-
creases with the increasing volume ratio [2,3]. For liquid
bridges of high-Pr fluids, the marginal instability boundary
consists of two branches as typically shown in Fig. 2, the
increasing branch in the range of volume ratios approxi-
mately less than unity (referred as slender bridge) and the
decreasing branch in the range of volume ratios approxi-
mately larger than unity (referred as fat bridge) [1,3,5].
Moreover, a strongly stabilized region for the axisymmetric
stationary thermocapillary flow exists between the branches.
The different trends of the marginal instability boundaries
imply the different mechanisms of the instability of the ther-
mocapillary convection in liquid bridges of low-Pr fluids and
high-Pr fluids. Although the studies mentioned above have
been conducted on the effect of volume ratio on the ther-
mocapillary convection, details of the thermocapillary con-
vection in the strongly stabilized gap region of the marginal
instability boundary for liquid bridges of high-Pr fluids are
still lacking.
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FIG. 1. Scheme diagram of a liquid bridge in microgravity
conditions.
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FIG. 2. Scheme diagram of the volume-ratio dependent mar-
ginal instability boundary of liquid bridge after [1].

In present study, for liquid bridges of Scst silicon oil in
microgravity conditions, the volume-ratio dependent mar-
ginal instability boundary of the thermocapillary convection
is investigated by the linear instability analysis, especially
the details in the range of the strongly stabilized gap region.
Moreover, the energy balance between the basic state and the
disturbance of the thermocapillary convection at the critical
condition is analyzed. Section II describes the problem and
the numerical schemes. The numerical results are given in
Sec. III. Conclusions are given in Sec. IV.

II. GOVERNING EQUATIONS AND NUMERICAL
SCHEMES

A liquid bridge of 5cst silicon oil (Pr=68.6) with the adia-
batic free surface in microgravity conditions is shown in Fig.
1 (The corresponding thermophysical properties are listed in
Table I). The liquid bridge is of height L and radius R. The
local radius of the free surface is denoted as h(z). The length,
velocity, pressure and time are scaled by R, yAT/pv, yAT/R,
and R?/v, respectively, and the temperature measured with
respect to Ty is scaled by AT where p is the density of the
fluid, v the kinematic viscosity coefficient, y the negative
temperature gradient of surface tension, and 7, the mean
temperature of the upper and lower rods.

In the cylindrical coordinates (r, 6, z), the nondimen-
sional governing equations are as follows:

VelU=0 (1)

TABLE I. Thermophysical properties of Scst silicone oil.

p 915 (kg/m?) v
v 56X 107 (kg/KXs?) a

5% 107 (m?/s)
729X 1078 (m?/s)
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where U=(u, v, w) indicates the dimensionless velocity
vector, P the pressure, T the temperature, and ¢ the time. The
Marangoni number and Prandtl number are defined as Ma
=yATR/ pv2 and Pr=v/ a, respectively, where « the thermal
diffusivity coefficient.

The corresponding boundary conditions are as follows:

R 1

z=0, TI:U=0, T=IE, (4)
r=h(z):iieU=0, 7,(Sei))=—17+VT,

Tpe (SeR)=—7yo VT, isVT=0. (5)

where I'=L/R is the aspect ratio, S=V77+(V77)T the stress
tensor in nondimensional form, the vector 77 the outward-
directed normal vector of the free surface and the vectors 7,
and 7, the unit vectors tangent to the free surface in the (r, z)
plane and (r, 6) plane, respectively. Regularization of the
boundary conditions as in [3] is not introduced in the present
study. In the present study, the dynamic free-surface defor-
mation induced by the thermocapillary convection is negli-
gible, therefore, the free-surface shape is independent of the
flow and temperature fields and identical to the static axi-
symmetric shape under the static situation. Then the free-
surface shape /(z) can be obtained from the Young-Laplace
equation,

P,=Veii. (6)

This second-order ordinary equation for 4(z) and the dimen-
sionless pressure jump P; is solved with the boundary con-
ditions,

h(0)=hI)=1, (7)

and the prescribed volume ratio or, equivalently, the pre-
scribed contact angle at the hot rod,

T M)
= 18 ( a ) (®)

