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Generalized connectivity between any two nodes in a complex network
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This article focuses on the identification of the number of paths with different lengths between pairs of nodes
in complex networks and how these paths can be used for characterization of topological properties of theo-
retical and real-world complex networks. This analysis revealed that the number of paths can provide a better
discrimination of network models than traditional network measurements. In addition, the analysis of real-
world networks suggests that the long-range connectivity tends to be limited in these networks and may be

strongly related to network growth and organization.
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I. INTRODUCTION

A large number of natural and artificial complex systems
can be represented and modeled in terms of networks involv-
ing interacting components. Such interactions can range
from signaling between cells (e.g., [1]) to social contacts
(e.g., [2]). Indeed, complex networks theory has been con-
sidered in a wide range of investigations including neuronal
connections, protein-protein interactions, economy, and in-
ternet communication [3], to cite just a few possibilities.

The characterization of network structure is one of the
fundamental aspects of complex networks research because
the modeling, simulation and classification of networks all
depend strongly on accurate descriptions of the respective
topology [4,5]. In order to quantify the properties of the di-
verse types of networks, a large set of network measurements
has been developed [4]. Many of these features are related to
the immediate links between each pair of nodes. Indeed, sev-
eral of the measurements currently employed in order to
characterize network structure—such as degree, clustering
coefficient and shortest path length—are ultimately related to
short-range pairwise interconnectivity [4]. However, it is also
important to resort to longer range interaction between nodes
in order to achieve more comprehensive description, charac-
terization, and modeling of complex structures.

Long range interactions can be defined in terms of paths
and walks. Walks are given by a sequence of nodes and
edges. Paths, on the other hand, are a special type of walks
described by sequence of nodes and edges without repetition.
The use of walks and paths of different lengths for network
characterization is not new and has been preliminarily ex-
plored in other works. For instance, walks of different
lengths have been used to characterized different network
topologies (e.g., [6]). Middendorf et al. [7] proposed a sound
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statistical analysis to characterize and classify networks ac-
cording to walks of different lengths. They defined the con-
cept of “words” to establish walks related measurements to
quantify different network properties. In addition to walks,
paths have been used for network topology description [8]
and analysis of criticality and phase transition in grids and
networks [9]. The average shortest path length (or geodesic
distance) between a pair of nodes is obtained by taking into
account the shortest distance between every possible pairs of
nodes. Some works have used distance matrices, containing
minimum shortest path lengths, in order to enhance the char-
acterization of networks [10-12] and identification of iso-
morphisms [11,12]. Nevertheless, the isolated consideration
of the local connectivity measurements and shortest distance
matrix results in incomplete network characterization, since
important information about network structure is not taken
into account. For instance, the alternative paths between
pairs of nodes whose lengths are larger than the shortest path
are completely overlooked by more traditional network
analysis, which consider just the shortest distances. Thus,
two networks presenting the same degree and the same short-
est path distributions, but though with different alternative
paths organization, can be characterized as being identical by
many of the traditional approaches in complex networks re-
search, which is clearly inappropriate. Also, alternative paths
can provide additional information about network resilience,
once they generally reinforce connections, providing alterna-
tive routes, and maximizing the flow. More traditional ro-
bustness analysis taking into account just the local connec-
tivity and measurements related to the shortest paths, such as
betweenness centrality [ 13], also do not take into account the
richer interconnectivity structure provided by longer alterna-
tive paths. Shavitt and Singer [8] analyzed the alternative
paths in networks and suggested measurements related to the
quality of backup and alternative path centrality. They
showed that social structures do not necessarily depend on
the most central nodes, as expected, and that nodes with
medium centrality measurements are ultimately crucial for
efficient routing in the internet.

©2010 The American Physical Society
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FIG. 1. The European high-speed rail network connecting some
of the main cities of northern central Europe. While the traditional
shortest distance approach takes into account just the path of length
three between London and Lyon, the other seven alternative paths
are overlooked. However, the alternative paths are still fundamental
for network topology and can be associated to important dynamics
such as traffic jamming and resilience [5].

