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Distinguishing the opponents promotes cooperation in well-mixed populations
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Cooperation has been widely studied when an individual strategy is adopted against all coplayers. In this
context, some extra mechanisms, such as punishment, reward, memory, and network reciprocity must be
introduced in order to keep cooperators alive. Here, we adopt a different point of view. We study the adoption
of different strategies against different opponents instead of adoption of the same strategy against all of them.
In the context of the prisoner dilemma, we consider an evolutionary process in which strategies that provide
more benefits are imitated and the players replace the strategy used in one of the interactions furnishing the
worst payoff. Individuals are set in a well-mixed population, so that network reciprocity effect is excluded and
both synchronous and asynchronous updates are analyzed. As a consequence of the replacement rule, we show
that mutual cooperation is never destroyed and the initial fraction of mutual cooperation is a lower bound for
the level of cooperation. We show by simulation and mean-field analysis that (i) cooperation dominates for
synchronous update and (ii) only the initial mutual cooperation is maintained for asynchronous update. As a
side effect of the replacement rule, an “implicit punishment” mechanism comes up in a way that exploitations

are always neutralized providing evolutionary stability for cooperation.
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I. INTRODUCTION

Cooperative dilemma was initially studied in the frame-
work of classical game theory. Usually individuals have two
strategies: cooperation and defection. A cooperator provides
a benefit to the opponent and pays a cost for that. A defector
receives the benefits if the opponent is a cooperator. This
defines a material payoff. If individuals maximize their ma-
terial payoff, it is well known that defection will dominate
[1]. Departing from these initial ideas, evolutionary game
theory has emerged and strategy evolution in populations
was studied. In this approach it is implicitly assumed the
principle of natural selection, where the payoff is equated to
fitness and the fittest strategy survives [2]. Following the
same ideas, cultural evolution of strategies can also be de-
fined [3]. In cultural evolution, the strategies that provide
more benefits can spread due to some learning processes, like
imitation process [3]. In both biological and cultural pro-
cesses, it was shown that the classical theory is recovered in
the replicator equation, where population is considered to be
well mixed, that is, a population where everybody interacts
with everybody [2].

Since in the classical static approach and in the replicator
dynamics cooperators cannot survive, cooperation can only
be supported with extra mechanisms [4]. Essentially two ac-
tions must take place for cooperation survival: maintenance
of mutual cooperation and prevention from exploitation [3].
Cooperators can be better off only if they meet each other, so
that their profits exceed defectors’ profits. If the individuals
perceive that it is important what the opponents are doing in
order to attend these two essential actions, reciprocal prefer-
ences can come up [5-8]. Reciprocity means that what an
individual does depends on what others do to it directly or
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indirectly. Direct reciprocity means that I choose what to do
against you depending on what you do to me. Indirect reci-
procity means that my behavior toward you also depends on
what you do to others. One of the simplest strategies that can
perform reciprocity is “tit for tat” (TFT) strategy, where the
players do whatever the coplayer did in the previous round.
This simple strategy was first proposed in Axelrod’s tourna-
ments, where TFT was the greatest winner [9,10]. Another
subtle way of reciprocity is network reciprocity. Individuals
are set on the vertices of a network and interact only with
their neighbors. In this context, cooperators form clusters of
mutual cooperation and this mutualism is viewed as reci-
procity [11-18]. But in the case of human behavior, the out-
comes are not so simple: individuals can adopt reciprocal
strategies but, motivated by internal emotion, like anger
against exploitation [19], they can punish defectors [19-21].
This would not be so intriguing, as it is just another way of
reciprocal motives. But the important feature is that individu-
als usually input costs to defectors at their own expenses.
This behavior is called altruistic punishment, because indi-
viduals pay a cost to punish even if they never met the pun-
ished opponent again and because the punishment acts to
weaken the defectors and the entire population gets better off
[19]. Reputation, rewards, or repeated interaction, as internal
motives, all interact with punishment motives [5,6]. Punish-
ment involves some subtle questions and gives rise to an-
other evolutionary puzzle: altruistic punishment, although
seemingly usual in humans, may be a maladaptive trait as the
punishers get worse payoffs [8].

