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We develop a method for calculating the equilibrium properties of the liquid-solid phase transition in a
classical, ideal, multicomponent plasma. Our method is a semianalytic calculation that relies on extending the
accurate fitting formulas available for the one-, two-, and three-component plasmas to the case of a plasma with
an arbitrary number of components. We compare our results to those of C. J. Horowitz et al. �Phys. Rev. E 75,
066101 �2007��, who used a molecular-dynamics simulation to study the chemical properties of a 17-species
mixture relevant to the ocean-crust boundary of an accreting neutron star at the point where half the mixture
has solidified. Given the same initial composition as Horowitz et al., we are able to reproduce to good accuracy
both the liquid and solid compositions at the half-freezing point; we find abundances for most species within
10% of the simulation values. Our method allows the phase diagram of complex mixtures to be explored more
thoroughly than possible with numerical simulations. We briefly discuss the implications for the nature of the
liquid-solid boundary in accreting neutron stars.
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I. INTRODUCTION

During the crystallization of a plasma containing multiple
ion species, the chemical composition of the solid is in gen-
eral different from that of the liquid. This type of chemical
separation is important for both white dwarfs �1� and accret-
ing neutron stars �2�. The interior of a white dwarf is a mix-
ture of carbon, oxygen, and traces of other elements, most
abundantly neon. As the star cools, chemical separation leads
to the formation of an oxygen- and neon-rich core. The en-
ergy released through the gravitational settling of the denser
core material heats the star and can delay cooling by several
Gyr �3�. A neutron star accretes mostly hydrogen and helium
from its companion, but this material undergoes a series of
nuclear reactions, including rapid proton capture �4� and then
electron-capture reactions �5�, to produce a variety of ele-
ments. Through accretion, the mixture is pushed deep into
the star and solidifies. Recent numerical simulations have
shown that the mixture undergoes chemical separation dur-
ing solidification �2�, possibly forming a two-phase solid �6�.
The composition of the liquid ocean and the structure and
composition of the crust have important implications for a
range of observed phenomena. For example, the resulting
thermal conductivity determines the cooling rate of tran-
siently accreting neutron stars following extended accretion
outbursts �7,8�. The mechanical strength of the crust limits
the size of a possible crust quadrupole and therefore gravita-
tional wave emission �9�.

Several groups have studied the liquid-solid phase transi-
tion and chemical separation of two- and three-component
plasmas in the classical, ideal limit �i.e., ignoring quantum-
mechanical effects on the ions and treating the electrons as a
uniform background; cf. Ref. �10��. Early works �e.g., Ref.
�11�� studied phase transitions in carbon-oxygen plasmas, but
the approximations used were too crude for application to the

interiors of white dwarfs. Accurate calculations using the
mean spherical approximation in the density-functional for-
malism were performed by Barrat et al. �12�, who studied
carbon-oxygen plasmas, and by Segretain and Chabrier �13�,
who studied arbitrary two-component plasmas with atomic
number Z ratios up to 2 �see also Ref. �14�, where carbon-
oxygen-neon plasmas are examined�. Using Monte Carlo
calculations and Z ratios up to 5, Ogata et al. �15� studied
arbitrary two- and three-component plasmas and DeWitt and
Slattery �16� two-component plasmas with a very accurate
measurement of the liquid free energy �see also Refs.
�17,18��. All of these groups present phase diagrams as a
function of ion abundance and some �15,16� also present
fitting formulas for the liquid and solid free energies. Using
these diagrams and fitting formulas, one can determine the
phase-transition properties for a two-component plasma of
any ion type and abundance.

These calculations are particularly useful for the interior
of a white dwarf, where there are only two or three dominant
elements. But in the ocean of an accreting neutron star, there
are around 10–20 elements with abundances �1% �5�, each
one with a potentially important effect on the behavior of the
phase transition and chemical separation of the mixture. The
available analytic or numerical results for this type of system
are extremely limited. We are aware of only one study of
phase transitions in plasmas with more than three compo-
nents: that of Horowitz et al. �2� �see also Refs. �6,19��.
These authors used molecular-dynamics simulations to study
a 17-component plasma with a composition similar to that
expected at the ocean-crust interface of an accreting neutron
star. Due to the large amount of computing power necessary
to run each simulation, the phase-transition properties have
so far only been calculated for one composition.

We present here a method for rapidly calculating the prop-
erties of the liquid-solid phase transition in a multicompo-
nent plasma in the classical ideal limit for any initial com-
position and ion types. Our method is a semianalytic
calculation that relies on extending the accurate fitting for-
mulas available for the one-, two-, and three-component
plasmas to the case of a plasma with an arbitrary number of
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components. We test our method using the one data point
available for a plasma with more than three components, the
calculation of �2�, and show that it performs very well in that
specific case.