The problem is solved using the method of linear stability
analysis. The axisymmetric stationary flow (basic state) is
directly calculated from the steady N-S equations, and then
small three-dimensional disturbances are added to the basic
state and linearized by neglecting high orders of the distur-
bances [6-9]. The disturbances are assumed to be in the nor-
mal mode,
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TABLE II. Grid dependence code validation for liquid bridge of

Pr=68.6.
I'=1.0, Vv=0.74 I'=1.6, V=0.83
N, XN, 10°Ma, m N, XN, 10* Ma, m
71 X101 2.19 1 61 X121 4.99 0
81X 115 2.30 1 71 X131 5.11 0
91 X125 2.40 1 81X 141 5.21 0
101 X 135 2.48 1 91 X 151 5.30 0
IZI +00 IZ,m(r,Z)
P = 2 | p'™(r.2) | explo(m)i+ jm6], 9)
) AT

where the variables with prime denote the disturbances, m
the azimuthal wave number, o(m) the complex growth rate
of the corresponding perturbation mode and j= V=1. The
critical Marangoni number Ma, is obtained when the maxi-
mal real part of o(m) for all m is zero. The problem is nu-
merically solved in the body-fitted curvilinear coordinates
with coordinate transformation,

e

n=z

(10)

Detailed description of the transformed governing equations
can be found in [4]. A more detailed description of the nu-
merical schemes can be found in [10,11]. A code validation
of noncylindrical liquid bridges can be found in [7]. The grid
numbers used in the calculation are N, XN_=91X125 for
I'=1.0 and N, X N,=81 X 141 for I'=1.6, respectively, where
N, and N, indicate the numbers of the grid points in radial
and axial directions. Increasing density of the grid points is
adopted close to both solid boundary and free surface to well
resolve the corresponding boundary layers [7]. The grid de-
pendent critical Marangoni numbers for two selected cases is
shown in Table II which verifies the present meshes of grid
points.

To throw some lights on the physics of the instabilities,
changing rates of kinetic (E;) and “thermal” energy (E,;) of
the critical disturbances are also investigated [2,6,7]. The
disturbance equations of momentum and temperature are
multiplied by the velocity and temperature disturbances, re-
spectively, and then integrated over the volume of the liquid
bridge () and normalized by the mechanical (D;) and ther-
mal dissipation (D,;,), respectively,

1 dE,
——=M+I-1=M,+My+M_+1-1, (11)
D, dt '
1 dE
— =y 1=+ 1. (12)
D, dt ‘
where E=Jo(ii'*/2)dqQ, E;=[o(T'?/2)d(Q, Dy
=[0(8":87/2)dQ, and Dy=[o(VT' sV T’ /Pr)d().

I=—(Ma/2 Pr)[qii' *Seii'dQ) is the interaction between
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FIG. 3. Critical Marangoni number versus volume ratio for lig-

uid bridge (I'=1.0, Pr=68.6).

the stress tensor of the basic state and the velocity distur-

bance. M=—(1/D,)fi'*VT'ds is the integration over the
surface of (), which denotes the work related to the ther-
mocapillary force induced by the temperature disturbance on
the free surface and can be decomposed in the radial, azi-
muthal and axial directions, respectively,

M,=- (l/Dk)f u' (9T /dr)ds,

M9=—(1/Dk)fv’(z9T’/00)ds,
and
Mzz_(l/Dk)f w' (9T 1dz)ds.

J==(1/D,,)(Ma/Pr)[ (i@ *VT)T'dQ) is the energy transfer
from the basic temperature field to the temperature distur-
bance field by the velocity disturbance field and can be de-
composed in the radial and axial directions, respectively,

J,=—(1/D,;)(Ma/Pr) f (u' (9T/9r)T'dQY,
QO

J,=—(1/D,,)(Ma/Pr) f (W' (9T192))T'dQ).
Q

Moreover, the density distribution of J, and J, can be intro-
duced as j, and j, with J,=[{dz[Lj,dr and J,=[Ldz[}j.dr,
respectively.

III. NUMERICAL RESULTS

Figure 3 shows the dependency of the critical Marangoni
number (listed in Table III) on the volume ratio for the liquid
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TABLE III. Critical Marangoni number and azimuthal wave
number versus volume ratio.