There are other mechanisms that can sustain cooperation
[4], but the great part of them assumes that individuals can-
not adopt different strategies against their opponents. In
these approaches, the same strategy is adopted against all of
the possible coplayers. The possibility of recognizing the
partner might be not reasonable in animal societies, because
for animals even the recognition of a cooperative individual
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reasonable, and it has been assumed in models of reputation
[7,23]. In these models individuals must be able to recognize
the reputation of the others, and they act according to some
internal preferences that drive punishment or rewarding. But
what if the individuals just keep track of what the others are
doing and try to improve its own profits with no assumption
of internal desire to punish or to reward? This can be accom-
plished by the adoption of different strategies against differ-
ent opponents and it was studied in the context of network
reciprocity with synchronous update [24]. Instead of playing
the same strategy against all of the neighbors, individuals
can choose a different strategy against each opponent. If each
player updates its strategies by possibly imitating a success-
ful random neighbor and replaces the strategy in the interac-
tion that gives the worst payoff, it was shown for square
lattices that cooperation was strongly supported, even for
huge defection tendency. Moreover, it was shown that these
results are robust against misjudgments of the worst interac-
tion. The possibility of opponent differentiation introduces a
mechanism of punishing without costs and without any kind
of internal preferences, except the desire of maximizing the
individual payoff. We call this punishment implicit punish-
ment. But in that work [24], the possibility of adoption of
different strategies was introduced in the context of network
reciprocity. What happens if network reciprocity is ex-
cluded? Here, we analyze this model in well-mixed popula-
tions, which means that we are excluding network reciproc-
ity effects. The other important feature of the model is the
synchronous update assumption. It is well known that results
may be striking different if asynchronous update is used
[25,26]. Here, we analyze the model with both synchronous
and asynchronous updates. We show that cooperation still
remains alive, although for asynchronous update it achieves
its lower bound level. We analyze the model using computer
simulations and a mean-field technique.

II. MODEL

Let us state the model formally. We study the prisoner
dilemma in a population of size N as the scenario for the
cooperation problem. We consider well-mixed population,
which means that each player interacts with everybody. The
strategy vector of an individual is §=(Sl,...,SJ-, s Syet)s
where S; can be C (cooperation) or D (defection). So indi-
viduals are merged in N—1 interactions. If in one of these
interactions an individual plays C against an opponent who is
playing D, we denote this interaction as (C,D) (the first en-
try is the strategy of the focal player and the second entry is
the opponent strategy). The definitions of the strategies and
of the interactions are presented in Fig. 1. In a simplified
version of the prisoner dilemma payoff [16], the payoff of a
D strategy against a C strategy is P(D,C)=b, where b>1 is
the defection tendency. Using the same notation, we have
that P(D,D)=¢, with e<1, P(C,C)=1, and P(C,D)=0. In
each round, each player interacts with all of the other players
and the pairwise payoffs are summed as a cumulative payoff.

The strategies are updated according to the imitation rule
with both synchronous and asynchronous updates. For syn-
chronous update each player randomly chooses one neighbor
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FIG. 1. Strategies and interactions for a population of size N
=3. Player 1 has two interactions: (C,D) with player 2 and (C,C)
with player 3. Player 2 has two interactions: (D,C) with player 1
and (D, D) with player 3. Player 3 has two interactions: (C,C) with
player 1 and (D,D) with player 2.

and compares the cumulative payoffs. If the opponent cumu-
lative payoff is bigger than its own one, it imitates the strat-
egy that the opponent is using against it with probability p
proportional to the difference of cumulative payoffs AP,,,,
[27], namely,

pP= |APcum|/[(N_ l)b]

On the other hand, if the opponent cumulative payoff is
lower than its own one, the focal player remains with the
same strategies. If imitation takes place, the new strategy
replaces the strategy used in the interaction that gives the
worst payoff. If there are more than one interaction with the
worst pairwise payoff, one of these interactions is randomly
chosen. The worst pairwise payoff of the focal player is
given by the interaction (C, D), followed by (D,D), (C,C),
and (D, C). This means that if the focal player has a (C,D)
interaction and a defection strategy is imitated, the (C,D)
interaction is replaced with (D, D). In the asynchronous up-
date, first an individual is randomly chosen. Then it can imi-
tate and possibly replace one of its strategies as in the syn-
chronous case. After the individual update, the cumulative
payoffs are updated, and another individual is randomly cho-
sen to update its strategies. A time step consists of N of such
processes.