The paper is organized as follows. In Sec. II we describe
the semianalytic calculation as it applies to the one-
component plasma �Sec. II A�, the two-component plasma
�Sec. II B�, and the multicomponent plasma �Sec. II C�. In
Sec. III, we present our results for the 17-component mixture
of Horowitz et al. �2�. We conclude in Sec. IV. The pressure
term in the Gibbs free energy and its effect on the phase
transition, the importance of the deviation from linear mixing
for the liquid free energy, and a simplified derivation of the
deviation from linear mixing for the solid free energy are
discussed in Appendixes A–C.

II. METHOD

A. One-component plasma

We assume in this paper that the system has reached equi-
librium, i.e., the state of lowest free energy. The validity of
this assumption and nonequilibrium effects such as diffusion
and sedimentation will be discussed in a later paper. We also
assume here that the phase transition happens at constant
volume, in which case the equilibrium configuration of the
system is determined by the state with the lowest Helmholtz
free energy, F=U−TS. In reality, the transition happens at
constant pressure and at minimized Gibbs free energy. The
error introduced by using the constant volume approximation
is discussed in Appendix A. We find that for the mixture
considered in Sec. III, the abundance in the liquid state of
each ion species is in error by no more than 2%. While the
percentage errors in the abundances in the solid state are
typically larger by factors of �2–5, the absolute errors for
each ion species are similar in either state. �Since this trend
holds true for most of the approximations we make in this
paper, we hereafter quote errors in our approximations only
for the liquid abundances.� Note that in transitions at con-
stant volume, the free energy of the electrons is identical in
the liquid and in the solid and so has no effect on the prop-
erties of the phase transition.

The Helmholtz free energy of the liquid or solid phase of
a one-component plasma �OCP� can be described as a func-
tion of only the number of ions N, the temperature T, and the
Coulomb coupling parameter ���Ze�2 / �akBT�=Z5/3�e.
Here, Ze is the ion charge, a is the ion separation, and kB is
the Boltzmann constant; �e�e2 / �aekBT� is the electron cou-
pling parameter, where ae= �3 / �4�ne��1/3 is the mean elec-
tron spacing and ne=ZN /V is the electron density.

The ideal-gas contribution to the free energy of a one-
component plasma Fideal is given by

f ideal �
Fideal

NkBT
= ln�N

V
� h2

2�mikBT
	3/2
 − 1

= 3 ln � +
3

2
ln�kBT�Ry − 1 − ln

4

3��
, �1�

where mi=Amp is the mass of the ion and �kBT�Ry
=kBT2�2 / �miZ

4e4� is the thermal energy expressed in ionic

Rydberg units. The free energy of the liquid phase of a one-
component plasma Fl

OCP is well fit for �� �1,200� by

f l
OCP��� �

Fl
OCP

NkBT
= − 0.899 172� + 1.8645�0.323 01

− 0.2748 ln��� − 1.4019. �2�

The previous formula is from the Monte Carlo calculations
of DeWitt and Slattery �16�, with the modification that the
ideal-gas contribution to the free energy �Eq. �1�� has been
removed. Other formulas for f l

OCP can be found in Refs.
�10,20–22� �see also Refs. �23,24��; for the range of � we are
concerned with in this paper �15���200�, the differences
between these formulas, and between the numerical data
these formulas are based on, are less than 0.006.

The free energy of the solid phase of a one-component
plasma Fs

OCP is well fit for �� �160,2000� by

Fs
OCP

NkBT
= − 0.895 929� + 1.5 ln��� − 1.1703

−
10.84

�
−

176.4

�2 −
5.980 	 104

�3 . �3�

The previous formula is from �25�; it was derived using a
combination of analytic methods and a fit to the Monte Carlo
calculations of Ref. �26�. As in the liquid case, we have
modified Eq. �3� from its original form by removing the
ideal-gas contribution. Another formula for Fs

OCP / �NkBT� of
similar accuracy �with less than 0.004 difference from Ref.
�25� or the numerical data for 160���2000� can be ob-
tained from the molecular-dynamics calculations of Ref. �24�
�see also Refs. �20,27��. In this paper, we neglect the �−2 and
�−3 terms in Eq. �3� and use the following approximation for
Fs

OCP:

fs���OCP �
Fs

OCP

NkBT
� − 0.895 929� + 1.5 ln���

− 1.1703 −
10.84

�
. �4�

This expression fits the numerical data for 160���300
with an accuracy several times lower than that of Eq. �3�
�differing by up to 0.02 for ��160�. We use this expression
in place of Eq. �3�, however, because it behaves qualitatively
better for small �, as we discuss below.

