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Two-dimensional point singularity model of a low-Reynolds-number swimmer near a wall
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This paper studies a simple two-dimensional model of a swimmer at low-Reynolds-number near a no-slip
wall by utilizing methods of complex analysis. The swimmer is propelled by purely tangential surface defor-
mations and is modeled by moving point singularities. The nonlinear dynamics of the swimmer is formulated
explicitly, and its motion near the wall is fully characterized. The results show qualitative agreement with
predictions of three-dimensional models and with motion experiments on a robotic swimmer. The success and
simplicity of the model suggest that it will provide a simple way to study the dynamics of low-Reynolds-

number swimmers in more complicated geometries.

DOI: 10.1103/PhysRevE.81.036313

I. INTRODUCTION

The locomotion of micro-organisms [1,2] and of tiny ro-
botic swimmers [3,4] is governed by low-Reynolds-number
hydrodynamics, where viscous effects dominate and inertial
effects are negligible [5-7]. A vast majority of the literature
on the theory of low-Reynolds-number locomotion studies
the case of unbounded fluid domain [8—10]. However, in
reality, micro-organisms often swim in confined environ-
ments and interact hydrodynamically with the boundary.
While the effects of a boundary on inert rigid bodies in vis-
cous fluid were widely studied [11,12], the behavior of mi-
croswimmers near a boundary was studied analytically only
for specific scenarios [13]. Nevertheless, experimental obser-
vations indicate that the presence of a boundary significantly
affects the dynamic behavior and motion trajectories of
swimming micro-organisms. Examples are E. coli swimming
in circles above a flat surface [14], accumulation of bacteria
and sperm cells near boundaries [15,16], shear-induced peri-
odic orbits of bacteria and larvae [17,18], and interesting
“dancing” motion of pairs of Volvox algae [19]. Some of
these phenomena were verified using numerical simulation
[20-22], but only few physical explanations have been pro-
posed. The work of Berke er al. [16] studies the hydrody-
namic attraction of swimming micro-organisms to surfaces
by modeling the swimmer as a force dipole singularity. This
simple model captures the attraction of the swimmer but pre-
dicts crashing into the surface in finite time in contrast to the
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experimental findings. Moreover, the analysis in [16] did not
study the dynamics of swimming near a boundary and the
resulting trajectories. The work of Zargar et al. [23] studies
the influence of a wall on the theoretical model of the three-
linked-spheres swimmer [9]. The average dynamics in the
limit of small strokes is formulated for the cases of very
large and very small distances from the wall. It is shown that
the swimmer can move parallel to the wall, and some argu-
ments are made regarding the dynamic stability of these so-
lutions. In the work [24], the dynamics of low-Reynolds-
number swimming near a plane wall is studied for simple
theoretical models of swimmers propelled by rotating
spheres. In particular, the motion of a swimmer consisting of
two rotating spheres connected by a thin rod [Fig. 1(a)] was
analyzed. It was found that when the spheres are rotated in
unequal velocities, the swimmer has a solution of steady
translation parallel to the wall. This solution is marginally
stable, and under small perturbation, the swimmer exhibits
oscillatory motion along the wall, as shown in Fig. 1(b). The
results were recently verified experimentally on a macroscale
robotic prototype swimming in a highly viscous fluid [25].
Propulsion was generated by rotating two cylinders via DC
motors which were mounted on a floatation system in order
to balance the gravitational load and keep the motion in a
horizontal plane [Fig. 1(d)]. Motion of the swimmer was
measured and recorded, showing remarkable qualitative
agreement with the theoretical predictions [Fig. 1(c)].
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FIG. 1. (Color online) (a) The two-sphere swimmer model from [24]. (b) Simulation of the two-sphere swimmer near a wall.
(c) Experimental measurements of motion of the swimmer from [25] near a wall. (d) The robotic two-cylinder swimmer prototype from [25].
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In this paper we study the dynamics of a simple swimmer
model near an infinite no-slip wall in two dimensions by
utilizing methods of complex analysis. Such techniques were
used previously for analyzing planar axisymmetric swimmer
models in unbounded fluid domains [8,26,27]. The justifica-
tion for using a two-dimensional model lies in the fact that in
many of existing theoretical models of low-Reynolds-
number locomotion in three dimensions, the swimmer pos-
sesses symmetry about its sagittal (median) plane, e.g.,
[24,28], or even about its longitudinal axis, e.g., [9,10,27], so
that its motion is confined to a plane even though the flow
around it is fully three-dimensional. Therefore, it is expected
that a two-dimensional model will correctly capture the es-
sential ingredients and qualitative dynamic behavior of such
swimmers. We focus here on a particular propulsion mecha-
nism called treadmilling, in which the boundary of the swim-
mer undergoes purely tangential surface deformations while
the shape of the swimmer remains fixed. Similar models
were used in the literature as a simplification to the synchro-
nized action of short cilia on the surface of motile cells such
as Opalina and Volvox [29-31]. The advantage of this sim-
plification is that it avoids the complications associated with
the changing shape of the swimmer while focusing solely on
its hydrodynamic interaction with the boundary.

