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Onset of quantum chaos in one-dimensional bosonic and fermionic systems
and its relation to thermalization
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By means of full exact diagonalization, we study level statistics and the structure of the eigenvectors of
one-dimensional gapless bosonic and fermionic systems across the transition from integrability to quantum
chaos. These systems are integrable in the presence of only nearest-neighbor terms, whereas the addition of
next-nearest-neighbor hopping and interaction may lead to the onset of chaos. We show that the strength of the
next-nearest-neighbor terms required to observe clear signatures of nonintegrability is inversely proportional to

the system size. Interestingly, the transition to chaos is also seen to depend on particle statistics, with bosons
responding first to the integrability breaking terms. In addition, we discuss the use of delocalization measures
as main indicators for the crossover from integrability to chaos and the consequent viability of quantum

thermalization in isolated systems.
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I. INTRODUCTION

Random matrix theory (RMT) deals with the statistical
properties of ensembles of matrices composed of random
elements. It was originally designed by Wigner in his efforts
to understand the statistics of energy levels of nuclei [1] and
was further elaborated by several authors, notably Mehta [2].
RMT received a significant boost with the discovery of its
connection with classical chaos [3—6]. In particular, it was
observed that quantum systems whose classical analog are
chaotic show the same fluctuation properties predicted by
RMT.

The application of RMT was soon extended to the de-
scription of other quantum many-body systems, such as at-
oms, molecules, and quantum dots [7-10], and it was not
restricted to statistics of eigenvalues but accommodated also
the analysis of eigenstates [11-13]. Important developments
that led to the broadening of the theory include the introduc-
tion of ensembles of random matrices that take into account
the predominance of short-range interactions in real many-
body systems [14-16], the intimate connection between
quantum transport and spectral properties of mesoscopic sys-
tems [8,17,18], and the relationship between chaos and quan-
tum thermalization [12,19-24].

It has been conjectured that the thermalization of finite
isolated quantum systems is closely related to the onset of
chaos and occurs at the level of individual states [19,20,25],
which has become known as the eigenstate thermalization
hypothesis (ETH). Related work was done with nuclear shell
model calculations and delocalization measures [26,12].
More recently, this subject has received renewed attention
due to its relevance to ultracold gas experiments. For ex-
ample, in a remarkable experiment by a group at Penn State
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[27], it was shown that, after being subject to a strong per-
turbation, a gas of bosons trapped in a (quasi-)one-
dimensional geometry (created by means of a deep two-
dimensional optical lattice) did not relax to the standard
prediction of statistical mechanics. In contrast to those re-
sults, in another experiment in which a bosonic gas was
trapped in a different (quasi-)one-dimensional geometry
(generated by an atom chip), relaxation to a thermal state
was inferred to occur in a very short time scale [28].

Following those experiments, several theoretical works
have explored the question of thermalization in noninte-
grable isolated quantum systems after a quantum quench in
one dimension [29-37]. After numerically exploring the non-
equilibrium dynamics in finite one-dimensional (1D) sys-
tems, thermalization was observed in some regimes [29-32]
but not in others [29-32], even though in all cases integra-
bility was broken. Several factors may play a role in the
absence of thermalization in finite 1D systems after a
quench: (i) the proximity to integrable points [31,32], (ii) the
proximity of the energy of the initial nonequilibrium state
after the quench to the energy of the ground state [31,32,37],
(iii) particle statistics and the observable considered (in fer-
mionic systems, the momentum distribution function may
take much longer to relax to equilibrium than other observ-
ables [32]), and finally (iv) quenching the system across a
superfluid/metal to insulator transition [29,30,37]. Recent nu-
merical studies for bosons and fermions in one dimension
have shown that there is a direct link between the presence
(absence) of thermalization and the validity (failure) of the
ETH [31,32].

In the present work, we provide a detailed description of
the integrable-chaos transition in the one-dimensional
bosonic and fermionic systems studied in Refs. [31,32].
These systems are clean and have only two-body interac-
tions; the transition to chaos is achieved by increasing the
strength of next-nearest-neighbor (NNN) terms rather than
by adding random parameters to the Hamiltonian. Under cer-
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tain conditions these systems may also be mapped onto
Heisenberg spin-1/2 chains. Several papers have analyzed
spectral statistics of disordered [38-42] and clean [43-46]
1D Heisenberg spin-1/2 systems. Mostly, they were limited
to sizes smaller than considered here and, in the case of clean
systems, focused on properties associated with the energy
levels, while here eigenvectors are also analyzed. Our goal is
to establish a direct comparison between indicators of chao-
ticity and the results obtained in Refs. [31,32] for thermali-
zation and the validity of ETH. Our analysis also provides a
way to quantify points (i) and (ii) in the previous paragraph,
which can result in the absence of thermalization in finite
systems.