The free-energy difference based on these fits is given by


f fit
OCP��� � �f l − fs�OCP = − 0.003 243� + 1.8645�0.32301

− 1.7748 ln��� − 0.2316 + 10.84/� .

�5�

In equilibrium, the system will be in the state of lowest free
energy: when 
fOCP�0, the OCP is in the liquid state, and
when 
fOCP�0, it is in the solid state. When 
fOCP=0, there
is a phase transition between the liquid and solid state. This
occurs at
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�crit = 178.6 �6�

in the above equation. Note that if we had used Eq. �3� in-
stead of Eq. �4� to calculate 
f fit

OCP, we would obtain �crit
=175.3, which is in agreement with the most accurate esti-
mates currently available for this value �e.g., �crit
=175.0�0.4 in Ref. �10��; our �crit differs from the true
transition value by about 2%.

Equation �5� is only accurate for �� �160,200�. While
there are no Monte Carlo or molecular-dynamics data avail-
able for f l

OCP when ��200, Ichimaru et al. �28� calculated
f l

OCP up to �=1000 using the “improved hypernetted chain”
�IHNC� method. For �� �200,1000�, if f l

OCP is given by Ref.
�28� and fs

OCP is given by Eq. �4�, the approximation


fOCP��� = 0.09 + 0.0043�� − 200� �7�

fits the free-energy difference to within 0.2. This error is of
similar magnitude to the error in the IHNC method for �
�200 �as extrapolated from comparisons between IHNC ap-
proximations and Monte Carlo calculations at ��200; see,
e.g., �29,30��, and is several times smaller than the error that
would be obtained by a direct application of Eq. �5� to the
domain �� �200,1000�.

There are currently no published results �numerical or
otherwise� for f l

OCP above �=1000 or fs
OCP below �=160.

However, we expect 
fOCP to increase monotonically with
increasing �, not just in �160, 1000� but for all �. In other
words, for the OCP, the solid state should always become
more stable with respect to the liquid as � increases and less
stable as � decreases. Equation �7� extended out to arbitrarily
large � remains consistent with this assumption, but Eq. �5�
extended down to �=0 does not. This is because 
f fit

OCP de-
creases with � for �� �0,50�. An even stronger argument
against 
f fit

OCP representing the true free-energy difference at
small � is that 
f fit

OCP�0 for ��17, which would imply that
the OCP were in the solid state at very low �. Note that these
effects are even worse if Eq. �3� is used to represent fs

OCP: in
that case, the free-energy difference decreases with � for �
� �0,85� and is greater than zero for ��51. To avoid
small-� problems, we cut off Eq. �5� at �=100 and assume
that below this value, the free-energy difference is given by


fOCP��� = − 0.37 + 0.0046�� − 100� , �8�

i.e., by the line tangent to 
f fit
OCP at �=100. If we had instead

used Eq. �3� to represent fs
OCP in 
f fit

OCP, Eq. �8� would change
to 
fOCP���=−0.30+0.0025��−100�. Such a change leads to
“errors” in the multicomponent results �Secs. II B and II C�
of no more than 5% for the liquid abundances, comparable to
what is seen in Fig. 5.

Our final expression for 
fOCP, valid over all �, is


fOCP��� = 
f fit
OCP��� , 100 � � � 200

− 0.37 + 0.0046�� − 100� , � � 100

0.09 + 0.0043�� − 200� , � � 200,
�
�9�

where 
f fit
OCP��� is given by Eq. �5�.

B. Two-component plasma

The free energy of a two-component plasma �TCP� can be
described as a function of N, T, and the Coulomb coupling
parameter �i=Zi

5/3�e and fractional composition xi=Ni /N of
either species of ion. Here, N=N1+N2 is the total number of
ions and ne= �Z1N1+Z2N2� /V is the total electron density.
For the rest of this section, we will identify the composition
of the TCP by x1 and the Coulomb coupling parameter by �1,
since we can express x2 and �2 as functions of these values:
x2=1−x1 and �2= �Z2 /Z1�5/3�1. Note that throughout this pa-
per, we choose to label the ionic species such that Z1�Z2
� ¯ �Zm, where m is the total number of species; Z1 al-
ways represents the ion with the smallest charge.