II. COMPLEX VARIABLE FORMULATION

We begin by reviewing the complex variable formulation
of Stokes flow in two dimensions. Stokes equations that de-
scribe the motion of an incompressible viscous fluid are
given by —=Vp+7V?>v=0, V-v=0, where v is the fluid ve-
locity field, p is the pressure distribution, and # is the fluid
viscosity. In two dimensions, these equations can be refor-
mulated by introducing the notion of a stream function
(x,y), such that the x,y components of the fluid velocity
are given by v,=dy/dy, v,=—di/dx, and Stokes equations
then reduce to the biharmonic equation V#=0. Using com-
plex coordinates z=x+1iy, it can be shown [32,33] that the
general solution for ¢ is given by

=Im[Zf(2) + g(2)], (1)

where f(z) and g(z), called Goursat functions, are analytic
functions that are allowed to have isolated singularities in
order to model various flows of interest. The velocity field is
then given in terms of f(z) and g(z) as

byt ivy=—2ii—l§ S P B o M)

where f’(z)=df/dz. The fluid pressure p and vorticity w are
related to f(z) via [32]

p=4uRe[f' (2)], w=—4Im[f'(2)]. (3)

To solve a Stokes flow problem in two dimensions, it is
enough to determine the two analytic functions f(z) and g(z).
This is usually done by making use of the boundary condi-
tions.

The usual singular solutions of Stokes flow [33,34]
(Stokeslets, stresslets, rotlets, etc.) manifest themselves
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within this complex variable formulation as singularities of
the two functions f(z) and g(z). For example, consider a
concentrated force whose magnitude and angle are repre-
sented by the complex number w, which is applied at a given
point z,. The resulting flow, which is called a Stokeslet at z,
[33], is associated with a solution where f(z) and g'(z) are
given by

MZo

f@)=pIn(z-2z0), g'(2)=—pIn(z—-zp) - (4)

Z— 20

Using Eq. (2), the resulting velocity field is given by

(z = z0)*

vo+iv,=—plnjz—zo)* + =zl

Note that the singularities in g'(z) were chosen according to
those in f(z) in order to ensure that the velocity field is both
single-valued and logarithmically singular at z; [i.e., the non-
logarithmic term in g’(z) must be added to ensure that the
velocity does not blow up like 1/|z—zy|]. For example, the
(x,y) components of the velocity field due to a unit force
applied at (xy,y,) in the x direction are given by

2(x = xo)?
vx,y)==2Inr+ (—20),
-

_ 2(x = xp)(y = yo)
vy(x,y) = 2z ,

where r=\(x—x)?+(y—yo)% In the far field r— o, the ve-
locity field becomes unbounded and this feature is at the
heart of the familiar Stokes paradox [35]. Next, the choice of

f(2),8'(2) as
M2y
(z- 20)2

flz)= ,

Z—2

g'(x)=

is called a stresslet at zj. In this case, g’'(z) was imposed by
the choice of f(z) in order to ensure that the velocity field is
singular like 1/|z—z,| (rather than 1/|z—z|?). Physically, this
case corresponds to the flow due to a limiting case of a pair
of point forces drawing infinitesimally close together, with
equal and opposite strengths tending to infinity at a rate in-
versely proportional to their separation.