Overall, the crossover from integrability to chaos, quanti-
fied with spectral observables and delocalization measures,
mirrors various features of the onset of thermalization inves-
tigated in Refs. [31,32], in particular, the distinct behavior of
observables between systems that are close and far from in-
tegrability, and between eigenstates whose energies are close
and far from the energy of the ground state. We also find that
the contrast between bosons and fermions pointed out in Ref.
[32] is translated here into the requirement of larger integra-
bility breaking terms for the onset of chaos in fermionic sys-
tems. Larger system sizes also facilitate the induction of
chaos. In addition, we observe that measures of the degree of
delocalization of eigenstates become smooth functions of en-
ergy only in the chaotic regime, a behavior that may be used
as a signature of chaos.

The paper is organized as follows. Section II describes the
model Hamiltonians studied and their symmetries. Section
IIT analyzes the integrable-chaos transition based on various
quantities. After a brief review of the unfolding procedure,
Sec. III A focuses on quantities associated with the energy
levels, such as level spacing distribution and level number
variance. Section III B introduces measures of state delocal-
ization, namely, information entropy and inverse participa-
tion ratio (IPR), showing results for the former in the mean-
field basis. Results for the inverse participation ratio and
discussions about representations are left to the Appendix.
Concluding remarks are presented in Sec. IV.

II. SYSTEM MODEL

We consider both scenarios: hard-core bosons and spin-
less fermions on a periodic one-dimensional lattice in the
presence of nearest-neighbor (NN) and NNN hopping and
interaction. The Hamiltonian for bosons Hy and for fermions
H. are, respectively, given by

L
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TABLE 1. Dimensions of subspaces.

Bosons
L=18 k=1,5,7 k=2,4,8 k=3 k=6
1026 1035 1028 1038
L=21 k=7 other k’s
5538 5537
L=24 odd k’s k=2,6,10 k=4 k=8
30624 30664 30666 30667
Fermions
L=18 k=1,5,7 k=2,4,8 k=3 k=6
1035 1026 1038 1028
L=21 k=17 other k’s
5538 5537
L=24 odd k’s k=2,6,10 k=4 k=8
30624 30664 30667 30666

Above, L is the size of the chain, b; and b;r (f; and f:f) are
bosonic (fermionic) annihilation and creation operators on
site i, and n’=b}b; (n/=fIf; is the boson (fermion) local
density operator. Hard-core bosons do not occupy the same
site, i.e., bfzzbiz, so the operators commute on different sites
but can be taken to anticommute on the same site. The NN
(NNN) hopping and interaction strengths are, respectively, ¢
(¢') and V (V'). Here, we only study repulsive interactions
(V,V'>0). We take fi=1 and t=V=1 set the energy scale in
the remaining of the paper.

The bosonic (fermionic) Hamiltonian conserves the total
number of particles N, (Ny) and is translational invariant,
being therefore composed of independent blocks each asso-
ciated with a total momentum k. In the particular case of
k=0, parity is also conserved and, at half-filling, particle-
hole symmetry is present, that is, the bosonic [fermionic]
model becomes invariant under the transformation HL(bT
+b;) [TIX(f +£,)], which annihilates particles from filled sites
and creates them in empty ones. The latter two symmetries
will be avoided here by selecting k#0 and N, ;=L/3. For
even L, we consider k=1,2,...,L/2-1 and, for odd L, k
=1,2,...,(L-1)/2. The dimension D; of each symmetry
sector studied is given in Table I.

Exact diagonalization is performed to obtain all eigenval-
ues and eigenvectors of the systems under investigation.
When ¢'=V'=0, models (1) and (2) are integrable and may
be mapped onto one another via the Jordan-Wigner transfor-
mation [47]. A correspondence with the Heisenberg spin-1/2
chain also holds, in which case the system may be solved
with the Bethe ansatz [48,49].