=1 =16

14 10* Ma, m 14 10* Ma, m
0.60 1.86 1 0.60 0.686 1
0.65 7.02 1 0.65 0.707 1
0.67 12.3 1 0.70 0.789 1
0.68 13.9 1 0.75 1.00 1
0.69 15.6 1 0.78 1.34 1
0.70 18.4 1 0.80 1.77 1
0.71 18.0 1 0.81 4.62 0
0.72 18.2 1 0.82 4.82 0
0.73 26.4 1 0.83 521 0
0.74 24.0 1 0.84 6.04 0
0.75 21.7 1 0.85 737 1
0.77 18.0 1 0.90 521 1
0.80 14.4 1 1.00 3.29 1
0.85 10.6 1 1.10 2.92 1
0.90 7.97 1 1.20 3.10 1
1.00 5.09 1
1.10 391 1
1.20 3.47 1

bridge of I'=1.0. With the increasing volume ratio, the mar-
ginal instability boundary consists of two branches, the
steeply increasing branch in the range of volume ratios ap-
proximately less than 0.7 and the decreasing branch with a
much flattened slope in the range of volume ratios approxi-
mately larger than 0.8. The strongly stabilized gap region can
be clearly observed between the branches where the critical
Marangoni number of the corresponding axisymmetric sta-
tionary thermocapillary convection drastically increases. Fig-
ure 4 shows the streamlines and isothermals of the basic state
at the corresponding critical Marangoni number. For the
cases of small volume ratio, V=0.60 for instance, the flow
field consists of a single vortex with the vortex core close to
the hot corner. When the volume ratio gets larger, V=0.73
for instance, the vortex core shifts towards the hot corner due
to the development of a weak secondary vortex in the cold
corner. When the volume ratio further increases till the tran-
sition to the case of convex free surface, V=1.10 for in-
stance, the single-vortex flow pattern resumes while the vor-
tex core shifts downwards and outwards to the center of the
liquid bridge due to the increasing domain of the liquid col-
umn. The convective heat transfer plays a dominant role in
liquid bridges of Pr=68.6, and thermal boundary layer is
developed in the neighbor region of the hot end while the
isotherms in the cold corner is compressed. Note that in the
parameter range studied, the critical azimuthal wave number
of the oscillatory thermocapillary convection remains m=1.
According to the study on cylindrical liquid bridges [10], the
critical azimuthal wave number m of the oscillatory ther-
mocapillary convection decreases with the increasing Pr
number of the fluid, e.g., in a liquid bridge of unitary aspect
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FIG. 4. Streamlines (solid lines at right half) and isotherms
(solid lines at left half) of the basic state and velocity disturbance
(vectors) at the corresponding critical Marangoni number for liquid
bridge of (I'=1.0, Pr=68.6). (a) V=0.6, Ma.=1.86 X 10% (b) V
=0.68, Ma,=1.39X 10°. (c) V=0.73, Ma,=2.64 X 10%, (d) V=0.8,
Ma,=1.44X10%. (e) V=0.9, Ma,=7.97 X 10%, and (f) V=1.1, Ma,
=3.91 X 10%

ratio, the critical azimuthal wave number changes from m
=2 to m=1 around Pr=28. Similarly, for liquid bridges of
Pr=68.6 in the present study, the critical azimuthal wave
number of m=2 does not occur.

For a deep insight into the energy transfer between the
basic state and the disturbance of the thermocapillary con-
vection, Fig. 5 shows the kinetic and “thermal” energy bal-
ances at the corresponding critical Marangoni numbers,
which are normalized by the mechanical and thermal dissi-
pation, respectively. In the kinetic-energy balance, the con-

V=0.6, Ma =1.86x10*

V=0.68, Ma =1.39x10° V=0.73, Ma =2.64x10°

1.2 1.2 1.2
1 1 1
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FIG. 5. Energy equilibrium of the disturbances for liquid bridge
of ('=1.0, Pr=68.6)
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FIG. 6. Distribution density j, of term J, (right half), and j, of term J, (left half), in the “thermal energy” balance of disturbances for
liquid bridge of (I'=1.0, Pr=68.6). (a) V=0.6, Ma,=1.86x 10*, (b) V=0.68, Ma,=1.39 X 10°, (c) V=0.73, Ma,=2.64 X 10°, (d) V=0.8,
Ma,=1.44X 10, (e) V=0.9, Ma,=7.97 X 10%, and (f) V=1.1, Ma,=3.91 X 10*.