Note, however, that g(z) can additionally have its own
singularities, independently of those imposed by the choice
of f(z). For example, g(z)=c In(z—z,), where ¢ € R is called
a source (or sink) at z, while if ¢ € iR then it is called a
rotlet, which corresponds to a rotational torque applied at the
point z. A simple pole of g(z) is an irrotational dipole sin-
gularity, a double pole of g(z) is an irrotational quadrupole,
and so on. Any swimmer in a Stokes flow will locally gen-
erate a flow that can equivalently be modeled by some dis-
tribution of Stokes flow singularities (positioned inside or on
the boundary of its body). This equivalent singularity distri-
bution is generally a complicated function of the swimmer’s
size and shape, its chosen swimming protocol, and its local
effect on the fluid around it. In many cases, a complicated
swimmer is approximated by an equivalent singularity de-
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scription, which consists of a small number of moving point
singularities [16,19,30], as we shall do here.

In the presence of a no-slip wall, the solution associated
with each point singularity must be modified so that the ve-
locity field satisfies the no-slip boundary condition on the
wall. We now show how this is done in the complex formu-
lation of two-dimensional Stokes flow in analogy to the clas-
sical method of “image system” in three dimensions [34]. In
the case where the wall is located at Re(z) =0, the key idea is
that a point singularity at z, must be augmented by singulari-
ties at the image point z,. Then, using the expression for the
fluid velocity in Eq. (2) and requiring that it vanishes on the
wall Z=z, one obtains —f(z)+zf'(z)+g’(z)=0. This implies
that

g2 =f2)-7"(2), (5)
which is a functional equation determining g’(z) from f(z)
and its conjugate function f(z), defined as f(z)=f(Z). For
example, we now show how to find the image singularity of

a Stokeslet of strength w at position z,; above a no-slip wall.
Let

f@D=pn(z—zp) + N In(z—7) + < (6)
Z—20
where N\ and € are constants to be determined. This gives the
required Stokeslet at z, with both a Stokeslet and a stresslet
at the image point z,. Substitution of Eq. (6) into relation (5)
implied by the no-slip condition on the wall gives

g () =jIn(z—7Z9) + N\ In(z — z0) +
Z— 20
z Az €z
B + —.
z-29 z2-2 (z2-70)
We know from above that near z,, the function g’(z) must

have the local behavior given by Eq. (4). Hence we must
pick A=—pu, €=u(zy—7zp) in order to obtain

_ — Z _ _ Z
g'(2)=—pmIn(z-Zp) - £ + i In(z - 79) + a
Z—23 =2

€2y €2p—z0)  (m+)(zp—20)

(z-20°  (z-2)? -2

The first two terms on the right-hand side are associated with
the Stokeslet at z;, the third and fourth terms are associated
with the Stokeslet at z;, the fifth term is associated with the
stresslet at zj, the penultimate term gives a source dipole,
while the final term is a removable singularity. We conclude
that the image system for a Stokeslet near a wall is a Stokes-
let of the opposite sign together with a stresslet (force dipole)
and a source dipole. Qualitatively, this is the same image
distribution originally identified by Blake [36] (using Fourier
transforms) for a three-dimensional Stokeslet near a wall.

III. TREADMILLING SWIMMER MODEL

We now describe our treadmilling swimmer model,
whose body is a circle of radius € with a moving center

PHYSICAL REVIEW E 81, 036313 (2010)

Im(z)

D
%

FIG. 2. (Color online) The treadmilling circular swimmer.

Re(z)

zo(t)=x(t)+iy(r). We endow the swimmer with a distin-
guished direction making an angle 6(z) with the real axis,
which can be interpreted as the direction of its head. It is
with respect to this direction that we suppose that cilia (or
some other surface actuators) induce a tangential velocity
profile given by U(¢,t)=2V sin[2(¢p—6)], where ¢ is the
angle measured from the positive x direction and ¢= 6 is the
direction of the head of the swimmer (see Fig. 2). V is a
constant whose magnitude sets the time scale for the tread-
milling action. The velocity profile U(¢,7) can be rewritten
as

U(,1) = c(t)e¥® + c(t)e™2®,  where c(f) =— iVe 240,
(7)

Note that in unbounded fluid, this velocity profile does not
result in any self-propulsion of the organism due to its sym-
metry about two axes. We focus here on such a non-self-
propelling swimmer in order to isolate and understand just
the hydrodynamic interaction of the swimmer and the wall.

