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Dynamical scaling and the finite-capacity anomaly in three-wave turbulence
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We present a systematic study of the dynamical scaling process leading to the establishment of the
Kolmogorov-Zakharov (KZ) spectrum in weak three-wave turbulence. In the finite-capacity case, in which the
transient spectrum reaches infinite frequency in finite time, the dynamical scaling exponent is anomalous in the
sense that it cannot be determined from dimensional considerations. As a consequence, the transient spectrum
preceding the establishment of the steady state is steeper than the KZ spectrum. Constant energy flux is
actually established from right to left in frequency space after the singularity of the transient solution. From

arguments based on entropy production, a steeper transient spectrum is heuristically plausible.
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Wave turbulence [1] concerns the statistical mechanics of
systems containing large numbers of dispersive waves which
interact conservatively. Such wave systems occur in a variety
of contexts in nature and engineering. Commonly cited ex-
amples include gravity waves on the ocean surface, waves in
Bose-Einstein  condensates and magnetohydrodynamic
waves in strongly magnetized plasmas. For a short review of
applications see [2]. Often the waves are driven by external
forcing which supplies energy (or possibly another con-
served quantity such as wave action) at a scale which is
widely separated from the characteristic scale of dissipation.
Since interactions among waves are conservative turbulence
results. That is to say, the physics is dominated by the flux of
energy between the forcing scale and dissipation scale. This
flux is mediated by the wave interactions. Theoretically,
wave turbulence is more tractable than its hydrodynamic
cousin. In the limit of weak nonlinearity, the theory is as-
ymptotically closed under relatively mild assumptions on the
initial wave statistics (see [3] for a review). Asymptotic clo-
sure, resulting from the interplay of weak nonlinearity and
dispersion, allows a consistent derivation of a kinetic equa-
tion describing the long-time asymptotics of the frequency-
space wave action density, N, () [25], which in turn, deter-
mines the leading order behavior of all the higher-order
cumulants in both Fourier and physical spaces. In this article,
we limit our discussion to the so-called three-wave kinetic
equation (3WKE) describing cases where the dominant non-
linearity is quadratic and the dispersion relation admits three-
wave resonances. Some well-known physical examples are
capillary wave turbulence [4] and acoustic turbulence [5].
Other three-wave systems occurring in nature include
Rossby waves [6], drift waves [7], and inertial waves in ro-
tating fluids [8]. These latter three, however, are all intrinsi-
cally anisotropic so our discussion will not be immediately
applicable to them. We shall return briefly to this point in the
conclusion.
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The 3WKE is a nonlinear integrodifferential equation. It
generally involves three scaling exponents, traditionally writ-
ten as «, B, and d representing the degree homogeneity of
the wave dispersion relation, the degree of homogeneity of
the wave-wave interaction coefficient and the spatial dimen-
sion respectively. For isotropic systems, it can be written [9]
in a form involving only a single exponent A=(28—«a)/ «

IN,,

T=SI[N0)]+S2[NQ)]+S3[N(»]$ (1)
where the collision integrals, S|[N,,], So[N,], and S3[N,,], are
written explicitly in the Appendix. S,[N,,] describes forward
transfer of energy whereas S,[N,] and S3[N,] account for
backscatter. The details of the wave-wave interactions enter
the collision integrals through the wave interaction kernel,
K(w|,,) [26]. The exponent \ is the degree of homogeneity
of this kernel. We shall focus particularly on the product
kernel

K(w),@,) = (0;0)M?. (2)

A key theoretical insight is the fact that Eq. (1) has a station-
ary solution, the Kolmogorov-Zakharov (KZ) spectrum, N,
=ckz® Kz, which carries a constant flux of energy through w
space. The exponent, szz%, and the constant, cg,, can be
found analytically using an elegant technique known as the
Zakharov transformation [1]. The KZ spectrum is the analog
of the Kolmogorov 5/3 spectrum of hydrodynamic turbu-
lence. Considerable efforts have been made to realize this
spectrum experimentally. Extensive theoretical studies have
completely characterized its locality and stability properties.