III. EVOLUTIONARY ANALYSIS

The simulations were performed using networks of sizes
N=40 and 100. The fraction of cooperation (f,.) adopted by
all of the players in all of their interactions was evaluated. If
n. is the quantity of C strategies used in all of the interac-
tions by all of the players, we have 0=n,=<N(N-1) and f,
=n,/N(N-1). The random initial configuration consisted of
50% of cooperation and the averages were made over 100
different initial conditions. We use €=0.001 and we show
here only the case b=2, although we simulated the model
also for other values of b. In fact, the b value has no effect in
the simulations and in the mean-field results.

Let us state one fundamental feature of the model that is
independent of whether the update is synchronous or not. We
state that any interaction of type (C,C) will never be re-
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FIG. 2. The focal player F imitates a D strategy from the oppo-
nent O. Thus, the focal player has at least one (C,D) or (D,D)
interaction, which is represented by the dashed line. It follows that
a (C, () interaction is never replaced, as shown in the text.

placed with (D, C). Suppose that a focal player (F in Fig. 2)
imitates a defection strategy of the opponent (O in Fig. 2).
This means that the focal player have at least one (C,D) or
(D,D) interaction (see the dashed line in Fig. 2). These in-
teractions furnish the payoffs 0 and e that are smaller than
that of a (C,C) interaction, namely, 1. It follows that (C,C)
will never be replaced. This proves the existence of a lower
bound for the fraction of cooperation given by the initial
fraction of mutual cooperation. On the other hand, if the
focal player imitates a D strategy, it will first seek for (C,D)
interactions. If they are present, (C,D) will be replaced with
(D,D). One can see that mutual cooperation is never de-
stroyed, and every exploitation is punished when a defection
is imitated.

In the usual game, where each player adopts a single strat-
egy against all of its opponents, a single defector can invade
a population of cooperators in an infinity well-mixed popu-
lation [2]. The first remarkable feature of implicit punish-
ment is that cooperation is evolutionary stable in well-mixed
population for both synchronous and asynchronous updates.
If a mutant that adopts defection against everybody appears
in a population where everybody is cooperating, the mutant
initially earns a huge payoff. But as soon as others imitate it,
the exploited (C,D) interactions will be replaced with
(D,D), neutralizing the exploitations. What is simple, but
remarkable, is that the interactions that are changing are just
those in which the exploiter is involved and all of the other
mutual cooperation is maintained. The implicit punishment
will take place until the mutant cumulative payoff is equal to
a cooperator cumulative payoff. If we call n,, the quantity
of defection adopted by the mutant exploiter, the payoff of
the mutant exploiter and the payoff of the cooperators are
Poxp=Texp(b+€) and P,,,=N-2, respectively. By equating
both expressions we have the equilibrium fraction given by

N-2
Hep=""""-
P b+e
Let us now discuss the results obtained by numerical simu-
lations for both synchronous and asynchronous updates. Ini-
tially, we set the players to cooperate with a probability of
0.5 against each one of its opponents. This gives an initial
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FIG. 3. Fraction of cooperation f,. for asynchronous update with
N=100 and »=2.0.

cooperation fraction of 50%. For asynchronous update, co-
operation cannot dominate the population but it can coexist
with defection and assumes values near the lower bound
(25% for the initial condition assumed here). Figure 3 shows
simulation and mean-field approximation results for the
asynchronous update. For the synchronous update, coopera-
tion dominates the entire population. Figure 4 shows the
simulation and mean-field approximation results for the syn-
chronous update. In the synchronous case, at the beginning,
almost all of the exploitations are neutralized and only the
initial mutual cooperation survives. After that, cooperation
starts to increase very slowly until it dominates the popula-
tion. The initial behavior of the cooperation fraction is shown
in Fig. 5. So we can define a short-time regime and a long-
time regime for the synchronous dynamics. Note that the
short-time regime for the synchronous update exhibits the
same behavior as the asynchronous update. The same quali-
tative result holds for large populations, but simulation time
gets extremely huge for synchronous update. From Fig. 5
one can see that cooperation decreases in the beginning of
the imitation process. But after this initial transient behavior,
cooperation spreads. Figure 6 shows a finite-size analysis for
the time (7) spent to reach the minimum value of the coop-
eration fraction before cooperation dominates in the synchro-
nous update. Note that as along as N increases, 1/7 goes to
zero, implying that the population is wrapped in the lowest
value of cooperation. On the other hand, if N is large but
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FIG. 4. Fraction of cooperation f,. for synchronous update with
N=40 and b=2.0.
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FIG. 5. Short-time regime of the cooperation fraction f,. for
synchronous update with N=40 and b=2.0. The fraction of coop-
eration remains around the minimum value for a while and then
starts to increase. The increase is not shown in this figure, but it can
be seen in Fig. 4.

finite, cooperation starts to increase after a finite transient
time.