We now derive the solution for the flow around this swim-
mer in unbounded fluid and show that it consists of a stresslet
and a quadrupole at z,. Suppose that the center of the swim-
mer zy(f)=x()+iy(r) moves in a translational velocity
X(t)+iy(r) and that the swimmer rotates with an angular ve-
locity Q(7). The velocity field around the swimmer satisfies
the boundary condition

U+ ivy, = ~fz) + z%+ %:x +iy+[eQ + U(o, 0)]%

(8)

on |z—zo|=€, where dz/ds is the complex unit tangent to the

boundary and f(z) and g’ (z) must be found. For convenience,
the time dependency in Eq. (8) was suppressed. We seek

solutions for f(z) and g'(z) having the form

I(,L ~ ~
+fo+fi1(z=20),
Z— 20

flx) =

a _
+ + 8o-
-2 (z-z0)? %0

In Eq. (9), we have allowed for a uniform velocity and solid
body rotation in the far field which we expect to be deter-

§'(x)= )
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mined by the ambient flow. Owing to the fact that the swim-
mer exerts no net force or torque on the fluid, we have omit-
ted any Stokeslet or rotlet singularities.

We now use the boundary condition (8) to find relations
between the coefficients in Eq. (9) and the velocity of the
swimmer. We make use of the fact that on the boundary
|z—z0|=€, the following relations hold:

€ dz_iz—z)
z-z ds €

— 0=

Substituting into Eq. (8) and equating coefficients of differ-
ent powers of (z—z,), one obtains

X+1iy==fo+f120+ &os

id=- (J71 _fl),
B=pé-ice=2ue. (10)

Ww=—ICe, a=uz,,

Thus, the swimmer has an equivalent “point singularity” de-
scription with a stresslet of strength u and a quadrupole of
strength 2€u at z,. We now set the time scale of the motion
by letting V=€"", so that u(r)=e*%"_ Interestingly, note that
the orientation angle of the resulting stresslet is twice the
angle of the swimmer’s orientation. This differs from the
analysis in [16], in which the stresslet (force dipole) is as-
sumed to have the same orientation as the swimmer. The
physical explanation to this difference is as follows. The tan-
gential velocity profile given in Eq. (7) has twofold period-
icity along the circular boundary of the swimmer. Therefore,
it has two axes of symmetry, unlike the treadmiller model in
[37] and the twirling torus in [27], which have only one axis
of symmetry. (This is also the reason why our treadmilling
swimmer does not move at all in unbounded fluid, whereas
the swimmers in [9,27] move along the axis of symmetry.)

The solution in Eq. (9) can be viewed as an “inner solu-
tion” describing the flow generated in the vicinity of the
swimmer without accounting for the effect of the wall. We
now model the swimmer as two point singularities as given
in Eq. (9) above an infinite no-slip wall at the real axis in
order to obtain an “outer solution” for the flow far from the
swimmer. The motion of the swimmer will then be deter-
mined by matching the inner and outer solutions. Consider a
swimmer represented by stresslet and quadrupole singulari-
ties at z,, which is placed above a no-slip wall at Re(z)=0.
Let

fla=ts R X

+ — 5+ —
-2 z-2 (z2-2)° (z-79)%

(11)

where &, \, and y are parameters to be determined. Utilizing
the functional relation (5) implied by the no-slip condition on
the wall, g’ (z) is obtained as

G+ Nz X

g'(2)=
Z—2 (z— 20)2 (z —Zo)3
m+6 Ozp+2N  2Azp+3x  3xzo
-2 (@-2)° (-2 (-]

(12)

The terms in square brackets are grouped together because
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they are image singularities at 7, (the reflected point in the
wall). Matching the strength of the singularities at z, in Egs.
(11) and (12) with those in Eq. (9) gives

X=pB=2ue. (13)

Next, in order to match the regular part of the outer and inner
solutions, we define the constants f,, f;, and g, as the first
few coefficients of the Taylor expansion of the regular parts
of f(z) and g'(z) in Egs. (11) and (12) at the singularity
position z;, so that

