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We carry out systematic and high-resolution studies of dynamo action in a shell model for magnetohydro-
dynamic �MHD� turbulence over wide ranges of the magnetic Prandtl number PrM and the magnetic Reynolds
number ReM. Our study suggests that it is natural to think of dynamo onset as a nonequilibrium first-order
phase transition between two different turbulent, but statistically steady, states. The ratio of the magnetic and
kinetic energies is a convenient order parameter for this transition. By using this order parameter, we obtain the
stability diagram �or nonequilibrium phase diagram� for dynamo formation in our MHD shell model in the
�PrM

−1 ,ReM� plane. The dynamo boundary, which separates dynamo and no-dynamo regions, appears to have a
fractal character. We obtain a hysteretic behavior of the order parameter across this boundary and suggestions
of nucleation-type phenomena.
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I. INTRODUCTION

The elucidation of dynamo action is a problem of central
importance in nonlinear dynamics because it has implica-
tions for a variety of physical systems. Dynamo instabilities,
which amplify weak magnetic fields in a turbulent conduct-
ing fluid, are believed to be the principal mechanism for the
generation of magnetic fields in celestial bodies and in the
interstellar medium �1–7�, and in liquid-metal systems
�8–13� studied in laboratories. In these situations the kine-
matic viscosity � and the magnetic diffusivity � can differ by
several orders of magnitude, so the magnetic Prandtl number
PrM�� /� can either be very small or very large, e.g., PrM
�10−2 at the base of the Sun’s convection zone, PrM�10−5

in the liquid-sodium system, and PrM�1014 in the interstel-
lar medium. This Prandtl number is related to the Reynolds
number Re=UL /� and the magnetic Reynolds number ReM
=UL /� that characterize the conducting fluid; here L and U
are typical length and velocity scales in the flow; clearly
PrM=ReM /Re.

Two dissipative scales play an important role here; they
are the Kolmogorov scale �d ���3/4 at the level of Kolmog-
orov 1941 �K41� phenomenology �14�� and the magnetic-
resistive scale �d

M ���3/4 in K41�. For large Prandtl numbers,
i.e., PrM�1, �d

M ��d so the magnetic field grows predomi-
nantly in the dissipation range of the fluid until it is strong
enough to affect the dynamics of the fluid through the Lor-
entz force. This behavior is a characteristic of a small-scale
turbulent dynamo, in which dynamo action is driven by a
smooth dissipative-scale velocity field. In the initial stage of
growth, called the kinematic stage of the dynamo, the mag-
netic field is not large enough to act back on the velocity
field. Dynamo action can be obtained for values of ReM that
are large enough to overcome Joule dissipation; and the

dynamo-threshold value ReMb decreases as PrM increases
�15,16�. PrM�10−5 in liquid-metal flows �10,13,17� so they
lie in the small-Prandtl-number region, PrM�1, for which
the growth of the magnetic energy occurs initially in the
inertial scales of fluid turbulence, because �d��d

M; here the
velocity field is not smooth and the local strain rate is not
uniform: at the K41 level the turnover velocity of an eddy of
size � is v�����1/3, so the rate of shearing �v��� /����−2/3.

Direct numerical simulations �DNS� are playing an in-
creasingly important role in developing an understanding of
such dynamo action. Most DNS studies of MHD turbulence
�16,18–20� have been restricted, because of computational
constraints, either to low resolutions or to the case PrM=1;
small-scale dynamos with PrM�1 have also been studied via
DNS �7�. However, given the large range spanned by PrM in
the physical settings mentioned above, some recent DNS
studies of the MHD equations have started to explore the PrM
dependence of dynamo action; the range of PrM covered by
such pure DNS studies �16,21� is quite modest �10−2�PrM
�10�. To explore the dynamo boundary in the �PrM

−1 ,ReM�
plane over a large range of PrM, one recent study �16� has
used a combination of numerical methods, some of which
require small-scale models such as large-eddy simulations
�LES� or Lagrangian-averaged MHD �LAMHD�, and others,
such as a pseudospectral DNS, in which the only approxima-
tions are the finite number of collocation points and the finite
step used in time marching; yet another DNS study �22� has
introduced hyperviscosity of order 8 to study the low PrM
regime; by using this combination of methods these studies
have been able to cover the range 10−2�PrM�103 and to
obtain the boundary between dynamo and no-dynamo re-
gions but with fairly large error bars.