On the other hand, relatively little is known about the
time-dependent solutions of Eq. (1), the main topic of this
article. Such solutions are important since they should de-
scribe the process by which the KZ spectrum is established
when an initially quiescent wave field is forced at large
scales. Understanding the transient dynamics of kinetic equa-
tions like Eq. (1) has become a problem of considerable im-
portance in understanding the nonequilibrium dynamics of
Bose-Einstein condensation [10,11] as well as in gravity
wave forecasting [12]. We note, however, that these ex-
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FIG. 1. (Color online) Numerical solution of Eq. (1) with the
A=2 product kernel, Eq. (2), showing the singular transient dynam-
ics preceding the establishment of the KZ spectrum. Numerics were
performed using the algorithm described in [9].

amples are both four-wave systems so the corresponding col-
lision integrals, being cubic in the wave spectrum are only
qualitatively similar to those on the right-hand side of Eq.
(1). Furthermore, recent simulations of transient dynamics
using the underlying equations of motion [13] suggest that
wave fields can relax on a time scale much faster than that
implicit in the kinetic equation if the system is subjected to a
large and rapid perturbation. These results indicate that more
careful comparisons between transient solutions of the ki-
netic equations and true transient dynamics of the underlying
equations of motion may be necessary. This will, in turn,
require a better understanding of the time-dependent solu-
tions of kinetic equations in the first place.

A basic scaling theory of the transient dynamics of the
wave kinetic equations was presented in [14]. Two important
observations were made in that paper. First, the KZ spectrum
is established by the self-similar propagation of a front in w
space which moves toward large w. Second, in finite-
capacity cases (A>1) this front propagates to w=% in a
finite time so that the KZ spectrum is set up by a singular
solution of Eq. (1). A typical example is shown in Fig. 1.
When \ = 1—the infinite-capacity case—the front necessar-
ily leaves the KZ spectrum in its wake. For finite-capacity
cases, the corresponding statement is more heuristic for rea-
sons we will examine below. The early numerical simula-
tions in [14] indicated that the transient spectrum had the KZ
scaling. Subsequent numerical investigations of finite-
capacity cascades, first in the context of Alfvén wave turbu-
lence (see Sec. 5 of [15]) and then in Bose-Einstein conden-
sation (BEC) [10] suggested that the transient scaling
exponent, while very close to the KZ exponent, is not exactly
equal to it. This fact has become known as the “finite-
capacity anomaly.” Investigations of finite-capacity cascades
in differential equations [16,17] found that the transient spec-
trum is always slightly steeper (for direct cascades) than the
KZ spectrum, an observation which was heuristically justi-
fied on the basis of entropy production considerations [16].

In this article, we perform a careful numerical study of the
dynamical scaling properties of the 3WKE and demonstrate
that the finite-capacity anomaly is a generic feature of finite-
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capacity cascades. The transient spectrum is indeed steeper,
although by a very small amount. Such a demonstration has
been hitherto absent from the literature because of the seri-
ous numerical difficulties encountered in solving Eq. (1) over
a sufficient range of scales to measure exponents with suffi-
cient accuracy to demonstrate the anomaly. We proceed as
follows. We first introduce the idea of dynamical scaling,
define the dynamical scaling exponent, a, and show how it
relates to the transient spectrum. We then show that in the
infinite-capacity case, a is given by the KZ value and iden-
tify the failure in the corresponding argument in the finite-
capacity case. We then turn to the delicate issue of numerical
measurement of dynamical scaling exponents which demon-
strates that the transient spectrum is steeper than the KZ
spectrum in this case. We explore how the anomalous expo-
nents depend on the structure of the turbulence by varying
the amount of backscatter and the degree of scale locality of
the wave interactions. Finally we show that a steeper tran-
sient spectrum is plausible on the basis of a heuristic entropy
production argument.