LIy,

The comprehensive characterization of pairwise connec-
tivity clearly requires more general approaches, such as the
consideration of multiscale interactions extending from the
immediate link to long-range connectivity scales. The term
multiscale refers to the varying topological scales which are
progressively taken into account around the nodes. Most of
the traditional network measurements consider just the first
interconnectivity scale, i.e., immediate neighbor connectiv-
ity. In addition to immediate-connection measurements and
limited long-range information such as the shortest paths, the
identification of alternative paths of any length can enhance
the network characterization, providing a more complete de-
scription of network topology. Measurements taking into ac-
count the successive shortest path lengths from a reference
node (concentric neighborhoods) have been proposed in the
literature in terms of hierarchical or concentric representa-
tions [4,14-17].

The further generalization of the concepts of connectivity
and interaction in order to account for larger portions and
scales of networks, requires the identification of alternative
paths between pairs of nodes, as illustrated in Fig. 1. Let us
suppose we are interested in the pairwise interconnection be-
tween London (UK) and Lyon (France), which is particularly
important for those people wanting to travel by express train
between those two cities, as shown in Fig. 1. If we consider
the shortest path route, just the path of length three between
those two cities is taken into account, while the other seven
alternative paths are completely ignored. Nevertheless, such
paths are still fundamental for network communication and
resilience. For instance, if the connection London-Paris-Lyon
is blocked at any part other than from London to Lille, the
passengers can always take alternative routes. The impor-
tance of the identification of paths in networks has also been
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substantiated with respect to the functionality of the cardio-
vascular system [10].

The current work focus on exploring the properties of
paths of different lengths in a more systematic way, espe-
cially from the point of view of providing valuable informa-
tion about the structure of complex networks. We report a
comprehensive approach to generalize the concept of pair-
wise connectivity through the quantification of the distribu-
tion of paths of different lengths between pairs of nodes. The
potential of such a framework is illustrated with respect to
network characterization (theoretical models and real-world
networks) as well as investigations about network commu-
nity organization. Helped by optimal multivariate statistical
methods, we characterize the relationships between the to-
pologies of six theoretical models and discuss the achieved
discriminability. In order to illustrate the variation of the gen-
eralized connectivity in real-world networks, we report and
discuss results obtained with respect to: (i) the US highway
network, (ii) the neural C. elegans network [18], (iii) the cat
cortical network [19] and (iv) a food web of a broadleaf
forest in New Zealand [20]. In addition, we characterize the
network modular structure (community) considering respec-
tive generalized connectivity matrices. The projection of the
network nodes considering an optimal multivariate statistical
method resulted in nodes belonging to the same communities
being projected nearby, forming clusters of points. In sum-
mary, the main contributions of this work are (i) character-
ization and classification of different complex network struc-
tures by considering the number o alternative paths between
vertices and optimal multivariate statistical techniques, (ii)
analysis of the number of paths distribution in four real-
world networks, and (iii) analysis of the relationship between
alternative path distributions and community organization.

In next sections, we provide the basic concepts related to
network models, paths between nodes, principal component
analysis (PCA), canonical variable analysis and network dis-
criminability. An optimal algorithm to find the number of
paths between pair of nodes is also provided. The illustration
of the potential of the proposed methodology with respect to
theoretical and real-world networks are presented and dis-
cussed subsequently.

II. BASIC CONCEPTS AND METHODOLOGY

An undirected network can be represented by its adja-
cency matrix A, whose elements a;; are equal to one when-
ever there is a connection between the nodes i and j, or equal
to zero otherwise. The number of connections of a given
node i is called its degree k;, while the clustering coefficient
cc;, is defined as cc;=2n;/ (k;— 1)k;, where n; is the number of
connections between the neighbors of i [18]. The number of
paths with length h=1,...,H (H is the length of largest con-
sidered path) between each pair of nodes can be expressed in
terms of the three-dimensional matrix R=R(h,i,j) (see Fig.
2), so that each matrix R,(i,;), belonging to the set R, gives
the total number of paths of length % extending from node i
to node j [observe that R,(i,j)=A(i,j)]. These matrices will
always be symmetric for undirected networks. The set of
matrices R therefore conveys comprehensive information
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FIG. 2. Networks can be characterized in terms of the three-
dimensional matrix R=R(h,i,j), which provides a more compre-
hensive description of the network structure than the traditional
adjacency [A(i,j)=R,(i,j)] and shortest paths length matrices
{D(i,j)=min[h|R,(i,;))0]}. The matrix T, which provides the total
number of paths between every pair of nodes i and j, can be ob-
tained by summing the elements of the matrices R;,(i,J).