III. SIGNATURES OF QUANTUM CHAOS

The concept of exponential divergence, which is at the
heart of classical chaos, has no meaning in the quantum do-
main. Nevertheless, the correspondence principle requires
that signatures of classical chaos remain in the quantum
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level. Different quantities exist to identify the crossover from
the integrable to the nonintegrable regime in quantum sys-
tems. We consider both spectral observables associated with
the eigenvalues and quantities used to measure the complex-
ity of the eigenvectors.

A. Spectral observables

Spectral observables, such as level spacing distribution
and level number variance are investigated below. They are
intrinsic indicators of the integrable-chaos transition. Their
analyses are based on the unfolded spectrum of each sym-
metry sector separately.

1. Unfolding procedure

The procedure of unfolding consists of locally rescaling
the energies as follows. The number of levels with energy
less than or equal to a certain value E is given by the cumu-
lative spectral function, also known as the staircase function,
N(E)=2,0(E-E,), where O is the unit step function. N(E)
has a smooth part N,,(E), which is the cumulative mean
level density, and a fluctuating part Nj(E), that is, N(E)
=N, (E)+Ny(E). Unfolding the spectrum corresponds to
mapping the energies {E|,E,,...,Ep} onto {€,6,...€p},
where €,=N,,(E,), so that the mean level density of the new
sequence of energies is 1. Different methods are used to
separate the smooth part from the fluctuating one. Statistics
that measure long-range correlations are usually very sensi-
tive to the adopted unfolding procedure, while short-range
correlations are less vulnerable [50]. Here, we discard 20%
of the energies located at the edges of the spectrum, where
the fluctuations are large, and obtain N,,,(E) by fitting the
staircase function with a polynomial of degree 15.

2. Level spacing distribution

The distribution of spacings s of neighboring energy lev-
els [2,7,8,10] is the most frequently used observable to study
short-range fluctuations in the spectrum. Quantum levels of
integrable systems are not prohibited from crossing and the
distribution is Poissonian, Pp(s)=exp(—s). In nonintegrable
systems, crossings are avoided and the level spacing distri-
bution is given by the Wigner-Dyson distribution, as pre-
dicted by random matrix theory. The form of the Wigner-
Dyson distribution depends on the symmetry properties of
the Hamiltonian. Ensembles of random matrices with time-
reversal invariance, the so-called Gaussian orthogonal en-
sembles (GOEs), lead to Pyp(s)=(ms/2)exp(-ms?/4). The
same distribution form is achieved for models (1) and (2) in
the chaotic limit since they are also time-reversal invariant.
However, these systems differ from GOEs in the sense that
they only have two-body interactions and do not contain ran-
dom elements. Contrary to GOEs and to two-body random
ensembles [15], the breaking of symmetries here is not
caused by randomness, but instead by the addition of frus-
trating next-nearest-neighbor couplings. Notice also that the
analysis of level statistics in these systems is meaningful
only in a particular symmetry sector; if different subspaces
are mixed, level repulsion may be missed even if the system
is chaotic [46,51].
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FIG. 1. (Color online) Level spacing distribution for hard-core
bosons averaged over all k’s in Table I, for L=24, and t'=V’. For
comparison purposes, we also present the Poisson and Wigner-
Dyson distributions. Bottom right panel: energy difference between
first excited state £, and ground state E( in the full spectrum times
L, for L=18 (circles), 21 (squares), and 24 (triangles).

In Figs. 1 and 2, we show P(s) across the transition from
integrability to chaos for bosons and fermions, respectively,
in the case of L=24. An average over all k’s is performed,
but we emphasize that the same behavior is verified also for
each k sector separately. As t',V’ increases and symmetries
are broken, level repulsion becomes evident, the peak posi-
tion of the distribution shifts to the right, and the tail of the
distribution changes from exponential to Gaussian. Excellent
agreement with the Wigner-Dyson distribution is seen al-
ready for t'=V’>0.12. The bottom right panels in Figs. 1
and 2 give the energy difference between first excited state
and ground state times L as a function of ¢, V'. One can see
there that the product is size independent emphasizing that
the ground state of the systems considered here is gapless in
the thermodynamic limit, as expected from the phase dia-
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FIG. 2. (Color online) As in Fig. 1 but for spinless fermions.
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FIG. 3. (Color online) Average « over all k’s; ' =V'. Top panel:
difference «(fermions)—a(bosons). Left bottom panel, bosons;
right bottom panel, fermions. Semilogarithmic plot in main panels
and linear plot in insets. Circles, L=18; squares, L=21; triangles,
L=24.

grams presented in Ref. [52]. Notice that the particular case
of the fermions exhibits an even-odd finite-size effect that
becomes irrelevant in the thermodynamic limit.