We have carried out extensive high-resolution numerical
studies that have been designed to explore in detail the
boundary between the dynamo and no-dynamo regimes in
the �PrM

−1 ,ReM� plane in a shell model for three-dimensional
MHD �23–26�. This shell model allows us to explore a much
larger range of PrM than is possible if we use the MHD
equations. Although our study uses a simple shell model, it
has the virtue that it can explore the boundary between dy-
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namo and no-dynamo regions in great detail without resort-
ing to the modeling of small spatial scales. Shell-model stud-
ies of dynamo action have also been attempted in Refs.
�24,27–29� but these have concentrated on aspects of the
dynamo problem that are different from those we consider
here.

Our study suggests that it is natural to think of the bound-
ary between dynamo and no-dynamo regimes in the
�PrM

−1 ,ReM� plane as a first-order phase boundary that is the
locus of first-order nonequilibrium phase transitions from
one nonequilibrium statistical steady state �NESS� to an-
other. The first NESS is a turbulent, but statistically steady,
conducting fluid in which the magnetic energy is negligibly
small compared to the kinetic energy; the second NESS is
also a statistically steady turbulent state but one in which the
magnetic energy is comparable to the kinetic energy. Indeed,
the ratio of the magnetic and fluid energies Eb /Eu turns out
to be a convenient order parameter for this nonequilibrium
phase transition since it vanishes in the no-dynamo phase
and assumes a finite nonzero value in the dynamo state. The
other intriguing result of our study is that the boundary be-
tween these phases is very intricate and might well have a
fractal character; this provides an appealing explanation for
the large error bars in earlier attempts to determine this
boundary �16,27�. The analogy with first-order transitions
that we have outlined above is not superficial. As in any
first-order transition we find that our order parameter shows
hysteretic behavior �30� as we scan through the dynamo
boundary by changing the forcing term at a nonzero rate. We
also find some evidence of nucleation-type phenomena: the
closer we are to the dynamo boundary, the longer it takes for
a significant magnetic field to nucleate and thus lead to dy-
namo action. We compare our results with earlier studies
such as Ref. �31�, which have suggested that dynamo action
occurs because of a subcritical bifurcation.

The remaining part of this paper is organized as follows:
in Sec. II we describe the shell model for MHD �23–25� and
the numerical method we employ. Section III is devoted to
our results and Sec. IV contains a concluding discussion.

II. MODELS AND NUMERICAL METHODS

To study dynamo action it is natural to use the equations
of magnetohydrodynamics �MHD�. In three dimensions the
MHD equations are

�u�

�t
+ �u� · ��u� = ��2u� − �p̄ +

1

4�
�b� · ��b� + f� , �1�

�b�

�t
= � � �u� � b�� + ��2b� , �2�

where � and � are the kinematic viscosity and the magnetic
diffusivity, respectively, the effective pressure p̄= p
+ �b2 /8��, and p is the pressure. For low-Mach-number
flows, to which we restrict ourselves, we use the incompress-
ibility condition � ·u��x� , t�=0; and � ·b��x� , t�=0.

As we have mentioned above, a DNS of the MHD equa-
tions poses a significant computational challenge, even on

the most powerful computers available today, if we want to
cover a large part of the �PrM

−1 ,ReM� plane and to locate the
dynamo boundary accurately. Therefore, one study �16� has
used a combination of LES, LAMHD, and DNS to obtain
this boundary. We employ a complementary strategy: we use
a simple shell model for MHD �23–25� that allows us to
carry out very extensive numerical simulations to probe the
nature of the dynamo boundary without using LES or
LAMHD.