about the generalized connectivity between any pair of
nodes, providing valuable additional information about the
network structure. In addition, the shortest path distance ma-
trix D can be derived from such matrices by taking the value
of h respective to the minimum value of the elements along
all matrices R obtained for all possible & (see Fig. 2), i.e.,
D(i,j)=min[h|R,(i,j)>0). Therefore, the matrices A and D
are special cases of the set of matrices R. In this way, the set
of matrices R(h,i,j) constitutes a generalization of connec-
tivity matrices previously applied to complex network char-
acterization. The matrix 7, which is obtained by summing
the elements along the set R, gives the number of paths of
lengths h=1,...,H between every pair of nodes. As such,
this matrix quantifies all alternative paths between pair of
nodes and can be used, for instance, in analysis of network
resilience.

An illustration of the several connectivity approaches that
can be applied in order to characterize the network in Fig. 1
is provided in Figs. 3 and 4. Figures 3(a) and 3(b) show the
traditionally adopted matrices of adjacency and the shortest
path length distances, respectively. While the adjacency ma-
trix A indicates the immediate connectivity between pairs of
nodes, the shortest path lengths matrix D contains the num-
ber of edges along the shortest paths between each pair of
nodes. On the other hand, the matrices in Fig. 4 are rarely (if

12345678 910112 12345678 9101112
1[0 1 0000000000 10 1 2 3 4 3 43 23 4 4
2|11 01000001000 201 01232321233
3010101000000 3210121232344
4001010000000 4321012233454
5000101100000 5432101123443
A=6/0 01010100000/ D=6321210123443
710 00011010000 7143221101233 °2
8/0 00000101001 8323322101221
9010000010100 9212333210122
10(0 00000001010 1003 23444321012
1(0 00000000101 1|4 34544322101
(@)12l0 oo 000010010 (D)12]l4a 3443321221 0]

FIG. 3. The (a) adjacency and (b) distance matrices, respective
to the network in Fig. 1.
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R,=6/0 10210110000 Ry=6101110012001
7001111001001 7022200000110
8010011000110 (102111000110
910100010001 1 9000112000011
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1000000011000 1010000111000
(@) 12,0 00000101 100] (b) 1200 1001100110 0
12345678 910112 12345678 910112
100002020001 1 Mfoo0122210011
2000012221001 1 2000121213110 1
sjooo010122101 2 3010011012123
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5220100103111 512 11000031420
Ry=6/021000111211 Rg=6221000111231
7222111001110 7121 0101013101
8012301001001 8/131131101000
9o 01131110100 9012311310000
0000112101010 1001 1142100000
1111011100101 1102223000000
€ 121 12111010010 (d) 1211330110000 0q
12345678 910112
1fooo122210011
2000121213110 1
3sjo10011012123
4120000113123
5211000031420
R.=6{221000111231
5 712 10101013101
8131131101000
9012311310000
10001 1142100000
1102223000000
(€) 121 1330110000 0

FIG. 4. The matrices containing the number of paths of length
(a) h=2, (b) h=3, (c) h=4, and (d) h=5 between each pair of nodes
in the network in Fig. 1.

ever) considered in the literature and express other types of
pairwise interactions between the nodes. In such a figure, the
matrices R,, R3, R,, and Rs express the number of paths of
lengths h=2, h=3, h=4, and h=5 between each possible pair
of nodes in the network in Fig. 1, respectively. Observe that
these matrices make explicit important information which
cannot be easily inferred from any of the two previous ma-
trices, A and D. For instance, while matrix D only indicates
that the shortest distance between Strasbourg (France) and
Antwerp (Belgium) is equal to four—without providing any
information about the number of paths with this length—the
matrix Rs shows that there are four paths of length five be-
tween those same locations. Similarly, while the matrix D
shows that the value of the shortest distance between Lyon
(France) and Metz (France) is equal to two, the matrix R,,
indicates the existence of two paths of length two, and the
matrix Rs, of one path of length three, all viable alternative
connections between these two cities in the case of eventual
disruption of the shortest path. The other matrices provide
information about even longer alternative paths, of eventual
interest for a tourist who wants to visit several nearby places.
Therefore, the set of matrices R can provide valuable addi-
tional information about the network structure, leading to
more accurate network characterization, classification, and
modeling.