To better quantify the integrable-chaos transition, we
show in Fig. 3 the level spacing indicator «, defined as fol-
lows:

> [P(s) = Pyp(s))]

1

3)

R
i

2 Pyp(s;)

where the sums runs over the whole spectrum. We should
stress that this is a discrete rather than integral sum, because
P(s) as computed by us is a discrete quantity. For a chaotic
system a— 0. The indicator « is comparable to the quantity
7 introduced in Ref. [22].

As seen from the bottom panels and insets in Fig. 3, the
values of t',V’ leading to the transition to chaos decrease
with the size of the system, suggesting that the onset of
chaos in the thermodynamic limit might be achieved with an
infinitesimally small integrability breaking term, although
the existence of a saturation value cannot be discarded [45].
A conclusive statement would require even larger systems or
a theory for the behavior of systems approaching infinite
sizes. Interestingly, « decays faster for bosons, which indi-
cates that the crossover to the chaotic behavior may depend
on particle statistics. This contrasts studies of the ground-
state properties of many-body systems with two-body inter-
actions, where such differences were not found [53]. The top
panel in Fig. 3 shows the difference between the value of
for fermions and bosons. In general, it diminishes with in-
creasing the size of the chain, and the point at which the
difference attains its maximum value moves toward lower
values of t',V’.

The findings in Fig. 3 are reinforced in Fig. 4, where we
show the approach of the peak position of the level spacing

PHYSICAL REVIEW E 81, 036206 (2010)

0.15F 1 L=
% o1f .
A2 s
<
& 0.05
(0] S 1
0.01 0.1 1
08F-------==
g L
S
2 0.6
-
z |
0.8
R0.4 06k
Az oF
S 0.4
0.2 0.2
a1 3 1
o 0.1 0.2
MY | PRI | PSR | M T T
0.01 0.1 1 001 0.1 1
vV’ v’

FIG. 4. (Color online) Peak position of the level spacing distri-
bution averaged over all k’s; t'=V’. Top panel, difference bet-
ween the peak position of bosons and fermions, peak(bosons)
—peak(fermions). Left bottom panel, bosons; right bottom panel,
fermions. Semilogarithmic plot in main panels and linear plot in
insets. Circles, L=18; squares, L=21; triangles, L=24. Dashed line
indicates the peak position of Pyp(s).

distribution to the peak position of Pyp(s) as t',V’ increases.
The transition is faster for larger chains and once again de-
pends on particle statistics, with bosons responding first to
the breaking of symmetries. We should add that equivalent
results are obtained by fitting P(s) with the Brody distribu-
tion [15],

B+1

and analyzing how the increase in ¢',V’ changes 8 from 0
(in the integrable region) to 1 (in the chaotic limit).

The spectral properties of models (1) and (2) discussed
here are somehow mirrored by their dynamical behavior,
which were studied, respectively, in Refs. [31,32]. (Notice
that the analysis of the integrable-chaos transition performed
here uses the same values of #',V’ considered in those
works.) The smooth approach to integrability, as shown in
the figures 1-4 above, is followed by the breakdown of ther-
malization observed in Refs. [31,32]. However, an important
difference between our results here and the results in Refs.
[31,32] is that in the latter works it was not clear that the
values of #',V’ required for the system to thermalize would
reduce with increasing system size, whereas this is the case
here for obtaining a Wigner-Dyson distribution of the level
spacings.

Another interesting feature found in Ref. [32] is that in
the context of quenched dynamics there are differences asso-
ciated with the particle statistics. In particular, it was seen
that some observables such as the momentum distribution
function [n(k)] in fermionic systems may take longer to relax
to equilibrium than their bosonic counterparts. (A related ef-
fect in which a quasisteady regime occurs for n(k) before full
relaxation has been suggested for higher-dimensional fermi-
onic systems [54-56].) It was also shown in Ref. [32] that
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FIG. 5. (Color online) Level number variance averaged over
all k’s. In each panel, solid lines from top to bottom, 7'=V’
=0,0.02,0.04,0.08,0.16,0.32,0.64. Dashed line, GOE; dotted-
dashed line, Poisson.

the difference between the eigenstate expectation values of
n(k) for eigenstates of the fermionic Hamiltonian with close
energies suffer from particularly large finite-size effects
when compared to other observables such as the density-
density structure factor [N(k)] and when compared to n(k)
and N(k) for hard-core bosons. Interestingly, here we find
that for these finite-size systems the measures of chaoticity
also exhibit differences between hard-core bosons and fermi-
ons, where the former ones respond first to the integrability
breaking terms. Further studies will be required to explore
the relation between the latter finding and the onset of ETH
for different observables and different particle statistics in
1D systems.