tribution from interaction between the stress tensor of the
basic flow and the velocity disturbance (1) is negligible. The
stabilizing effect is solely from the mechanical dissipation
while the dominating destabilizing effect is from the work
related to the thermocapillary force induced by the tempera-
ture disturbance on the free surface (M). Among its compo-
nents, the contribution to the kinetic energy is mainly from
(M ) associated with the work done by the azimuthal ther-
mocapillary force in the cases of small volume ratios while
(M) associated with the work done by the axial thermocap-
illary force becomes dominant in the cases of large volume
ratios. On the other hand, the “thermal” energy balance is the
emphasis of the investigation on liquid bridges of high-Pr
fluids [3]. Figure 6 also shows the contours of j, and j, in the
meridian plane of 6={0,w}. For the case of V=0.60, j, is
positive in most region of the liquid column and negative in
the vicinity of the hot corner while j, is weak in magnitude.
Therefore, the destabilizing effect is mainly from the energy
transfer to the temperature disturbance by the convective
transport of the basic radial temperature distribution through
the radial velocity disturbance (J,) while the energy transfer
by the convective transport of the axial temperature distribu-

tion through the axial velocity disturbance (J,) is weak (see
Fig. 5). With the increasing volume ratio, the negative com-
ponent of j, in the vicinity of the hot corner gets intensive, so
do the positive components of j, in the vicinity of the hot and
cold corners. It results in the comparable contributions of J,
and J, to the destabilizing effect. With the further increasing
volume ratio into the gap region, an extra region of negative
J, occurs near the center of the liquid column and splits the
region of positive j, into two parts. Since the development of
the negative components of j,, especially the one in the vi-
cinity of the hot corner, the general contribution of J, to the
destabilizing effect on the thermocapillary convection gets
weak, even reverses to the stabilizing effect for the case of
V=0.73. On the other hand, the positive components of j,
extends to the center of the liquid column and gets intensive,
therefore, the general contribution of J, to the destabilizing
effect becomes dominant instead of J,. When the volume
ratio gets beyond unit, V=1.10 for instance, the significant
shrinking of the major positive components of j, to the hot
and cold corners results in the comparable general contribu-
tions of J, and J, to the destabilizing effect again.
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FIG. 7. Critical Marangoni number versus volume ratio for lig-
uid bridge of (I'=1.6, Pr=68.6).

Figure 7 shows the dependency of the critical Marangoni
number (listed in Table III) on the volume ratio for the liquid
bridge of I'=1.6. It can be seen that with the increasing
volume ratio, the marginal instability boundary also consists
of the increasing branch and the decreasing branch, and a
strongly stabilized gap region approximately exists in the
range of volume ratios from 0.8 to 1.0. Compared to the case
of I'=1.0, the increasing branch is with a much flattened
slope, and the gap region is broader and shifts to the larger
volume ratio. Figure 8 shows the streamlines and isothermals
of the basic state at the corresponding critical Marangoni
number. Due to the relatively large aspect ratio, the flow field
generally consists of two vortexes till the cases with large
volume ratio implying the decreasing effect aspect ratio. It is
worthy to be noted that a unique axisymmetric oscillatory
thermocapillary convection with the critical azimuthal wave
number of m=0 dominates the left sub-branch of the mar-
ginal instability boundary in the gap region while the critical
azimuthal wave number for the rest cases is m=1. Figure 9
shows the corresponding distributions of the velocity distur-
bances on the horizontal cross section at z=g with a time lag
of half oscillation period indicating the axisymmetric oscil-
lation mode without any azimuthal velocity disturbance.