A. Algorithm for identification of number of paths

Many algorithms have been developed in order to find
shortest paths in networks [21-23]. The number of paths can
be determined by simple matrix manipulations. For instance,
the number of paths of length 2 and 3 can be obtained
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as
Ry(i,k) = 2 AyA (1 = &) (1)
J
and

Ry(i) =2 AA A1 =8 )(1 = 8)(1 -8y,  (2)
ik

respectively, where &;j is the Kronecker delta. Nevertheless,
this algorithm if of order O(N"*!), where £ is the length of
the path. In this work, we proposed a faster algorithm, Algo-
rithm 2, which allows the identification not only of the short-
est paths, but also of all the alternative paths between a ref-
erence node i and all the other nodes in a network. Such
algorithm is optimal in the sense that every path is deter-
mined without waste of calculation. It can be applied to di-
rect and undirected networks. The operations push(a) and
pop(a) place and remove the data a into a stack, respec-
tively. Though this deterministic algorithm is optimal, it may
require long periods of time depending on the type of net-
work, its size, average degree, as well as the total number of
steps H required. Stochastic algorithms such as that de-
scribed in [24,25] can be considered for estimations in such
cases. The execution of such an algorithm from all nodes on
the network yields the set of matrices R.

The algorithm is based on agents moving through the net-
work. One of the neighbors of the current node i, node j, is
selected and the agent moves to this node. The remainder
neighbors and their respective distance from node i are
stored into a stack. Next, one of the neighbors of j is se-
lected, and the agent moves to this node. Note that node i is
not taken into account in this step, since it has already been
visited during the walk. The agent continues to move until no
more movements are possible. Then, one node at the stack is
removed and the agent is placed in it in order to start the
movement from this node. The process stops when all pos-
sible movements have been taken into account. The number
of paths between each pair of nodes are calculated at each
step and stored in the matrix R,

B. Decorrelation of measurements and dimensionality
reduction

1. Principal component analysis

Because of the relatively high dimensionality of the path
measurements, especially as a consequence of their param-
eterization with A, as well as the already observed strong
correlations along £, it becomes important to consider means
for obtaining effective projections of the measurements (di-
mensionality reduction) so as to visualize the network and
node separations. This can be optimally performed through
the method known as PCA.

PCA can be defined as the orthogonal projection of the
original data onto a lower dimensional space, called the prin-
cipal subspace, such that the variance of the projected data is
maximized along its first axes [26]. Indeed, PCA can be un-
derstood as a rotation of the axes of the original variable
coordinate system to new orthogonal axes in order to makes
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the new axes coincide with the directions of maximum varia-
tion of the original variables [27]. In practice, PCA consists
initially of finding the eigenvalues and eigenvectors of the
sample covariance matrix [28]. So, let each of Q observa-
tions (e.g., a node, a pair of nodes, or network), henceforth
represented as v={1,2,...,0}, be characterized in terms of
M respective features or measurements each, represented in
terms of the feature vector fv [each element f,(i), i
e{1,2,...,M}, of this vector corresponds to one measure-
ment of the observation v]. For instance, we can consider the
number of paths between each node i and all other nodes in
the network. In this case, each node presents a feature vector
with N elements. In cases where the number of features is
large, it is possible to optimally reduce their dimensionality
M by removing the correlations between them. This impor-
tant dimensional reduction transformation can be easily
implemented by using the PCA methodology (e.g., [4,27]).

Let the covariance between each pair of measurements i
and j be given as

0
Cip)=——S [0 -wlh)-ml. G
Q -1 v=1

where w; is the average of f,(i) over the Q observations, i.e.,

1 0
MFEEﬁ@~ (4)

The covariance matrix between these measurements is de-
fined as C=[C(i,j)], with dimension M X M. Let the eigen-
values of C, sorted in decreasing order, be represented as \;,

i=1,2,...,M, with respective eigenvectors v;. By stacking
such eigenvectors, it is possible to obtain the matrix
T
G=|01 03 ... Oyl )
1T ... 1

which defines the stochastic linear transformation known as
Karhunen-Logve transform [4,27]. Now, the new feature vec-
tors can be obtained from the original measurement vectors f
by making

¢=Gf. (6)

The variances of the new measurements in g are provided by
the respective eigenvalues. In case where the measurements
are correlated, most of their variances will be concentrated
along the first elements of g, which is guaranteed by the fact
that the PCA completely decorrelates the original measure-
ments. Indeed, the PCA is optimal with respect to concen-
trating the variation along the first axes while completely
decorrelating all the original measurements. Therefore, it is
possible to reduce the dimensionality of the features vectors
by disregarding in the matrix in Eq. (5) all eigenvectors as-
sociated to eigenvalues smaller than a given threshold, or by
taking only the R first eigenvectors. The resulting variables,
which are fully uncorrelated linear combinations of the origi-
nal measurements, concentrate the variance of the overall
data and therefore represent a particularly meaningful char-
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acterization of the distribution of the original observations.