N, (1) tends to a scaling (self-similar) form if there exists a
monotonically increasing typical frequency, s(¢), a function,
F(x) and a dynamical scaling exponent, a, such that

~ o(napl £
N,(1) ~ (1) F(s(t))- 3)
Here ~ denotes the scaling limit: s(f) — and w— o with
x=w/s(t) fixed. The scaling function, F(x), typically decays
exponentially for large x producing the front structure evi-
dent in Fig. 1. The small x behavior of F(x) determines the
transient spectrum. The general properties of the system are
well characterized once the exponent a and the small x be-
havior of F(x) are known. We do not know, a priori, that F(x)
is behaves as a power near zero. Indeed we already know of
one example of decaying wave turbulence in which F(x)
diverges as x7!log(1/x) [18]. Nevertheless, if we assume
power-law behavior, F(x) ~x™ as x— 0, and further require
that the spectrum should remain finite at the low-frequency
end as s(rf) — <, a reasonable assumption in the forced case,
then we are lead to conclude that y=—a in order to cancel the
time dependence. Therefore, all we are required to determine
is a single exponent, a.

Substitution of Eq. (3) into Eq. (1) shows that the typical
frequency, s(¢), must evolve according to the equation

ds .
—=s¢ with é=N+a+2, (4)
dt
while F(x) must satisfy the integrodifferential equation
dF
aF() +x— = S[FW]+ SIF@)]+S[F)]. ()

Three distinct behaviors for s(¢) arise depending on the value
of the exponent & s(7) grows algebraically in time (if £€<1),
s(t) grows exponentially in time (if £=1) or s(r) exhibits a
finite time singularity of the form (r*—7)~V¢! (if £>1). To
determine what actually happens, we need to determine a.
For forced turbulence, the total energy grows linearly in
time: [N, (1)dw=Jt. Substituting the scaling form, Eq. (3),
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into this equation and differentiating with respect to time
yields

ds J

_ —1-a
dt (a+ Z)ngF(x)dxs ' (©)

Comparing with Eq. (4) fixes a:—)‘zﬁ, the KZ value. At first

glance, we have shown that the dynamical scaling exponent
always takes its KZ value. Care is required however, Eq. (6)
only holds provided the integral [xF(x)dx does not diverge
at its lower limit on the predicted small x behavior, F(x)
~x7M32 This is only assured for \<l—the infinite-
capacity case. In the finite-capacity case, conservation of en-
ergy does not constrain the scaling function since the first
moment of F(x) diverges. Physically, this is not mysterious:
the scaling solution Eq. (3) does not probe the energy-
containing scales in the finite-capacity case. As a result, the
finite-capacity case exhibits what Barenblatt refers to as self-
similarity of the second kind [19]: a should be determined by
solving Eq. (5).

There is no a priori reason why a should not be given by
its KZ value in the finite-capacity case. Indeed one might
naively hope it might be based on dimensional analysis of
Eq. (6). There is, however an established precedent to indi-
cate that it probably is not. The kinetics of irreversible
cluster-cluster aggregation (see [20] for a review), described
by the Smoluchowski kinetic equation, has many structural
similarities to three-wave turbulence, including KZ spectra
[21] although it does not have an analog of the thermody-
namic spectrum. In fact, the Smoluchowski equation simply
corresponds to Eq. (1) with the backscatter terms, S,(N,,) and
S5(N,,) removed. The nontriviality of dynamical scaling ex-
ponents is well-known [22] in that field. An extensive nu-
merical study performed by Lee [23] convincingly demon-
strated the existence of the finite-capacity anomaly for the
Smoluchowski equation and showed, intriguingly, that it has
the opposite sign to the putative anomaly in the 3WKE: the
transient spectrum in the Smoluchowski equation is shal-
lower than the KZ spectrum. Our method extends Lee’s ap-
proach to include the backscatter terms so we obviously re-
produce Lee’s results and various known exact solutions of
the Smoluchowski equation when we turn the backscatter
terms off.