Mean-field solution provides a good equilibrium analysis
in well-mixed population if the usual game is considered
[28]. But in structured population, it is not a good approxi-
mation [29]. Although in the present work we deal with well-
mixed population, the nature of the implicit punishment
model is not so simple. It is not obvious that a mean-field
approach would work. So it is a remarkable result the fact
that our mean-field approximation gives not only the station-
ary solutions, but fits reasonably the in silico time evolution,
although for the synchronous update it fits well only in the
short-time regime. Let us now derive the mean-field solution.
We first analyze the asynchronous update followed by the
synchronous one.

A. Mean-field approximation for the asynchronous update

Let us first define local and global interaction concentra-
tions for a population of size N+1. If in an interaction a
player i adopts strategy A and its opponent adopts B, where
A,B e{C,D}, we say that player i has a (A,B) interaction.
Player i can have N4z(i) (A,B) interactions. We define the

0.004

0.003 .
S0.002- ]

0.001 B

0 002 004 006 008 0l

FIG. 6. The plot shows the relation 1/7X 1/N, where N is the
population size and 7 is the time to reach the minimum value of
cooperation for synchronous update.
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local concentration of (A,B) as the fraction of (A,B) inter-
actions around player i, namely, x,5(i)=N,5(i)/N. For the
global concentration of (A,B) we define x,5=2,N,5(i)/[(N
+1)N]. Note that xop=xp¢ and f.=xcc+2xcp.

We first consider a typical player that we call the focal
player. We are going to study the dynamics of the local con-
centration of (C,D), (D,D), (C,C), and (D, C) interactions
around the focal player. Let k, k,, k3, and k4 be the quantity
of such interactions around the focal player. Note that k;
+ky+k;+ky=N. Let us assume that the probability of having
ki, k,, k3, and k, interactions is given by the respective global
concentrations. The probability of a focal player configura-
tion k=(k,,k,,k3) is given by

N! N—ky~ky—ks
ky Vo ks \(N = k) — Ky '

11(k) = — ) !xlguxlnglgchc

We consider the other nodes as mean-field nodes. So the
local concentration of (C,D), (D,D), and (C,C) interactions
around those nodes is given by the configuration vector
N(xcp»XppsXcc).- Now we are going to derive the variation
rate of the local concentration around the focal player. In
order to set the notation, let PF(k) be the cumulative payoff
of the focal player when it is in a (k;,k,,k;) configuration
and let PO(C,D) be the payoff of the opponent associated
with the (C,D) focal player interaction.

Let us derive the increasing rate of the (D,D) local con-
centration. Just to keep the notation clear, in the interaction
(D, D), the first entry refers to the focal player and the sec-
ond entry refers to the opponent. So a (D,D) interaction
means that both the focal player and the opponent adopt
defection against each other. Suppose that the focal player is
in a (k;,k,,k;) configuration. For this configuration, the pay-
off of the focal player is given by

PF(K)= (N =k, —ky — k3)b + ks + ky€.

There is just one transition that increases this quantity:
(C,D) to (D, D). In this replacement, the focal player is cur-
rently adopting C and the opponent associated with the
(C,D) interaction is currently adopting D. If an interaction
(C,D) is replaced with (D, D), it means that the focal player
imitates a D strategy from a new randomly chosen opponent.
But the focal player can imitate the D strategy from (C,D) or
(D, D) interactions. Let us focus on the first alternative that
happens with probability k;/N. The opponent associated with
the (C,D) focal player interaction has a payoff of

PO(C,D) =b+ (N— 1)(chb +.ch+xDD€).

The probability of imitating the D strategy from the oppo-
nent associated with the (C,D) interaction is given by

_ ®[PO(C.D) - PF(k)]
P= bN ’
where O(x)=x if x>0, and O®(x)=0, otherwise. The mean

rate of increase in (D, D) by 1 unit due to the imitation from
(C,D) is
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N N-ky N=k—ky

k, ®[PO(C,D) - PF(k)]
W = L3l
v k|2=1 k22=0 /Eo N bN

(k).