In this work, the matrix R), is the feature (or measure-
ment) matrix, whose rows represent the features of each
node. The importance of PCA lies in the fact that the number
of paths of different sizes tend to be highly correlated one
another for subsequent values of 4. From the matrix R, it
covariance matrix as well as respective eigenvalues and
eigenvectors are obtained. Selecting two or three of the
eigenvectors corresponding to the highest eigenvalues and
multiplying these eigenvectors by the original R;, matrix, it is
possible to visualize the nodes into an optimally projected
two-dimensional (2D) or three-dimensional space. Indeed,
the principal axis i is given by the dot product of the i-th
eigenvector by the original attribute matrix Ry,.

2. Canonical variable analysis

Canonical variable analysis is a generalization of the prin-
cipal component analysis [29]. Indeed, while PCA is a non-
supervisioned technique, the canonical variable analysis
needs class information. Canonical analysis can be used to
project the features of networks into a space so as to maxi-
mize the separation between the network models [30]. In this
way, canonical analysis is suitable to visualize classes of
networks into a two or three dimensional space, which al-
lows to quantify the differences and similarities between
them. In order to perform canonical analysis, it is necessary
to construct a matrix which quantifies the variation inside
each class of observations, and a second matrix, which quan-
tifies the variation among these categories. If we consider C
classes, types of network models, each one identified as C;,
i=1,...,C with N; elements, and that each observation n is
represented by its respective feature vector X,
=[x,(1),x,(2),...,x,(M)]" composed by a set of M measure-
ments, the intraclass scatter matrix is defined as

C
Sintra = E 2 (fn - <f>1)(fn - <f>i)Ts (7)

i=1 neC;

while the interclass scatter matrix is given as

C
Sinter = 2 Ni((B); = () (%), = ()7, (8)
i=1

where (X); corresponds to the average vector of all variables
(measurements) for the class i and (X) is the general average
vector of all variables for all classes.

By computing the eigenvectors of the matrix S;llthimer
and selecting those corresponding to highest absolute value
eigenvalues, N\, ...,\y, it is possible to project the set of
variables into a M-dimensional space, i.e., the canonical pro-
jection for a given observation n is obtained by

X,=T"%, 9)

where
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T 1 T
=% % Y | (10)
T o0

corresponds to the eigenvectors of the matrix Si—n]th,»,,,e,. The
eigenvectors ¥; are associated to the eigenvalue \; and they
are arranged in I" in increasing order according to their re-
spective eigenvalues. Such a projection is guaranteed to
maximize the interclass dispersion while minimizing the in-
traclass dispersion, leading to optimal separation between the
objects belonging to the distinct categories. The overall qual-
ity of the separation between all categories can be quantified

in terms of the following coefficient:

4 =S, raSinter) - (11)

The higher the value of ¢, the best the separation between the
categories [30].

III. CHARACTERIZATION OF THEORETICAL
NETWORK MODELS

The following six different types of theoretical network
models are considered in this article. The Erd6s-Rényi (ER)
random graphs [31] are obtained by connecting N initially
isolated nodes with constant probability p. The traditional
preferential attachment rule [32] is used to obtain the scale-
free Barabdsi-Albert (BA) networks. Such a model can be
understood as a particular case of the Krapivsky er al. [33]
complex network model, which applies a nonlinear preferen-
tial attachment rule to establish connections during network
growth—the probability of connection is defined as P;_,;
=k]9‘/ 2k, where « is the nonlinear exponent. Observe that
a=1 yields the BA model. In the Watts-Strogatz (WS) small-
world model, each connection in a linear lattice is rewired
with probability p [18]. Geographical networks (GN) are ob-
tained by starting with N nodes distributed uniformly along a
two-dimensional space and connecting them according to
distance, i.e., the probability to connect two nodes i and j is
given by P;;=\ exp(-\d;;), where \ is a parameter to adjust
the network degree and d;; is the Euclidean distance between
i and j. Such a model was introduced by Waxman in order to
model the Internet topology [34]. Knitted networks (KT)
[24] can be obtained by generating random sequences of
nodes and connecting them sequentially (without repetition).
The number of generated sequences depends on the network
average connectivity. This network is particularly regular
with respect to several of its topological and dynamical prop-
erties [24,25]. In the current work, all these networks are
grown with parameter sets so as to have the same number N
of nodes and average degree as similar as possible.