Shell models comprise a set of ordinary differential equa-
tions with nonlinear coupling terms that mimic the advection
terms in and respect the shell-model analogs of the conser-
vation laws of the parent hydrodynamic equations in the in-
viscid, unforced limit �32,33�. For the case of MHD each
shell n is characterized by a complex velocity un and a com-
plex magnetic field bn in a logarithmically discretized Fou-
rier space with wave vectors kn; furthermore, there is a direct
coupling only between velocities and magnetic fields in near-
est and next-nearest-neighbor shells. The MHD shell model
equations �23,24� are

dun

dt
= − �kn

2un + i�An�un+1un+2 − bn+1bn+2� + Bn�un−1un+1

− bn−1bn+1� + Cn�un−2un−1 − bn−2bn−1��� + fn
u, �3�

dbn

dt
= − �kn

2bn + i�Dn�un+1bn+2 − bn+1un+2� + En�un−1bn+1

− bn−1un+1� + Fn�un−2bn−1 − bn−2un−1��� + fn
b, �4�

where � denotes complex conjugation, 1	n	N, with N the
total number of shells, the wave numbers kn=k02n, with k0
=2−4, and fn

u and fn
b the forcing terms in the equations for un

and bn, respectively. In our studies of dynamo action, we set
fn

b=0. The parameters An ,Bn , . . . ,Fn, are obtained by de-
manding that these equations conserve all the shell-model
analogs of the invariants of 3DMHD, in the inviscid un-
forced case, and reduce to the well-known Gledzer-Ohkitani-
Yamada �GOY� shell model �32,33� for fluid turbulence if
bn=0, ∀ n. In particular, to ensure the conservation of shell-
model analogs of the total energy ET=Eu+Eb
��1 /2��n�	un	2+ 	bn	2�, cross helicity HC��1 /2��n�unbn

�

+un
�bn�, and magnetic helicity HM ��n�−1�n	bn	2 /kn, in the

unforced and inviscid case, and to obtain the GOY-model
limit for the fluid, we choose

An = kn, Bn = − kn−1/2, Cn = − kn−2/2,

Dn = kn/6, En = kn−1/3, Fn = − 2kn−2/3. �5�

The only adjustable parameters are the forcing terms and �
and �. The ratio � /� yields the magnetic Prandtl number
PrM. The Grashof numbers yield nondimensionalized forces
�34� but, for easy comparison with earlier studies
�7,16,20,21,27,29�, we use the fluid and magnetic Reynolds
numbers whose shell-model analogs are, respectively, Re
=urms�I /�, where �I= ��un

2 /kn
2� / ��un

2 /kn� is the shell-model
integral scale, urms=
��un

2 /kn� /�0, �0=2� /k1, and ReM
=PrM Re.

We use the following boundary conditions:
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AN−1 = AN = B1 = BN = C1 = C2 = 0,

DN−1 = DN = E1 = EN = F1 = F2 = 0. �6�

We set N=30 and use a fifth-order Adams-Bashforth scheme
for solving the shell-model equations; i.e., for an equation of
the type

dq

dt
= − 
q + f�t� , �7�

we use

q�t + �t� = e−2
�tq�t − �t� +
1 − e−2
�t

24

�55f�t� − 59f�t − �t�

+ 37f�t − 2�t� − 9f�t − 3�t�� , �8�

where �t is the time step. We have found that this numerical
scheme works well for the integration of Eqs. �3� and �4� so
long as N�35 and Re�109. In all our calculations we use
�t=10−4. Characteristic time scales include the time scale for
diffusion ��=�0

2 /� and the large-eddy-turnover time �L
=�0 /urms, where �0�2� /k1 is the box-size length scale and
urms is the root-mean-square velocity.

The initial conditions we use are as follows: we first ob-
tain a statistically steady state for the GOY-shell-model
equations, which are obtained from Eq. �3� by setting all
bn=0; the forcing terms are chosen to be fn

u= f0�1+ i��n,1,
with f0=5.0�10−3 in all our runs, except ones in which we
study hysteretic behavior, and fn

b=0. We choose the GOY-
model shell velocities at time t=0 to be un=kn

−1/3 exp�i
n�,
with 
n a random phase distributed uniformly on the interval
�0,2��. To make sure we have a statistically steady state we
evolve the shell velocities un until t=5�105. This yields the
shell-model energy spectrum Eu�kn��	un	2 /kn that has the
K41 form �kn

−5/3 if we ignore intermittency corrections. We
now introduce a small seed magnetic field, which is such that
Eb�10−28, and then follow the temporal evolution of un and
bn that is given by Eqs. �3� and �4�.