We now turn to the direct measurement of the dynamical
exponent from numerical data in order to demonstrate the
anomaly in the 3WKE. The details of the numerical algo-
rithm and its validation are described in [9]. There are two
principal challenges. The first is the determination of the
typical scale, s(r). The second is the determination of the
value of a which provides the best data collapse according to
Eq. (3). Let us now address these challenges in turn. The
typical scale can be determined intrinsically by measuring
moments of the wave spectrum, M (1) = [§w’N,(t)dw. Equa-
tion (3) implies that s(7) is given by the ratio of successive
moments: s(t)=M,,(1)/ M ,(t). We have already learned to
be wary of divergences of moments in the scaling limit com-
ing from the behavior of F(x) near 0. This issue arises again
in the definition of s(z). We must take a ratio of successive
sufficiently high-order moments in order to ensure the con-
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FIG. 2. (Color online) Collapse of the % order moment of the
data in Fig. 1 according to the scaling hypothesis, Eq. (3). The
dynamical scaling exponent is 2.578 = 0.021.

vergence of the necessary integrals. In this paper, we take
s(t)=M5(t)/ M,(t) and restrict ourselves to 0=\ =2 which
avoids this pitfall. The challenge in determining a from the
numerical data lies in the fact that it is very close to the KZ
value so a very robust and sensitive data analysis is required
to measure it with sufficient accuracy. For example, the
simulation shown in Fig. 1 has a=2.578 = 0.021 compared to
a KZ value of 2.5. It is our experience that a “best-by-eye”
measurement of the slope of the wake in a log-log plot such
as Fig. 1 is completely inadequate. We have instead opted to
exploit Eq. (3) in its entirety and try to find the value of a
which best collapses all the curves in Fig. 1 onto a single
curve. This was done, as suggested in [24] by defining a
function which measures the total average spread of the col-
lapsed data for a given value of @ and then performing a
one-dimensional minimization of this function over a. To
ensure maximum sensitivity of the analysis, the data collapse
was actually performed on the logarithm  of
(A+3)/2-moment of N,(¢). In addition from removing the
subjectivity from the data collapse process, the accuracy of
the resulting exponent can be estimated from the width of the
minimum of the data spread function. We chose to measure
the width of the minimum at the 1% level set of the data
spread function. A representative sample of the data collapse
obtained by this method is shown in Fig. 2. It is clearly
evident that the data collapse is of a very high quality and
that F(x) is steeper than x™'2, the KZ value for this particular
choice of kernel.

In the numerical simulation, the singularity is regularized
by the onset of dissipation [9] which allows us to study the
subsequent establishment of the KZ spectrum after the tran-
sient spectrum has reached the dissipation scale. This is il-
lustrated in Fig. 3 which shows the relaxation of the com-
pensated spectrum to the KZ scaling. Note that the KZ
spectrum is actually set up from right to left. That is to say,
the KZ spectrum first emerges at high w and then propagates
to low w as a “backwards” front. This interpretation of the
postsingularity dynamics is supported by measurements of
the energy flux such as those presented in Fig. 4. We remark
that the energy flux becomes flat as a function of w first at
large @ and this region then spreads backward. The forma-
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FIG. 3. (Color online) Relaxation of the transient spectrum to
the KZ spectrum postsingularity.

tion of the KZ spectrum from the right is consistent with
previous simulations of the magnetohydrodynamics (MHD)
[15] and differential [16] kinetic equations although the
present numerical scheme is far more reliable. This process
happens very quickly notice the timings of the successive
snapshots in Figs. 3 and 4.