3. Level number variance

Other quantities sensitive to spectral fluctuations include
measures of long-range correlations, such as spectral rigidity
and level number variance [8]. Both are closely related and
measure the deviation of the staircase function from the best-
fit straight line. Here, we show results for the level number
variance 2%(/) defined as

33D = (NP - (N e)?, (4)

where N(l,e) gives the number of states in the interval
[€,e+1] and (-) represents the average over different initial
values of e. For a Poisson distribution, 32(I)=1I, while
for GOEs in the limit of large [, 22(/)=2[In(27l)+y+1
—?/8]/ 7, where vy is the Euler constant. Level repulsion
leads to rather rigid spectra and fluctuations become much
less significant than in the random energy sequences of regu-
lar systems.

As expected, the level number variance shown in Fig. 5
approaches the GOE curve as the strength of NNN interac-
tions increases. The proximity to the GOE result also im-
proves as the system size increases. However, deviations
from the GOE curve are verified for values of t',V’' where
the level spacing distribution is already very close to a
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Wigner-Dyson, especially in the case of fermions (right pan-
els). In fact, the distinct behavior associated with particle
statistics becomes yet more evident when studying X2([).
The level number variance for the bosonic system with L
=24, for example, coincides with the GOE result for a large
range of values of [ already when ¢',V'=0.32 and 0.64,
whereas the same is not verified for fermions. This further
supports the view that particle statistics may play an impor-
tant role in the relaxation dynamics and thermalization of
finite isolated quantum systems. On the other hand, the size
dependence of the results is an indicator that in the thermo-
dynamic limit the differences between the quantities dis-
cussed in this paper may become negligible when comparing
bosons and fermions, a conjecture that deserves further in-
vestigation together with its implications for the dynamics
and thermalization of those systems.

B. Delocalization measures

Contrary to spectral observables, quantities used to mea-
sure the complexity of eigenvectors, as delocalization mea-
sures [11,12], are not intrinsic indicators of the integrable-
chaos transition since they depend on the basis in which the
computations are performed. The choice of basis is usually
physically motivated. The mean-field basis is the most ap-
propriate representation to separate global from local prop-
erties, and therefore capture the transition from regular to
chaotic behavior [12]. Here, this basis corresponds to the
eigenstates of the integrable Hamiltonian (¢',V’'=0). Other
representations may also provide relevant information, such
as the site basis, which is meaningful in studies of spatial
localization, and the momentum basis, which can be used to
study k-space localization (see the Appendix for further dis-
cussions).

The degree of complexity of individual eigenvectors may
be measured, for example, with the information (Shannon)
entropy S or the IPR. The latter is also sometimes referred to
as number of principal components. For an eigenstate ;
written in the basis vectors ¢y as t//j=EkD=1c;f¢k, S and IPR
are, respectively, given by

g )

D
S;=- E |4 [In|c}

1
IPR;= 5. (6)

2 lejl!
k=1

The above quantities measure the number of basis vectors
that contribute to each eigenstate, that is, how much delocal-
ized each state is in the chosen basis.

For the GOE, the amplitudes cllf are independent random
variables and all eigenstates are completely delocalized.
Complete delocalization does not imply, however, that S
=In D. For a GOE, the weights |c{|* fluctuate around 1/D
and the average over the ensemble is Sgop=In(0.48D)
+0(1/D) [11,12].