III. RESULTS

Given the numerical scheme that we have described in the
previous section, we obtain the time series for un and bn from
the MHD-shell-model equations. An analysis of these time
series shows two types of NESSs. We refer to the first as the
no-dynamo state and to the second as the dynamo state.
These states have been found in several earlier studies such
as Refs. �7,16,18–21,27�. Our main goal is to explore in
detail the phase boundary between these two states. This can
be done most easily by the introduction of a dynamo order
parameter a natural candidate for which is the ratio Eb /Eu,
where the fluid and magnetic energies are, respectively, Eu

= 1
2�n	un	2 and Eb= 1

2�n	bn	2. Representative plots of this or-
der parameter are given as functions of time t in Fig. 1: the
blue dashed curve shows the evolution of Eb /Eu in the dy-
namo regime; note that here the dynamo order parameter
rises rapidly, fluctuates significantly for t /���2�10−4, and
finally reaches a statistical steady state with equipartition,
i.e., Eb /Eu�1. The red full curve in the inset of Fig. 1 shows

how Eb /Eu vanishes rapidly in the no-dynamo state. The
behavior of the dynamo order parameter is more complicated
than these two simple possibilities in the vicinity of the
phase boundary between dynamo and no-dynamo states as
shown by the green full curve in Fig. 1; Eb /Eu rises much
more slowly from zero than in the dynamo regime and then
it fluctuates significantly for a long time; the difficulty of
pinpointing the dynamo boundary is a consequence of these
fluctuations.

The time series for the dynamo order parameter are ob-
tained from those for Eu and Eb; representative plots for
these are shown, via red full lines and blue dashed curves,
respectively, in Figs. 2�a�–2�f� for a very large range of mag-
netic Prandtl numbers, namely, PrM=102, 1, 10−1, 10−2, 10−3,
and 10−4, respectively. The values of � are �a� 10−3, �b� 10−5,
�c� 10−6, �d� 10−5, �e� 10−5, and �f� 10−6; and the correspond-
ing values of the diffusion time scale ��=�0

2 /��2.52�108,
2.52�108, 2.52�108, 2.52�106, 2.52�105, and 2.52
�105, respectively. Clearly dynamo action occurs in Figs.
2�a�–2�d� but not in Figs. 2�e� and 2�f�. By obtaining many
such plots we can identify the dynamo boundary in the
�PrM

−1 ,ReM� plane as we will discuss later.
In the dynamo regime the shell-model kinetic and mag-

netic energy spectra defined, respectively, by Eu�kn�
�	un	2 /kn and Eb�kn��	bn	2 /kn evolve as shown in Fig. 3. In
particular, in Figs. 3�a�–3�c� for PrM=10−2, 1, and 102, re-
spectively, we show the evolution of Eb�kn� with time: the
curves with red stars, green diamonds, blue hexagons, cyan
circles, and magenta triangles are obtained, respectively, for
t=1, 5, 10, 15, and 100; the analogs of these plots for Eu�kn�
are given in Figs. 3�d�–3�f�. Note that the initial growth of
Eb�kn� occurs principally at large values of kn if PrM is large;
i.e., we have a small-scale dynamo; this growth of Eb�kn�
moves to low values of kn as PrM decreases; earlier studies
�19,27� have observed similar trends but not over the large
range of PrM we cover. As Eb�kn� grows, the velocity spectra
also change but much less than their magnetic counterparts
as can be seen by comparing Figs. 3�d�–3�f� with Figs.
3�a�–3�c�, respectively. In all these plots the curves with
black squares indicate Eu�kn� from the initial steady state for
the GOY shell model and the black lines with no symbols
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FIG. 1. �Color online� Representative plots of the dynamo order
parameter Eb /Eu versus time t /��, with �� the magnetic-diffusion
time, in the dynamo region �blue dashed curve�, near the dynamo
boundary �green full line�, and in the no-dynamo regime �red full
line in the inset�.
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show the K41 kn
−5/3 spectrum for comparison. From this line