Following the same lines we obtain the increasing rate of
(D,D) from the other possibility [imitating a D strategy from
an opponent associated with a (D, D) interaction], namely,
N N—k; N-k;—ky .
k, O[PO(D,D) — PF (k)]
WBD = E E E N N
k=1 ky=0  k3=0

(k).

In this notation, the CD subscript in W, means that the
defection strategy is imitated from an opponent associated
with a (C,D) interaction. The DD subscript has a similar
meaning.

The same analysis can be done to calculate the decreasing
rate of (D, D). There is just one transition involved, namely,
(D,D) to (C,D). At least one (D, D) must be present. The C
strategy can be imitated from (C,C) or (D, C). But note that
the focal player cannot be currently adopting a (C,D), be-
cause in this case (C,D) would give the worst payoff. So
imitating a C strategy would not change the quantity of
(D, D). Following the previous steps, we can define

N!

: N—ky—k3
k3 (N =k,

[1(k) = _ k%)!xlguxlgcxbc ’

where the TI(k) probability is obtained by carrying out a
summation over the k; index of H(lg).
So the decreasing rate of (D, D) is given by
N Nk,

WE‘C=E 2

k3 O[PO(C,C) - PF(k)]

T(k)(1 - O 00k,.N)

ky=1 k3=0 N bN
N N-k; N
N —ky— k3 O[PO(D,C) — PF(k)] ~ -
Whe= 2 2 " (k)1
e ky=1 k3=0 N bN

~ 5,00, )-

Here, we have that o, =1 if x=y and 6, ,=0 if x#y. The
subscript CC in W means that the cooperation strategy is
imitated from an opponent associated with a (C,C) interac-
tion. The DC subscript has a similar meaning.

Since the population is well mixed, all nodes have the
same typical behavior. Thus, we can approximate the global
concentrations by the local ones. The above expressions de-
termine the variation rate of (D,D) by 1 unit. If we want the
time derivative of xpp, we need to divide the expressions by
N and multiply by a factor of 2, because there is the contri-
bution of the opponent update. So we have that

deD

1
dr zzﬁ(WED+WBD_WE‘C_WBC)' (1)

Following the same reasoning, one can see that x-. does not
change in time. Finally, as all of the mean-field variables are
normalized to 1, we obtain that

i
xep=3(1=Xxpp—Xxcc)-

We can simplify further Eq. (1) if we replace k;, k,, and ks
inside the payoff expressions of the focal player with the
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expected value of such quantities given by the configuration
probabilities, Nxcp, Nxpp, and Nxcc, respectively. With this
extra approximation the ® function can be easily evaluated
in the limit of large N and we have the following equation:

dx 1 €
PD 2_{)600 +XDDZ[1 -1 _XCD)N_I]

dt N?

=S =xe) = (e + ch)N-l]}.

This equation can be solved numerically. Figure 3 shows the
numerical and the simulation results. Note that our mean-
field approximation furnishes good results when compared
with in silico evolution. For the initial condition used here,
we have that the terms inside the parentheses are 0.75 pow-
ered to N—1 and 0.5 powered to N—1. If N is large, the terms
that are powered to N are very small and they can be ne-
glected, at least for short times. This gives the following
simplified equation:

deD 1 ( € )
=2—\xcp+ ~Xpp |-
i N2\ YepF o Xpp
The solution of this equation is straightforward. We obtain
that

€

Zx%D”%D 2(1 €
0
= +— 1 - -=lz+-)t| s
*bD=%pp 1 € eXp{ N2<2 b)]

4=
2 b
0
Xcc=Xce»

1
Xcp= 5(1 _xDD_x(éC)'

Here the index O refers to the initial conditions. If we set €
=0, just for simplicity, one can see that there is a fixed point,
namely,

© _ 0 0

Xpp=Xpp+ 2Xcp,
© _ 0
Xcc=*ce»

© o
XCD =XDC = 0.

Observe that only the initial mutual cooperation can be main-
tained and all of the other interactions are mutual defections.
Note that all of the exploitations are neutralized and that this
approximation gives good results when compared to simula-
tion data.