Figures 6 and 7 show the Shannon entropy in the mean-
field basis S, vs the effective temperature for bosons and
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FIG. 6. (Color online) Shannon entropy in the mean-field basis
vs effective temperature for bosons, L=24, k=2, and t'=V’. The
dashed line gives the GOE averaged value Sgog~ In(0.48D).

fermions, respectively. The effective temperature 7; of an
eigenstate i; with energy E; is defined as

1 A p
E;j= ETr{He HITR (7)
where

Z=Tr{e 7, (8)

Above, H is Hamiltonian (1) or (2), Z is the partition func-
tion with the Boltzmann constant kz=1, and the trace is per-
formed over the full spectrum as in Refs. [31,32] (see the
Appendix for a comparison with effective temperatures ob-
tained by tracing over exclusively the sector k=2). The fig-
ures include results only for 7;=10; for high E;, the tem-
peratures eventually become negative. By plotting the
Shannon entropy as a function of the effective temperature,
we allow for a direct comparison of our results here and the
results presented in Refs. [31,32].
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FIG. 7. (Color online) As in Fig. 6 for fermions.
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As seen in Figs. 6 and 7, the mixing of basis vectors, and
therefore the complexity of the states, increases with ¢',V’,
but it is only for 7;=2 that the eigenstates of our systems
approach the GOE result. Similarly, in plots of S, vs energy
(see Figs. 11 and 12 in the Appendix), it is only away from
the borders of the spectrum that S,,,— Sgop; in the bor-
ders, the states are more localized and therefore less ergodic.
This feature is typical of systems with a finite range of
interactions, such as models (1) and (2) and also banded,
embedded random matrices, and two-body random en-
sembles [13,15,57].

The analysis of the structure of the eigenstates hints on
what to expect for the dynamics of the system. In the context
of relaxation dynamics, not only the density of complex
states participating in the dynamics is relevant, but also how
similar these states are. In close connection, but from a static
perspective, it is the onset of chaos that guarantees the uni-
formization of the eigenstates. According to Percival’s con-
jecture [58], the complexity of chaotic wave functions adja-
cent in energy is very similar; they essentially show the same
information entropy. A further extension of this idea is Ber-
ry’s conjecture [59], which assumes that energy eigenfunc-
tions in a time-reversal invariant and ergodic system are a
superposition of random plane waves. The ETH [20] can be
related to the validity of Berry’s conjecture. ETH states that
thermalization of an isolated quantum system occurs when
each eigenstate already exhibits a thermal value for the ob-
servables, that is, the eigenstate expectation values do not
fluctuate between eigenstates close in energy.

In Figs. 6 and 7 (see also Figs. 11-16 in the Appendix),
the structure of the eigenstates close in energy reveals fluc-
tuations throughout the spectrum as we approach integrabil-
ity, whereas in the chaotic regime, fluctuations are mostly
restricted to the edges of the spectrum, with S, being a
smooth function of energy (or temperature) away from the
borders. A related result was seen in Ref. [41], where a clear
relationship between an entanglement measure and a delocal-
ization measure for a clean Heisenberg model appeared only
in the chaotic limit (two dimensions), being absent in its
integrable counterpart (one dimension). Fluctuations imply
that eigenstates very close in energy have different degrees
of complexity and localization properties; these states may
therefore not entirely comply with the ETH. This explains
the absence of thermalization in the integrable limit. In fact,
a similar conclusion was achieved in Refs. [31,32] based on
plots for the momentum distribution function vs energy
(Figs. 4 and 7, respectively). There, it was observed that
fluctuations between expectation values of states close in en-
ergy increase toward integrability.

Two additional points need to be made here. First, even in
the chaotic regime one sees that states in the edge of the
spectrum remain “localized” in the mean-field basis. This is
accompanied by a failure of ETH in that regime [31,32], and
hence thermalization is not expected to occur when the en-
ergy of the time-evolving state after the quench is close to
the ground-state energy (low effective temperatures). This is
an important feature of isolated quantum systems that will
need to be considered with more care when dealing with
ultracold gases experiments. Second, in comparing bosons
and fermions, larger fluctuations are verified for the latter,
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FIG. 8. (Color online) Shannon entropy in the mean-field basis
vs energy when the system is close to integrability (top panels) and
in the chaotic limit (bottom panels); k=2 and ¢'=V’. Panels on the
left, bosons; panels on the right, fermions. Curves from bottom to
top: L=18,21,24.

offering a further justification for the deviations between
statistical-mechanics predictions for observables after relax-
ation and the exact time-averaged result of the quantum evo-
lution observed in finite fermionic systems [32]. Note, how-
ever, that fluctuations appear to decrease with system size, as
shown in Fig. 8 (especially noticeable in the bottom right
panel). This may be a simple reflection of better statistics,
but may suggest also that in the thermodynamic limit some
of the differences between fermions and bosons may eventu-
ally disappear.