When it comes to understanding the meaning of the
anomalous scaling exponents, one may take a mathematical
point of view and simply view them as being nothing more
than the exponents defined by the solution of the nonlinear
eigenvalue problem Eq. (5). From a physical perspective
this, while clearly a correct explanation, is a rather unsatis-
factory one and one cannot help exploring how the anomaly
depends on the physical parameters of the problem in the
hope of obtaining a deeper insight. We performed several
systematic studies. First, and probably most importantly, we
measured the dynamical exponent for a range values of A
between 0 and 2 taking the product kernel, Eq. (2) as a
benchmark case. The results the circular data points plotted
in Fig. 5 along with the KZ exponents. They demonstrate
that the anomaly is generic for the finite-capacity regime
(A>1) and increases with N\ although it is always a small
correction to the KZ value. From a certain point of view, the
smallness of the anomalous correction to the dynamical ex-
ponent is one of its most mysterious features. The other sets
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FIG. 4. (Color online) Development of a constant energy flux
postsingularity.
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FIG. 5. (Color online) Dynamical scaling exponent as a function
of N\ for different amounts of backscatter. Lee’s results for the
Smoluchowski equation [23] are shown for comparison.

of data plotted on Fig. 5 show how the anomalous exponents
vary with the amount of backscatter. This was done by re-
peating the simulations, first with the S; and S, terms in Eq.
(1) reduced by a factor of 2 and then with them removed
entirely (Smoluchowski equation). While it is clear that the
sign of the correction can be changed in this way, we stop
short of offering a suggestion of what this actually means. In
any case, we are not at liberty to tune the structure of the
kinetic equation in this way in any conceivable experiment.
A second exploration, presented in Fig. 6, probed how the
anomalous exponent varies with the degree of scale locality
of the wave interactions. This was done by introducing a
deformation of the interaction kernel, parameterized by {,
which suppresses interactions between waves of widely dif-
ferent frequencies while leaving the overall degree of homo-
geneity, N\, unchanged:

Kg(wl,w»:mwl,wz)exp{—5(& 1)] (7)

(o) + w2)2 4

The results show that the anomaly gets bigger the more the
nonlocal interactions are suppressed. This was a surprise for
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FIG. 6. (Color online) Dynamical scaling exponent as a function
of \ for different degrees of locality.
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FIG. 7. (Color online) Sign of the total entropy production on
power-law spectra, N,=cw™ for the product kernel, Eq. (2), for a
range of values of \. For this kernel, the integral /(x) given by Eq.
(9) is convergent for x € (%,3+)§‘) [9].

us but is consistent with the fact that the anomalies found in
differential approximations [16,17] were somewhat larger.
Finally we offer a heuristic physical argument why a
steeper spectrum might be natural for the 3WKE. Let us
formally define an entropylike quantity, S,(1)=log[N,,(¢)]. In
the absence of small scale regularization, S,(7) diverges on
typical realizations of N(¢). Nevertheless, its rate of produc-

tion formally makes sense if it is defined via the right-hand

side of Eq. (1): 2l o _1_ o0

CTa TN o One may then ask the ques-
tion of whether the entropy production is positive or negative
on a (not necessarily stationary) power-law spectrum, N,
=cw™". Through application of the Zakharov transformation

one finds

ISu(1) _

2xgz—Xx—2 1 , 8
p cw (x) (8)

where

1
I(x) = f Ky, 1 =y)ly(1 =171 =y = (1 -y)],
0

[1 _ y2x—)\—2 _ (1 _ y)Zx—)\—Z] . (9)

Whether the entropy production is positive or negative for a
given spectral exponent, x, depends on the sign of I(x). This
integral is plotted as a function of x for the product kernel
with several values of \ in Fig. 7. Each curve has two zeros,
signifying vanishing entropy production (although vanishing
for different reasons). They correspond to the thermody-
namic (x=1) and KZ exponents. The entropy production is
always negative in between the two. Given that the transient
spectrum is still exploring its phase space, one would not
expect the entropy production to be negative. If we therefore
limit transient spectra to those with positive entropy produc-
tion, Fig. 7 clearly requires any candidate exponents to be
greater than the KZ exponent. From this point of view, the
finite and infinite-capacity cases are quite different in the
sense that for infinite-capacity systems no entropy produc-
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tion occurs in the wake and the phase space exploration oc-
curs entirely at the front whereas in the finite-capacity case it
takes place throughout the full range of scales.