we see that the NESS that is obtained, once dynamo action
has occurred, is such that both velocity and magnetic-field

energy spectra display a substantial inertial range with K41
scaling; these inertial ranges are not large enough, at least
near the dynamo boundary in our runs, for a reliable estima-
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FIG. 2. �Color online� Semi-log �base 10� plots of the kinetic �red full curve� and magnetic �blue dashed curve� energies versus time for
�a� PrM=102 and ReM=44 870; �b� PrM=1 and ReM=36 361; �c� PrM=10−1 and ReM=52 702; �d� PrM=10−2 and ReM=570; �e� PrM

=10−3 and ReM=57; and �f� PrM=10−4 and ReM=63. The values of � are �a� 10−3, �b� 10−5, �c� 10−6, �d� 10−5, �e� 10−5, and �f� 10−6; and the
magnetic-diffusion time ��=�0

2 /��2.52�108, 2.52�108, 2.52�108, 2.52�106, 2.52�105, and 2.52�105, respectively. Dynamo action
occurs in �a�–�d� but not in �e� and �f�.
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FIG. 3. �Color online� Log-log �base 10� plots showing the time evolution of the magnetic-energy spectrum Eb�kn� for representative
parameter values at which dynamo action occurs: �a� PrM=10−2 , �=10−7; �b� PrM=1, �=10−5; �c� PrM=102 , �=10−5; analogous plots for
kinetic-energy spectra are shown in �d�, �e�, and �f�, respectively. The curves with red stars, green diamonds, blue hexagons, cyan circles, and
magenta triangles are obtained, respectively, at t=1, 5, 10, 15, and 100; the dissipation scale �d�7.422�10−4 in �b�, �c�, �e�, and �f�; �d

�4.779�10−4 in �a� and �d�. Curves with black squares indicate velocity spectra before the seed magnetic field is introduced; the full black
line shows a k−5/3 spectrum for comparison.
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tion of multiscaling corrections to the −5 /3 exponent. If
PrM�1 then the scaling ranges in velocity and magnetic-
field spectra are comparable; as PrM decreases �increases�,
the scaling range for the magnetic spectrum decreases �in-
creases� relative to its counterpart in the velocity spectrum;
these trends are clearly visible in the representative plots in
Fig. 3.

We return now to the identification of the dynamo bound-
ary. A close scrutiny of the plots in Fig. 2 shows that the
initial growth of Eb is not monotonic. It is important, there-
fore, to set a threshold value of the magnetic energy Eb

c: for
a given pair of values for PrM and ReM, if Eb�t��Eb

c for t
��c, where �c is the time at which the threshold value is
crossed, we conclude that dynamo action occurs; if not, then
there is no dynamo formation. By examining the growth of
Eb�t� we can, therefore, map out the dynamo boundary in the
�PrM

−1 ,ReM� plane. The crossing time �c depends on PrM and
ReM.

Note that, if �c�PrM,ReM�� tmax, the length of time for
which we integrate Eqs. �3� and �4�, we would conclude,
incorrectly, that no dynamo action occurs for this of values
of PrM and ReM. In other words the dynamo boundary de-
pends on tmax; we have checked this explicitly in several
cases.

An important questions arises now: is there a well-defined
dynamo boundary in the �PrM

−1 ,ReM� plane as tmax→�? Ear-
lier studies �7,16,20� have began to answer this question.
They find that, if tmax���, then a well-defined dynamo
boundary is obtained. However, since they work with the
MHD equations the error bars on this boundary are large and
the range of values of PrM and ReM rather limited.