B. Mean-field approximation for the synchronous update

Let us treat the synchronous case. Now (C,C) can in-
crease, because it is possible to have a (D,D) to (C,C) tran-
sition whenever two players make a (D,D) to (C,D) transi-
tion in their shared (D,D) interaction. This is an essential
feature of the synchronous model. This kind of transition

036115-5



LUCAS WARDIL AND JAFFERSON K. L. DA SILVA

does not take place in asynchronous update, and that is the
reason why cooperation assumes the lower bound value in
the asynchronous case. We can approximate the rate of this
transition by

dxCC 1 2
T (We+ W)™
dr N-xDD( cC DC)

Let us explain the term in the denominator. If the focal
player makes a (D,D) to (C,D) transition on a specific in-
teraction, the mean-field player associated with this specific
interaction should choose exactly this interaction. This hap-
pens with probability 1/Nxpp. If we perform the same sim-
plifications that were already done for the asynchronous
case, we have that

dxCC 1 Xcce _ = 2
dr = 2%{7[(1 _xCD)N = (xcc+ch)N 1] ,
dx 1 €
d?D = 21?{)560 +xDDE[1 = (1 =xcp™']

X
- %[(1 = xcp)" ! = (xec +xDC)N_1]}-
Figures 4 and 5 show the numerical solution of these equa-
tions. One can see from the above equations that x.c in-
creases much slower than xpp. For the initial condition as-
sumed here, x-c time derivative at the beginning is almost
zero, because the values inside the brackets are equal to 0.5
powered to N. But when evolution starts, great part of the
(C,D) interactions is changed to (D,D) and xp, is reduced
to some value near zero. This makes x to increase faster.
So we have two regimes: short-time regime, when x.c is
kept almost constant around its initial value, and long-time
regime, when x.. starts to increase faster. Figures 4 and 5
show long- and short-time regimes for the evolution of frac-
tion of cooperation. For short times, if we discard the terms
that are powered to N—1, we have the same solution as the
one obtained in the asynchronous case. This means that co-
operation assumes a value near its lower bound value, given
by the initial mutual cooperation. But for long-time regime,
Xcp 18 near zero and the x.c time derivative cannot be ne-
glected. So x.¢ starts to increase until it becomes equal to 1.
Thus, the stationary solution for sufficient long times is

o0
Xce=1,
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o0 — o0 - o0 —O
Xcp =Xpc=Xpp =Y

Note that for the short-time regime, shown in Fig. 5, the
mean-field approximation fits well when compared to in
silico evolution. For the long-time regime, the time evolution
of the mean-field solution does not fit well, although it gives
the right stationary solution.

From the above expressions and simulation data, we see
that the lower value of cooperation is reached very fast in the
synchronous update. But as long as the population size gets
bigger, this value is reached very slowly (see Fig. 6). Besides
that, if N is large, xc increases very slowly. By these rea-
sons, for large N, in the synchronous update the population
seems to be wrapped in the lower value of cooperation, al-
though what is actually happening is that cooperation is
slowly increasing, spreading until it dominates the entire
population.

IV. CONCLUSION

Here, we analyzed a model that allows the individuals to
choose different strategies against different opponents in
well-mixed populations for both synchronous and asynchro-
nous updates. In the context of prisoner dilemma, we showed
first that cooperation is evolutionary stable for both synchro-
nous and asynchronous updates. This means that a defector
mutant cannot invade a population of cooperators. We also
showed that, for an initial condition of 50% of cooperation,
for synchronous update cooperation always dominates while
for asynchronous update the cooperation fraction assumes
the lower bound given by the initial mutual cooperation. For
the synchronous update, population dynamics exhibits a
short-time behavior that is similar to the asynchronous case,
but for sufficient long times, cooperation spreads for large,
but finite N. The crucial difference between synchronous and
asynchronous updates is that in synchronous one it is pos-
sible to have a simultaneous update that allows a (D,D) to
(C,C) transition. This does not happen in the asynchronous
case. In a previous work, the same model was analyzed in a
square lattice with synchronous update. Here, we showed
that the synchronous update is crucial for cooperation domi-
nance while network reciprocity effects are not so important.
Although the asynchronous case does not provide coopera-
tion dominance, it allows cooperation to survive at its lower
bound value. Note that the result with asynchronous update
is still better than the result of the usual game.
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