S=-[, N+zou=a=puz,

fl2)= £ +fo+filz=z0)+ -+,
Z— 20
, _(X*‘ZOM) X
8 (Z)_ (Z—ZQ)Z (Z—ZQ)3+g0+ . (14)

Using Egs. (11)—(13), we deduce the explicit formulas

fi= o N N X
-7 -20" (-2
£ s 2\ 3x
Y -0 (0-20)° (o-20)*
2N+ 8z (2NZy+3x) 3x2o
8o= —2+ —\3 —\4 (15)
(Zo - Zo) (Zo - Zo) (Zo - Zo)

We now equate f, f;, and g, in Eq. (14) with o, f;, and g,
in Eq. (9). Using relations (13) and (15), the linear and an-
gular velocities of the swimmer are finally obtained as

2u  26(m+3p)

zo-20) (0—20)°

0 .[w—m 6ém—m}
=—] —+ — |
(Zo - Zo) (Zo - Zo)
Since Q) =d6/dt, substitution of w=exp[2i6(r)] into Eq. (16)
yields a system of three nonlinear ordinary differential equa-
tions in x(£),y(z), 6(r), which is written explicitly as
sin(20)( é > ~ cos(26) (1 62)
- s y= -5 |
y y

bl

X+iy=—

(16)

2y

X= 7

be sin(20)(] ﬁ) (17)

T2y? N 2y?
Note that Eq. (17) is independent of the horizontal position x
of the swimmer as expected.

IV. DYNAMIC ANALYSIS

We now analyze the dynamic behavior of the swimmer
model. We begin with the limit case of a point swimmer
€=0 and compare with the analysis of the three-dimensional
case in [16]. When e€=0 the swimmer is represented by a
point stresslet with no superposed quadrupole contribution.
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FIG. 3. (Color online) Swimmer trajectories in xy plane.
(a) A point swimmer with y(0)=1 and different values of 6(0).
(b) A swimmer with €=0.2 for 6(0)=-—m/4, y(0)=y,+0.05.
(c) A swimmer with €=0.2 for #(0)=—m/4, y(0)=y,+0.3. The
dashed lines are y=y,.

From the dynamic equation [Eq. (17)], it is seen that for the
orientations #={0, = /2, 7}, the motion of the swimmer is
a pure translation in the vertical (y) direction, so that at
6=0,m the swimmer moves away from the wall and at
0= * /2 the swimmer moves toward the wall and crashes
into it in finite time. Moreover, from the equation for the
angular velocity @ in Eq. (17), it can be seen that the swim-
mer reorients itself toward == 7/2. As a result, for any
initial position and orientation, the swimmer will eventually
reach the wall in finite time, except for the cases =0, r, for
which the swimmer moves away from the wall (with any
small perturbation leading to reorientation and returning
back to the wall). Examples of motion trajectories of the
point swimmer under different initial orientations are shown
in Fig. 3(a). These observations are consistent with the
analysis of Berke er al. [16]. Moreover, the expressions for y

and 6 in Eq. (17) for the case e=0 are similar to those de-
rived in [16], although the powers of y in the denominator
are different. Finally, Eq. (17) indicates that when the dis-

tance from the wall y is large, the reorientation rate 6 is
slower than the vertical velocity y, which again agrees with
the observation and derivation of the different time scales in
[16].

Next, we analyze the case of a finite-size swimmer €# 0.
In this case, at orientations 6,={0, = /2, 7}, the motion
of the swimmer is again a purely vertical translation. In
these cases, the differential equation governing the evolution
of the vertical coordinate y(¢) can be solved in closed form,
and the solution under initial condition y(0)=y, is given
implicitly as y>+ € In(y*>— €)=yj+ € In(y;—€) +2st, where
s=cos(26,)= = 1. This solution shows that for 6,=0, the
swimmer moves away from the wall. For 6y= = 7/2, the
swimmer approaches the wall only asymptotically (i.e.,
y— €' as t— ) instead of crashing into it. This behavior
agrees with physical arguments stating that finite-time estab-
lishment of contact between solid bodies in Stokes flow is
impossible due to development of infinitely large lubrication
forces [35].
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FIG. 4. (Color online) Phase portrait of trajectories in (6,y)
plane for the treadmilling swimmer with €=0.2.