IV. CONCLUSIONS

We have presented a detailed analysis of the transition
from integrability to quantum chaos for gapless one-
dimensional systems of interacting spinless fermions and
hard-core bosons. Here, the onset of chaos was dictated by
the enhancement of next-nearest-neighbor hopping and inter-
actions.

Our comparisons for different system sizes suggested that
in the thermodynamic limit an infinitesimal integrability
breaking term suffices for the onset of chaos, although fur-
ther studies are necessary for settling this issue. Also, this
may not warrant that thermalization will occur for infinitesi-
mal integrability breaking terms since, at least for our finite
systems, we could not establish a one-to-one correspondence
between the two effects.

We have found differences in behaviors associated with
particle statistics. The transition to chaos in fermionic sys-
tems, as measured by level spacing indicator, peak position
of level spacing distribution, and level number variance, re-
quired integrability breaking terms larger than in the bosonic
case. With respect to delocalization measures, larger fluctua-
tions were also verified for fermions.

We studied wave-function complexity using different de-
localization measures and choices of underlying basis. Our
results have shown that the similar structure of eigenstates
close in energy is a primary feature of chaotic systems. This
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finding reinforces the proposal to elevate Berry’s conjecture
to the status of the best definition of quantum chaos [20] and
suggests that the onset of a smooth dependence of delocal-
ization measures with energy be used as an indicator of
quantum chaos and a condition for quantum thermalization.

Finally, we have shown that even when the systems are
chaotic in terms of the level spacing distribution and the
level number variance, there are still regions in the edges of
the spectrum in which the states are less delocalized and their
structures are less similar. As shown in Refs. [31,32], those
states do not satisfy ETH and, hence, whenever one performs
a quench in a system, so that the energy of the time-evolving
state is close to the ground-state energy [or in other words,
when the effective temperature of the system as defined by
Eq. (7) is very low], relaxation of observables to the thermal
distribution prediction is not expected.

The analysis and findings described here are intimately
reflected by the studies of thermalization pursued in Refs.
[25,31,32] and provide strong support to those works. More-
over, the lattices we considered may also be mapped onto
other one-dimensional systems, such as spin-1/2 chains,
which indicates the broad range of applicability of our results
for gapless systems.
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APPENDIX: COMPLEXITY OF THE WAVE FUNCTIONS

We provide here further illustrations for the complexity
increase of the wave functions with the onset of chaos for
models (1) and (2). This is based on the computation of
Shannon entropy [Eq. (5)] and the inverse participation ratio
[Eq. (6)]. We compare results in both representations, mean-
field and k-space bases. Overall, the approach to chaos is
followed by the reduction in fluctuations in the results for S
and IPR close in energy, with the decrease in fluctuations
being slower for fermions than for bosons.

1. Effective temperature

Figures 6 and 7 gave the entropy in the mean-field basis
vs the effective temperature. There, each temperature T;, for
an eigenstate of energy E;, was obtained by means of Eq. (7)
and performing the trace over the full spectrum (let us call it
T,; here). In Fig. 9, we compare T,; with the eigenstate
energies.

One may also wonder what would happen if one uses only
the spectrum of the k=2 sector to perform the trace and
hence to compute the temperature 7)_,. Actually, for the sys-
tem sizes employed here, the values obtained in this latter
way do not differ much from temperatures calculated consid-
ering the energies of all k sectors [60]. Figure 10 shows that
the largest disagreements between 7,; and Tj_, occur at low
energies; but even then, they are usually not higher than 5%.
Exceptions are the first two or three lowest temperatures,
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FIG. 9. (Color online) T,; vs energy, where T, stands for the
effective temperature computed considering the eigenvalues of all
symmetry sectors; L=24. Curves from bottom to top: ¢’ =V’ =0.00,
0.02, 0.03, 0.04, 0.06, 0.08, 0.12, 0.16, 0.24, 0.32, 0.48, 0.64, 0.96,
1.28.

which do not appear in the scale of Fig. 10 due to significant
discrepancies between 7,; and T)_,.

More generally, for larger system sizes, the temperature is
expected to be computed by means of quantum Monte Carlo
simulations or other better scaling numerical approaches.
This means that in general all sectors will be considered
when computing 7. Our results here show that the differ-
ences with considering specific momentum sectors are small
and decreasing with the system size.