The simplicity of our model allows us to carry out a sys-
tematic study of the dynamo boundary. We find that, at least
in our shell model for MHD, we can obtain an asymptotic
dynamo boundary �see Fig. 4� if we choose Eb

c =0.9Eu; i.e.,
we conclude that dynamo action has occurred if Eb�t� ex-
ceeds 0.9Eu; furthermore, if Eb�t� falls below 10−35 we say
that dynamo action will never be achieved. We continue the

temporal evolution of Eqs. �3� and �4� until one of these
criteria is satisfied. For all values of PrM and ReM that we
have used we find that this tmax, the run time required to
decide whether or not dynamo action occurs, is several or-
ders of magnitude lower than ��. We have also checked for
several representative pairs of values for PrM and ReM that
runs of length tmax��� do not change our conclusions about
such dynamo action.

The dynamo boundary that we obtain is shown in the
stability diagram of Fig. 4. The red circles indicate parameter
values at which we obtain dynamo action whereas green
stars are used for values at which no dynamo occurs. The
most important result that follows from this stability diagram
is that the boundary between dynamo and no-dynamo re-
gimes is very complicated. It seems to be of fractal-type,
with an intricate pattern of fine dynamo regions interleaved
with no-dynamo regimes. This is especially apparent in the
inset of Fig. 4, which shows a detailed view of the stability
diagram in the vicinity of the dynamo boundary. Earlier stud-
ies seem to have missed this fractal-type nature of the bound-
ary because they have not been able to examine the transition
in as much detail as we have for our shell model. However,
fractal-type boundaries between different dynamical regimes
have been suggested in other extended dynamical systems;
recent examples include the transition to turbulence in pipe
flow �35� and different forms of spiral-wave dynamics in
mathematical models for cardiac tissue �36�. In dynamical
systems a fractal basin boundary often separates the basin of
attraction of a strange attractor from the basin of attraction of
a fixed point or limit cycle; thus, a small change in the initial
condition can lead either to chaos, associated with the
strange attractor, or to the simple dynamical behaviors asso-
ciated with fixed points or limit cycles. The shell-model
equations we consider here are 4N-dimensional dynamical
systems, where N is the number of shells �the shell velocities
and magnetic fields are complex�; the complete basin bound-
aries for such a high-dimensional dynamical system �we use
N=30 so 4N=120� are not easy to determine; however, it is
reasonable to assume that a complex, fractal-type boundary
separates the basins of attraction of the dynamo and no-
dynamo regimes, both of which display turbulence �and are,
we presume, governed by strange attractors that lead to spa-
tiotemporal chaos�. In our study we do not change the initial
condition; instead, we change the dynamical system by
changing � and � and hence ReM and PrM

−1. This too affects
the long-time evolution of the system as sensitively as does a
change in the initial conditions because the fractal basin
boundary itself changes with these parameters. Indeed, Ref.
�35� has found this for the transition to turbulence and the
edge of chaos in pipe flow; and Fig. 3 of Ref. �35� shows that
the border in parameter space between the laminar and tur-
bulent regions is very complicated in much the same way as
the dynamo boundary is in our study. Furthermore, in Ref.
�36�, it has been shown that the dynamics of spiral waves of
electrical activation depend sensitively on inhomogeneities
in partial-differential-equation models for ventricular tissue;
changes in the positions of these inhomogeneities in models
for cardiac tissue correspond in our shell model to changes in
parameters such as PrM and ReM. In Fig. 4 we have drawn
two black dashed lines; the region above the upper one of

1 2 3 4 5 6

x 10
4

2.4

2.6

2.8

3

3.2

3.4

3.6

Pr
M
−1

lo
g

10
R

e M

4 4.1 4.2 4.3 4.4

x 10
4

2.7

2.8

2.9

3

Dynamo

No Dynamo

FIG. 4. �Color online� The dynamo stability diagram in the
�PrM

−1 ,ReM� plane: red circles indicate dynamo action; green stars
are used if no dynamo occurs. The boundary between the two re-
gions shows an intricate, interleaved pattern of fine, dynamo, and
no-dynamo regimes �see inset for a detailed view�. We have drawn
two black dashed lines; the region above the upper one of these
lines is predominantly in the dynamo regime; the area below the
lower one of these lines is principally in the no-dynamo regime.