Another type of solution of Eq. (17) which is impossible
for a point swimmer is pure translation parallel to the wall.
This motion is obtained for a specific distance from the wall
given by y,=V3/2€ and orientations of 6,= = 7/4, *37/4.
Considering only the part of Eq. (17) governing the dynam-
ics of y(¢) and 6(¢), the points (y, #)=(y,, 6,) are equilibrium
points of this subsystem. [Formally, these points are called
relative equilibria [38] of the full dynamical system in Eq.
(17).] Linear stability analysis then shows that these equilib-
rium points are marginally stable and that the linearized dy-
namics about the equilibrium is associated with a pair of
purely imaginary eigenvalues. Moreover, utilizing the geo-
metric symmetries in this system, it can be shown that even
when considering the fully nonlinear dynamics of this sys-
tem under large perturbations about equilibrium, the solu-
tions exhibit periodic orbits in the (y, 6) components. Physi-
cally, these solutions correspond to wavelike trajectories
along the wall, oscillating about the line y=y, of steady par-
allel translation. Figures 3(b) and 3(c) show trajectories of
the swimmer’s center z,(z) under two different initial condi-
tions. Note the remarkable similarity to Fig. 1(b) which de-
scribes the motion of the two-sphere swimmer near a wall
[24].

Using the relation dy/d6f=y/ 6, Eq. (17) results in a sepa-
rable nonlinear differential equation in y and 6, which can be
solved explicitly as

1 30y 1 y2—62>
6(y) = —arcsin| sin(26y)exp| -In— - —In—5— | |,

where (6,,y,) is a starting point on the trajectory. Figure 4
shows a phase portrait of trajectories in (6,y) plane of a
swimmer with €é=0.2 under different initial conditions for the
range —90° = #=90°. The region —90° < <0 corresponds
to swimming to the right (positive x direction), while the
region 0<A<90° corresponds to swimming to the left
(negative x direction). The line 6=0 separating between
these regions corresponds to purely vertical motion of the
swimmer away from the wall. The lines 6= * 90° correspond
to vertical motion toward the wall. Since the phase portrait is
180°-periodic in the 6 direction, Fig. 4 gives a complete
characterization of the dynamical system (17) describing the
behavior of the swimmer. The results are remarkably similar
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to the predictions in [24] for the two-sphere swimmer (see
the phase portrait in Fig. 2(b) of [24]).

V. CONCLUDING DISCUSSION

An important observation is that our procedure of match-
ing inner and outer solutions is essentially an approximation
since it assumes that the distance between the swimmer and
the wall is large compared to the size of the swimmer. Ob-
viously, this assumption does not always hold in our simula-
tions. Note that this is also the case in the theoretical models
in [24]. Nevertheless, the experimental results in [25] cor-
roborate the predictions in [24], showing that this approxi-
mation is valid, at least qualitatively, even for small separa-
tions.

To summarize, the dynamics of a simple two-dimensional
swimmer model interacting with a no-slip wall has been ex-
plicitly formulated and analyzed. The swimmer model cap-
tures a number of dynamical features proposed or directly
observed by other works using independent approaches and
suggests that the model is a useful one. Moreover, it also
supports the idea that many qualitative phenomena involving
low-Reynolds-number swimmers can be captured within
two-dimensional models.

Some directions for future extension are as follows. First,
a possible way to find more accurate (and complicated) so-
lutions is to systematically apply asymptotic matching tech-
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niques [39] and incorporate correction terms of higher order.
However, in order to do so, it is necessary to make further
physical assumptions on how the treadmilling swimmer re-
sponds to the presence of an ambient strain and shear. A
second extension is replacing the no-slip wall with a free
surface, which is exploited in the locomotion mechanism of
some species of crawling water snails [40]. In the case of a
flat surface, the solution is obtained by simply placing
mirror-image singularities at the reflected point z;. The case
where the free surface is allowed to deform is currently in-
vestigated in [41] using complex variable techniques. An-
other possible generalization is to consider a boundary with
partial slip condition [42] and analyze the influence of vary-
ing the slip length on the dynamic behavior. Finally, applying
the techniques outlined here to account for more realistic
models of swimmers and more complicated geometries is
also a challenging open problem. As a preliminary step in
this direction, analysis of swimming near a gap in the wall in
two dimensions is currently under investigation [43].
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