In order to visualize the network distribution and separa-
tion (discriminability), the set of feature vectors correspond-
ing to the measurements of each network can be projected
onto a 2D space of by canonical variable analysis. In the
current work, we take into account as original measurements
the mean, standard deviation, kurtosis and skewness of each
matrix R,. In this case, if we consider a maximum of H
distances, we have a set of 4H measurements, and each net-
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work is represented by a feature vector U,
={lu’1’0-1’Kl’wlnu‘Z’o-Z’KZ’wZ'" HU“H?O-H’KH"’)H}’ where
Mns O Kp,, and oy, stand for the average, standard deviation,
kurtosis, and skewness of the values in the matrix R;,, respec-
tively. The network projections obtained by the canonical
variable analysis reflect the network similarities in terms of
their respective feature vectors. Indeed, models that are
mapped nearby in the projected space present similar topo-
logical properties.

IV. RESULTS AND DISCUSSION

Our first experimental investigation concentrates in the
characterization and discrimination between the topologies
of six different complex networks theoretical models,
namely: (i) the random graphs of ER [31], (ii) the small-
world network model of WS [18], (iii) the geographical
model of Waxman (GN) [34], (iv) the scale-free model of
BA [32], (v) the nonpreferential attachment model of Krapiv-
sky et al. (NL) [33] and (vi) the knitted network model of
Costa (KT) [24]. We obtained the four first statistical mo-
ments, namely the mean (w), standard deviation (o), kurtosis
(k) and skewness w of the matrices R, for h=2,...,5, for
each network model realization. In this way, each generated
network is represented in terms of a vector with 16 elements,
i.e. the network n is represented by the respective vector
ljn:{lu’l’o-l’Kl’wl’/-L2’a-2’K2’w2--- ’/J'S’O-S’KS’Q)S}’ where
Mns O Kp, and oy, stand for the average, standard deviation,
kurtosis and skewness of the values in the matrix R, respec-
tively. We generated 25 network realizations for each model,
considering N=500, and, after standardization of the feature
vectors [35], they were projected into the 2D space by ap-
plying the canonical variable analysis methodology.

Networks generated by each model must present the same
number of nodes and edges. The comparison of networks
with different numbers of nodes and connections is artificial
and can result in biased results. To obtain a significant com-
parison, the networks must present comparable (ideally the
same) number of nodes and connections, since the differ-
ences between two networks should be reflected only in the
organization of the connections. To compare networks of dif-
ferent size, it is necessary to consider the z score, as present
in the following.

In Fig. 5, each of the respective types of networks gener-
ated by these models is represented by a respective indepen-
dent cluster of points (networks share similar topological
properties and therefore have similar measurements), which
indicates a clear separation between each network theoretical
model. Networks presenting similar structures, such as ER
and WS networks, are projected nearby. Therefore, the net-
works are basically discriminated according to the organiza-
tion of the connections, which is reflected in the distribution
of the number of paths. While the networks generated by
preferential attachment rule (BA and NL, orange and light-
blue points) are organized at the right side of the projection,
the most regular models (KT and ER, gray and blue points)
are found at the left side. In addition, the network models
that generate networks with more regular structure tend to
present the smallest cloud dispersions (KT and WS, gray and
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FIG. 5. (Color online) The projection of the networks generated
by the ER (square), WS (circle), BA (triangle), NL (upside down
triangle), GN (diamond), and KT (hexagon) network models in the
two-dimensional space.

green points). In this way, by providing accurate discrim-
inability between different models, the generalized connec-
tivity approach presents good potential for enhancing net-
work characterization and classification of networks, as well
as for establishing relationships between them.