Similar to the case of I'=1.0, in the kinetic-energy bal-
ance (see Fig. 10), the major contribution to the destabilizing
effect is from (M y) associated with the azimuthal thermocap-
illary force for the cases of small volume ratios and instead
from (M) associated with the axial thermocapillary force
becomes dominant with the increasing volume ratio. On the
other hand, in the “thermal” energy balance, the contribution
to the destabilizing effect by the energy transfer to the tem-
perature disturbance by the convective transport of the basic
radial temperature distribution through the radial velocity
disturbance (J,) overwhelms the energy transfer by the con-
vective transport of the basic axial temperature distribution
through the axial velocity disturbance (J,). This situation re-
mains until the volume ratio increases into the gap region
where the contribution of J, to the destabilizing effect grows
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FIG. 8. Stream lines (solid lines at right half), isotherms (solid
lines at left half) of the basic state and velocity disturbance (vec-
tors) at the corresponding critical Marangoni number liquid bridge
of (F'=1.6, Pr=68.6). (a) V=0.6, Ma,=6.86 X 10°, (b) V=0.75,
Ma,=1.00X 10*, (c) V=0.8, Ma,=1.77 X 10% (d) V=0.83, Ma,
=521Xx10% (e) V=09, Ma,=5.21X10*% and (f) V=1.1, Ma,
=2.92 X 10%

rapidly and becomes dominant instead of J,. When the vol-
ume ratio further increases beyond unit, the contributions of
J, and J, to the destabilizing effect become comparable.

IV. CONCLUSIONS

In liquid bridges of 5cst silicon oil (I'=1.0 and I'=1.6),
the transition of thermocapillary convection from the axi-
symmetric stationary flow to oscillatory flow is closely de-

-1

/
-0.5 //
1 0.5

= -0. 0 0.5 1

FIG. 9. Disturbance velocity on the horizontal plane at z=g for
liquid bridge of (I'=1.6, Pr=68.6, and V=0.83) at Ma,.=5.21
X 10* (a) t=T/2 (b) t=T.
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FIG. 10. Energy equilibrium of the disturbances for liquid
bridge of (I'=1.6, Pr=68.6).

pendent on the volume ratio of liquid bridge. With the in-
creasing volume ratio, the marginal instability boundary
consists of the increasing branch and the decreasing branch
with a gap region between them where the critical Ma-
rangoni number of the corresponding axisymmetric station-
ary flow increases drastically. Note that for the case of I’
=1.6, the gap region is relatively broader and shifts to the
large volume ratio, and a unique oscillation mode of the
thermocapillary convection with m=0 dominates the left
subregime of the marginal instability boundary in the gap
region.

The kinetic and “thermal” energy balances between the
basic state and the disturbance of the thermocapillary con-
vection are also volume-ratio dependent at the corresponding
critical Marangoni number. The kinetic energy of the veloc-
ity disturbance is from the work done by the thermocapillary
forces induced by the temperature disturbance on the free
surface while the “thermal” energy of the temperature distur-
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bance is from the basic thermal field through the convective
transport by the velocity disturbance. In general, the energy
of the disturbances is mainly from the basic thermal field: the
velocity disturbance transports the energy from the basic
thermal field to the temperature disturbance field, and the
temperature disturbance on the free surface induces the ther-
mocapillary forces which do work on the flow disturbance
field. In this way, portion of the energy is transported from
the temperature disturbance field to the velocity disturbance
field, which enhances the above procedure, and finally the
disturbances get intensive to provoke the instability. More-
over, the convective transport of the energy from the basic
thermal field to the temperature disturbance by the velocity
disturbance can be decomposed into two components, the
one associated with the radial velocity disturbance (J,) and
the other one associated with the axial velocity disturbance
(J.). The destabilizing effect in the “thermal” energy balance
is mainly from J; in the range of small volume ratios while it
is mainly from J, in the stabilized gap region. The destabi-
lizing effect is from both J; and J, in the range of large
volume ratios. The hydrothermal wave instability suggested
[12,13] in an infinite horizontal liquid film with return basic
flow comes from the convective transport of the energy from
the basic flow induced vertical temperature field to the tem-
perature disturbance by the vertical velocity disturbance. If
the same mechanism is applicable to the thermocapillary
convection in the liquid bridge, the instability should be from
J:.. In present study, the relative importance of J; to J,, how-
ever, is volume-ratio dependent. Therefore, due to the rela-
tive complexity of the basic thermocapillary convection in
the liquid bridge, the corresponding instability mechanism is
intricate and requires further investigations.
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