2. Results in the mean-field basis

Figures 11 and 12 show the mean-field Shannon entropy
vs energy for all the eigenstates of the k=2 sector. Notice

(o)}

] FYTr "I "1 1]
'=0.00 4 - t'=0.00 =]

A\

Tdiﬁ'

Tdiﬂ'

Tdiﬁ'

Tdiﬁ'

Tdiff

L) I L] I L] l L) I L]
t'=0.64

Tdiﬁ
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T

FIG. 10. (Color online) Temperature difference vs T,y Ty
=100|T y;— Tyzs|/ Tyi» Where Ty, is computed considering only the
eigenvalues from the k=2 sector. Left panels, bosons; right panels,
fermions; t'=V’. Negligible differences are seen between the
curves for L=24 [light gray (green online)] and L=21 [dark gray
(red online)] when T,;>2, while the curve for L=18 (black) satu-
rates at a higher level (especially noticeable for fermions).
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FIG. 11. (Color online) Shannon entropy in the mean-field basis
vs energy for bosons; L=24, k=2, and ' =V"'. The dashed line gives
the GOE averaged value Sgog ~ In(0.48D).

that the whole spectrum for the k=2 sector is presented and
not only the energies leading to 7=10 as in Figs. 6 and 7.
The typical behavior of banded matrices is observed: larger
delocalization appearing away from the edges of the spec-
trum, although not as large as the GOE result Sgog
=In(0.48D)+O(1/D), and lower complexity at the edges
[13,15,57].

A similar behavior is seen in the plots of the inverse par-
ticipation ratio in the mean-field basis vs energy (Figs. 13
and 14). The IPR values increase significantly with ¢', V', but
do not reach the GOE result IPR=(D+2)/3 [11,12]. IPR
gives essentially the same information as S, although the first
shows larger fluctuations.

3. Results in the k& basis

Identifying the mean-field basis may not always be a
simple task. For example, some 1D models may have more
than one integrable point. It may also happen that one is so

FIG. 12. (Color online) Same as in Fig. 11 for fermions.
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FIG. 13. Inverse participation ratio in the mean-field basis vs
energy for bosons; L=24, k=2, and +'=V’. The GOE result
IPRGog~ D/3 is beyond the chosen scale.

far from any integrable point that there is no reason to be-
lieve that such a point has any relevance for the chosen sys-
tem. The latter case may be particularly applicable to higher-
dimensional systems where integrable points are, in general,
the noninteracting limit or other trivial limit. Working on the
mean-field basis also adds an extra step in the computations
since the diagonalization of the system is usually not per-
formed in that basis, i.e., one needs to perform a change in
basis when computing S and IPR in the mean-field basis.
This extra computation step may become very demanding
when dealing with large systems. In addition, depending on
the studies being performed, it may be of interest to analyze
the structure of the eigenvectors in another basis. The prob-
lem of spatial localization, for example, calls for the use of
the site basis.

Motivated by the discussion above, we include here the
results for S in the k basis in which we diagonalize our
Hamiltonians. Those are shown in Figs. 15 and 16. Large
entropy values are now simply related to high delocalization

LS 1 40 ————
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21 1 20 Ky -1
jany 7
= E ] L i

05 | I | 0
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& 200 _
L -

|
f
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FIG. 14. Same as in Fig. 13 for fermions.
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FIG. 15. (Color online) Shannon entropy in the k basis vs en-
ergy for bosons; L=24, k=2, and ¢'=V’. The dashed line gives the
GOE averaged value Sgog ~ In(0.48D).

with respect to the k basis and have nothing to do with the
onset of chaos. They are found in both integrable and non-
integrable regimes and may even surpass Sgog. Other differ-
ences between the mean-field and k bases include: (i) the
localization increase expected for both edges of the spectrum
in banded matrices is not so evident in the k basis, some
high-energy states remaining as delocalized as the central
states; and (ii) the distinct degree of fluctuations between
bosons and fermions, even though still higher for fermions,
is not so visible anymore. In spite of these deviations, the k
basis may still be used as a signature of the integrable-chaos
transition. The reason being that, just as in the mean-field
basis, the dependence of S, with energy becomes smoother
only in the chaotic limit. Therefore, since reduction in fluc-
tuations in S and IPR for states close in energy has been
pointed as a main cause for the validity of the ETH, the k
basis may still be used to determine where the onset of ther-
malization is expected.

FIG. 16. (Color online) Same as in Fig. 15 for fermions.
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