We compared the discrimination between theoretical
models obtained by taking into account the number of paths
with that achieved by using traditional network measure-
ments. In the latter case, we calculated the mean degree,
average clustering coefficient, average shortest path length,
central point dominance, mean betweenness centrality, and
assortativity coefficient from the same set of networks which
were considered in the number of paths analysis. All these
measurements are described in [4]. Figure 6 presents the ob-
tained projection. The discrimination between the classes can
be quantified in terms of the coefficient presented in Eq. (11).
In this way, while the moments of the number of paths pro-
vided a discrimination coefficient equal to g=608, the tradi-
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FIG. 6. (Color online) The projection of the networks generated
by the ER (square), WS (circle), BA (triangle), NL (upside down
triangle), GN (diamond), and KT (hexagon) network models in the
two-dimensional space by taking into account traditional network
measurements, i.e., mean degree, average clustering coefficient, av-
erage shortest path length, central point dominance, mean between-
ness centrality, and assortativity coefficient.
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TABLE I. The z scores and the average number of paths (indicated between parenthesis) obtained for the

real-world networks investigated in this work.

Network N kb Z(R)) 73 (R3) Zs ((Ry)) Zs ((Rs)) Zs ((Rg))
Food web 78 3.1 0.002 (0.05) —0.087 (0.03) -0.12 (0) -0.13 (0) -0.11 (0)
Cortical network 53 155 —0.027 (5)  —0.043 (85) —0.06 (1400) -0.08 (21800) —0.11 (331000)
Neural network 297 7.9 0.026 (0.30)  0.045 (3) 001 (25)  -0.05 (210)  -0.10 (1750)
US Highway 284 6.0 0(0.02)  -0.048(2)  -0.06 (13)  -0.06 (100)  —0.06 (680)

tional measurements resulted in a coefficient equal to ¢
=439. Note that the larger this coefficient, the better the
separation between classes. So, the number of paths provide
a better discrimination than the network measurements. At
the same time, the groups obtained by using the path-based
measurements are substantially more compact than those
produced by the traditional measurements, which further cor-
roborate the better discriminative power of the former type
of measurements.

We also illustrate the potential of the identification of al-
ternative paths with respect to the following real-world net-
works: (i) US highway network, (ii) neural C. elegans net-
work [18], (iii) cat cortical network [19], and (iv) a food web
of a broadleaf forest in New Zealand [20]. Details about
these networks are given in Table I. Since these networks
present different number of nodes and connections, they can-
not be directly compared—note that the number of paths for
the cortical network is higher than for the other networks,
which is a direct consequence of its higher average node
degree. In this way, we considered the z score in order to
characterize the distribution of paths. The z score is calcu-
lated as [36]

Zh - i = Mrandom i (12)

O random

where w; is the average number of paths of length % in the
real network, and ,400m aNd O ,unqom are the average and
standard deviation of the number of paths in the respective
randomized network ensemble, which were generated by the
configuration model and present the same degree distribution
as the respective real-world network [37]. The obtained re-
sults for the four networks are presented in Table I. It is
interesting to note that just the neural network of the nema-
tode C. elegans, which is the only case of a nervous system
completely mapped at the level of neurons and chemical syn-
apses [18], presents larger number of paths of lengths h=2,
3, and 4 than the randomized counterparts. For 7>4, the
randomized versions present higher number of paths. This
suggests that connections of length 2, 3, and 4 could be more
important for allowing proper dynamics in the C. elegans
network. The highest difference for A=3 suggests that the
evolution of the neuronal organization in this species tended
to favor the alternative connections of length 3, while avoid-
ing longer range connections. On the other hand, in case of
the food web, the cortical network and the US highway, the z
scores decrease with &, which indicates that such networks
tend to present smaller number of paths of length #>2 than
their randomized versions. Particularly, since food web tend

to present a small number of trophic levels, there are no
paths of length 4 >4, while the randomized version can dis-
play longer path sizes. Indeed, the small network diameter is
a direct consequence of the energy transmission between
trophic levels [38]. In the case of the highway network, the
fact that the randomized versions tended to present larger
number of paths than the respective real-world version is a
direct consequence of the fact that the connections in geo-
graphical highway network are likely to be constrained by
the adjacency between neighboring localities.

We also investigated the distribution of alternative paths
in modular networks. Since pairs of nodes belonging to a
same community tend to be more strongly connected, the
number of paths between them tends to be relatively large.
We investigated the relationship between the number of
paths and community structure with respect to the Zachary
karate club network and to an artificial modular network of
the type which has been widely used as tests for community
structure algorithms (e.g., [39]). Note that the consideration
of this networks is only to exemplify the relationship be-
tween the number of paths and network modular organiza-
tion.