DYNAMO ONSET AS A FIRST-ORDER TRANSITION:… PHYSICAL REVIEW E 81, 036317 �2010�

036317-5



these lines is predominantly in the dynamo regime; the area
below the lower one of these lines is predominantly in the
no-dynamo regime. These two lines give an approximate in-
dication of the error bars we might expect in the determina-
tion of the dynamo boundary in a study that cannot scan
through points in the �PrM

−1 ,ReM� plane as finely as we have.
From Fig. 1 we see that the order parameter Eb /Eu jumps

from a very small value in the no-dynamo region to a value
�1 in the dynamo state. It is natural, therefore, to think of
the dynamo boundary as a nonequilibrium first-order bound-
ary. In an equilibrium first-order transition the order param-
eter shows hysteretic behavior if we scan through a first-
order boundary by, say, changing, at a finite rate, the field
that is conjugate to the order parameter �30�. It is natural to
ask if we see such hysteretic behavior at the dynamo bound-
ary. Indeed, we do, as we show in Fig. 5 where we cross the
dynamo boundary by changing the amplitude f0 of the forc-
ing term in Eq. �3�. Figure 5 shows representative plots of
the dynamo order parameter Eb /Eu versus f0; these illustrate
the hysteretic behavior that occurs when f0 is cycled at a
finite nonzero rate across the dynamo boundary; here PrM
=10−4 and �=10−5. As f0 increases, Eb /Eu follows the blue
full line: it increases and then saturates; fluctuations are su-
perimposed on these mean trends. If we now decrease f0,
then Eb /Eu follows the red dotted line and not the blue one;
i.e., we have a hysteresis loop. The faster the rate at which
we change f0 the wider is the hysteresis loop as is known
from studies of hysteresis in spin systems �30�. Here we
increase f0 in steps of 1.0�10−3 from an initial value of
1.0�10−3; we keep f0 constant for a time period 10 in Fig.
5�a� and 1 in Fig. 5�b�; the red dotted-line segments of the
hysteresis loops are obtained by decreasing f0 at the same
rates as for the blue full-line segments; the loop in the former
case is narrower than in the latter.

Given the analogy with first-order transitions that we have
outlined above, it is natural to ask if nucleation-type phe-
nomena �37� are also associated with dynamo formation. It
would be interesting to check this in a DNS of the MHD
equations. At the level of our shell model, the best we can do
is to try to see if, for a given PrM, when we obtain a dynamo,
the time required for dynamo action �c diverges as we ap-
proach the dynamo boundary. Our data are consistent with an

increase in �c as we approach this boundary from the dy-
namo side as shown by the representative plots in Fig. 6.
However, it is hard to fit a precise form to the behavior of �c
near the dynamo boundary partly because of the complicated
nature of this boundary which makes it difficult to estimate
the position ReMb reliably �the plot in Fig. 6 is motivated by
the form of Eq. �27� in Ref. �37��. The value of �c is not
averaged in our simulations. It can depend on the specific
realization, which follows from the initial condition, and on
the threshold Eb

c. However, the main point we are making
here is a qualitative one: as we approach the dynamo bound-
ary from the dynamo side, the time �c required for dynamo
action grows rapidly.

IV. CONCLUSIONS

We have presented a detailed study of dynamo action in a
shell model of turbulence �23–25�. Our study has been de-
signed to explore the nature of the boundary between dy-
namo and no-dynamo regimes in the �PrM