To summarize, we have used what is probably the most
accurate numerical scheme currently available for solving
the 3WKE to demonstrate the presence of a small but defi-
nite finite-capacity dynamical scaling anomaly for a set of
kinetic equations with model wave interaction kernels given
by Egs. (2) and (7). The results are completely consistent
with previous observations, including the original work on
Alfvén wave turbulence and the differential equation models
suitable for ultralocal transfer. In terms of physical conse-
quences of this work, both the capillary wave and acoustic
examples are finite-capacity and should therefore be ex-
pected to exhibit a steeper transient spectrum. Given that the
underlying physical origin of the finite-capacity anomaly re-
mains somewhat mysterious, we can only surmise that the
effect is also present in the anisotropic examples mentioned
in the introduction. In relation to this latter point, it is worth
noting that the original discovery of the anomaly [15] was
for an isotropic limiting case of an anisotropic system
(Alfvén wave turbulence). Some more natural questions
arise: is the anomalous realization of the KZ spectrum seen
here the general property of all finite-capacity situations such
as, for example, three-dimensional high Reynolds number
hydrodynamic turbulence? If so, is there a general entropy
production principle which is responsible for guiding the
system toward the statistically steady state in this anomalous
manner?

APPENDIX: COLLISION INTEGRALS AND THE WAVE
INTERACTION KERNEL

The explicit forms of the collision integrals which appear
in Eq. (1) are given below. A full derivation appears in [9].

SiN,]= J Ki(@3,0)N, N, d0) — 0; — w3)dw;
- f Ki(w3,0))N, N, 0(w; = 03— 0))dwy;
- f Ki(0}, )N, N, 803 — ) - wy)dwys,
(A1)
S5[N,] =~ f Ks(w3,0)N, N, 00 — 0; = 03)dw);
+ f Ky(w3,0))N, N, dw; — 03— 0))dwy;

+ f Ky(w1,0))N, N, w3 — 0 = w,)dwy;

(A2)

and

036303-5



COLM CONNAUGHTON AND ALAN C. NEWELL

S3[N,]=- J K3(w3,0))N,, N, 00 — 0 — w3)dwy;
+ f K3(w3,0))N, N, 0w, — 03— 0))dwy;

+ J K3(01,0))N, N, 003 — ) — wy)dw;.

(A3)

The wave interaction kernels, K;(w;,w,) (i=1,2,3), all have
degree of homogeneity A=(28—«)/ . There is a price to be
paid for removing all explicit dependence on the spatial di-
mension from the kinetic equation. The kernels appearing in
the forward transfer integral and the backward transfer inte-
grals are not, in general, the same. Furthermore, they are not
symmetric in their arguments as is the case when the kinetic
equation is written in its usual form (as in [1] or [3] for
example). The relationship between them is, however,
straightforward:
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a—d/a
w; + w;
KZ(wiawj) =K1(wi’wj)<+1> )

J

o a—d/a
i w) . (A4)

K3((1)[,(1)j) =K1(wiawj)< ®

i

Each of the collision integrals, taken individually has a finite
flux stationary solution, N,=cg,\Jw ¥ where J is the
energy flux and cg, is a constant. This may be demonstrated
by applying the appropriate Zakharov transformations [1] to
each integral in turn. The stationary thermodynamic solution
is hidden in this representation. It is recovered by recombin-
ing all three collision integrals and using the relationships
between the collision kernels. One obtains the thermody-
namic solution N,=c;w™'"%?® where c; is constant. In the
present work, for simplicity, we take @=d so that the distinc-
tions between the forward and backward interactions disap-
pear and the thermodynamic solution is simply w™".
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