The karate club network was constructed with the data
collected while observing 34 members of a karate club over
a period of 2 years and considering friendship between mem-
bers [40]. From this network, we calculated the respective R,
matrices for h=1, 2, and 3. After standardization of the fea-
ture vectors, we applied the PCA on the matrices R, and
obtained the projections presented in Fig. 7. Note that each
node i presents a respective feature vector corresponding to
the line (or row) i of R;,. The best separation of the Zachary
karate club network was obtained for =2, with the classifi-
cation of the nodes into the two clusters corresponding pre-
cisely to the actual division of the club members. The case
h=1, which is equivalent to the traditional adjacency matrix,
does not provide an accurate separation of the communities
into different clusters. For 7= 3, the separation is worse than
for h=2 because the network presents a very small average
shortest distance (€=2.3). When taking into account the
shortest path matrix, the discriminability also resulted worse
than that obtained for R,. In fact, the best value of & can be
determined in terms of the modularity value [41], i.e., the
separation can be calculated using different R, matrices and
then choosing the one which results in the largest modularity
value.

The relationship between the number of paths and the
network modular organization was also investigated with re-
spect to computer-generated networks with a known commu-
nity structure, as described in [39]. These networks are
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FIG. 7. (Color online) The original separation between the two
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formed by 128 vertices grouped into four communities of 32
vertices each. Each vertex has z;, links to vertices in the
same community and z,,, edges to vertices in other commu-
nities. The vertices between communities were distributed
uniformly. Figure 8 presents an example of the obtained
community networks (z,,,=6) and the respective projection
of the R, matrix into three dimensions. As we can see, the
communities are perfectly separated, which suggests that

short paths tend to connect nodes inside the same commu-
nity.

V. CONCLUDING REMARKS

The concept of connectivity underlies great part of com-
plex networks research. However, connectivity has typically
been understood and quantified in terms either of strictly
local measurements between neighboring nodes, such as the
local degree, or by considering shortest path lengths. Though
more global, the latter feature fails to take into account alter-
native pathways between pairs of nodes, which are extremely
important in influencing the topological properties of the net-
works. For instance, the presence of more than one path be-

PHYSICAL REVIEW E 81, 036113 (2010)

3th principal axis

FIG. 8. (Color online) (a) The artificial network containing four
communities and (b) the projection of the respective matrix R, into
the three-dimensional space considering the PCA methodology.

tween two nodes tends to increase the connectivity between
them and consequently raises their communication robust-
ness under edge disruption.
In the current paper, we analyzed the generalized network
connectivity, i.e., the consideration of alternative paths of
different lengths between each pair of nodes, with respect to
the characterization of six theoretical network models and
four real-world networks, as well as for investigation of the
relationship between the number of paths and community
organization. We showed that the consideration of the alter-
native paths between nodes can provide accurate network
topology discriminability while identifying interesting rela-
tionships, as observed for the networks generated by the dif-
ferent models. The analysis of real-world networks suggests
that the long-range connectivity tends to be limited in those
networks and may be strongly related to network evolution
and organization. In addition, we studied how the distribu-
tion of the number of paths is related to network modular
structure. The obtained results indicate that the proposed ap-
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proach is potentially promising for community identification.
In addition, a possibility for future work would be the con-
sideration of pattern recognition approaches to quantify the
separation between several types of networks models and
therefore provide complex networks taxonomies. In this

PHYSICAL REVIEW E 81, 036113 (2010)

case, real-world networks can be associated to the most
likely theoretical model, as described in [4]. Studies relating
the number of paths with network dynamics constitute an-
other promising research possibility.

Algorithm 1 The general algorithm to obtain the number of paths between each pair of nodes.

for each node i do
h=1;

next=one of the nonvisited immediate neighbors of i;

stack.push(remainder of nonvisited immediate neighbors of i, h);

path.push(next);
R(next,i,h)=1;
while stack not empty or size(path) >0 do
curr=next;
ng=number of nonvisited neighbors of curr;
h=h+1;
if ng>0 then
next=one of the nonvisited neighbors of curr;

stack.push(remainder of nonvisited immediate neighbors of curr, h);

path.push(next);
else
next,h=stack.pop(one node, h);
node=-1;
while node # next do
node=path.pop();
Set node as not visited;
end while
end if
R(next,i,h)=R(next,i, h)+1;
end while
end for
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