−1 ,ReM� plane over a
much wider range of PrM than has been attempted in earlier
numerical studies. The dynamo boundary emerges as a first-
order nonequilibrium phase boundary between one turbulent
NESS and another �38�. This point of view is implicit in
earlier work, e.g., in studies of the Kazantsev dynamo �39� or
in studies that view dynamo generation as a subcritical bifur-
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cation �31,40,41�. One of these studies �31� has remarked
that when dynamo action “…is obtained in a fully turbulent
system, where fluctuations are of the same order of magni-
tude as the mean flow…the traditional concept of amplitude
equation may be ill-defined and one may have to generalize
the notion of “subcritical transition” for turbulent flows…”
We believe that the natural generalization is the nonequilib-
rium first-order transition we suggest above. We have ex-
plored the explicit consequences of such a view in far greater
detail than has been attempted hitherto. In particular, the ra-
tio Eb /Eu is a convenient order parameter for this nonequi-
librium phase transition; it shows hysteresis across the dy-
namo boundary like order parameters at any first-order
transition; and nucleation-type phenomena also seem to be
associated with dynamo formation. Last, and perhaps most
interesting, we find that the dynamo boundary seems to have
a fractal character; this provides a natural explanation for the
large error bars in earlier attempts to determine this boundary
�7,16,27�. Furthermore, this fractal-type boundary might well
be the root cause of magnetic-field reversals discussed, e.g.,
in Refs. �29,42�.

It is important to check, of course, that our shell-model
results carry over to the MHD equations. This requires large-
scale DNS that might well be beyond present-day computing
capabilities if we want to explore issues such as the possible
fractal nature of the dynamo boundary. However, analogs of
the hysteretic behavior we mention above have been ob-
tained in DNS studies of the MHD equations �31,40,41�;
hysteresis has also been seen in a numerical simulation that
includes turbulent convection �43�. In some of these studies
hysteretic behavior is obtained by changing the viscosity and
thus the magnetic Prandtl number. We have obtained hyster-
esis by changing the forcing; this change in forcing might be
easier to effect in experiments than a change in the viscosity
or magnetic diffusivity.

To the best of our knowledge, earlier studies have not
noted the increase in the dynamo-formation time �c as the
dynamo boundary is approached from the dynamo side. We
have suggested that this is akin to the increase in the time
required to form a critical nucleus as we approach a first-
order boundary �37�. It would be interesting to see if such an
increase in �c can be obtained in DNS studies of dynamo
formation with the MHD equations. It is worth noting here
that some DNS studies �16� have suggested that simulation
times comparable to the diffusion time scale �� are required
to confirm dynamo formation; by contrast our shell-model
study yields dynamo action on a much shorter time �c, which
increases as we approach the dynamo boundary. Perhaps the
large simulation times required for dynamo action in full

MHD simulation might have arisen because these simula-
tions have been carried out in the vicinity of the dynamo
boundary.

To settle completely whether the dynamo boundary is of
fractal type, very long simulations might be required to make
sure that the apparent fractal nature is not an artifact of long-
lived metastable states. To make sure that our calculations do
not suffer from such an artifact, we have carried out very
long runs for representative points in the region of the dy-
namo boundary in Fig. 4; we have found that these long runs
do not change our results. Furthermore, it is useful to check
whether, instead of one dynamo boundary, there is a se-
quence of transitions, with more and more complicated tem-
poral behaviors for the order parameter, as has been seen in
the turbulence-induced melting of a nonequilibrium vortex
crystal �44�. We have not found any conclusive evidence for
this but, in the vicinity of the dynamo boundary, the order
parameter can oscillate for fairly long times �see, e.g., the
green full curve in Fig. 1�. To decide conclusively whether
these oscillations characterize a new nonequilibrium oscillat-
ing state, different from the simple dynamo and no-dynamo
NESSs we have mentioned, requires extensive numerical
studies that lie beyond the scope of this paper.

In equilibrium statistical mechanics different ensembles
are equivalent; in particular, we may determine a first-order
phase boundary by using either the canonical or the grand-
canonical ensemble. However, such an equivalence of en-
sembles does not apply to transitions between different
NESSs; examples may be found in driven diffusive systems
�45� or in the turbulence-induced melting of a nonequilib-
rium vortex crystal �44�. Given that the dynamo boundary
separates two turbulent NESSs, we might expect that this
boundary might depend on precisely how the system is
forced. Evidence for this exists already: for example, the
dynamo boundary depends on whether a stochastic external
force is used �7� or whether a Taylor-Green force is used
�16�; furthermore, this boundary is different if the flow is
helical �21�, as in most astrophysical dynamos. We hope our
study of dynamo formation in a shell model for MHD will
stimulate both DNS and experimental studies designed to
explore the first-order nature of the dynamo transition.
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