The free energy of the liquid phase of a two-component
plasma is given by

f l
TCP��1,x1� = �

i=1

2

xi� f l
OCP��i� + ln�xi

Zi

�Z�
	
 + f l��1,x1� ,

�10�

where �Z�=�i=1
2 xiZi is the average ion charge. The

�i=1
2 xi ln�xi

Zi

�Z� � term is the �ideal-gas� entropy of mixing for
two species of volumes Z1N1 /ne and Z2N2 /ne, and f l is the
deviation from linear mixing in the liquid. The deviation
term f l has a similar dependence on xi to the entropy of
mixing term, but is in general much smaller in magnitude
�see, e.g., Refs. �15,18,31��. We therefore expect this devia-
tion to have a minimal effect on the phase-transition proper-
ties for most systems. In our calculation, we set f l=0 and
use the linear mixing approximation

f l
TCP��1,x1� � �

i=1

2

xi� f l
OCP��i� + ln�xi

Zi

�Z�
	
 . �11�

The error introduced by neglecting the f l term in the ex-
pression for f l

TCP is discussed in Appendix B.
The free energy of the solid phase of a two-component

plasma is given by

fs
TCP��1,x1� = �

i=1

2

xi� fs
OCP��i� + ln�xi

Zi

�Z�
	
 + fs��1,x1� ,

�12�

where fs is the deviation from linear mixing in the solid.
Unlike f l, which is generally small even at large �1 �Ap-
pendix B�, fs is comparable to the other terms in fs and
grows linearly with �1; we therefore expect fs to play an
important role in setting the phase-transition properties. For
charge ratios RZ=Z2 /Z1 in the range RZ� �1:5�, the devia-
tion is well fit by

fs��1,x1� � �1x1x2g�x2,Z2/Z1� , �13�

where
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g�x,RZ�

=
C�RZ�

1 +
27�RZ − 1�

1 + 0.1�RZ − 1�
�x��x − 0.3���x − 0.7���x − 1�

,

�14�

C�RZ� =
0.05�RZ − 1�2

�1 + 0.64�RZ − 1���1 + 0.5�RZ − 1�2�
. �15�

Equation �13� is from the Monte Carlo calculations of �15�
and is accurate to within 10% for RZ�4.5; a similar formula
�though accurate only for RZ�2� can be found in �16�. To
estimate the error introduced to our results by adopting Eq.
�13�, we run several calculations with a deviation of
1.1fs��1 ,x1� and 0.9fs��1 ,x1� �i.e., 10% higher or lower
than the deviation we use in our model�. For the TCP, we
find errors in the liquid abundances of 5% or less, with the
largest errors at high � values and moderate charge ratios
�RZ�1.5�. For the 17-component mixture and � value con-
sidered in Sec. III, the errors in the liquid abundances are
only 2% or less.

For a TCP at a particular value of �1, we find the state of
lowest free energy as a function of composition by using the
“double-tangent” construction �see, e.g., Ref. �32��. We con-
struct lines tangent to the minimum free energy curve fmin
=min�f l , fs� in at least two points, corresponding to the com-
positions a1 and b1; an example of this construction is shown
graphically in Fig. 1. Any homogeneous composition x1 that
lies between a1 and b1, i.e., any x1 which can be expressed as
Aa1+ �1−A�b1=x1 for some 0�A�1, satisfies Afmin�a1�
+ �1−A�fmin�b1�� fmin�x1� and is therefore unstable with re-
spect to a heterogeneous mixture of a1 and b1. In this paper,
we refer to the locus of all points ��1 ,x1� that lie between
double-tangent points ��1 ,a1� and ��1 ,b1� as the “unstable
region” of the phase diagram.

Note that double-tangent points a1 and b1 can potentially
be constructed from the liquid curve to itself, from the solid
curve to itself, or from the liquid curve to the solid curve,
depending on the behavior of f l and fs �see Eqs. �11� and
�12��. In some cases, “triple-tangent” points can be con-
structed; typically, this occurs when the solid curve is tangent
to itself and to the liquid curve �when the liquid is at the
“eutectic point;” see, e.g., Ref. �13��. The liquid-solid solu-
tions are discussed below in Sec. IIB1. In the approximation
we have adopted above, where the deviation from linear
mixing for the liquid is f l=0, tangents to the liquid curve f l
do not intersect the curve at any other point �cf. Eq. �11��;
therefore, there are no liquid-liquid solutions. Because of the
fs�0 term in the solid curve, which grows proportional
with �1 �see Eq. �13��, when �1 is large enough, there will
always be regions of fs where double tangents can be con-
structed from the solid curve to itself. These solid-solid so-
lutions will be examined in a later paper.

Solving for the liquid-solid equilibrium
of the two-component plasma

For a two-component plasma, liquid-solid phase transi-
tions occur at compositions and � values where double-

tangent lines can be drawn connecting the free-energy curves
of the liquid and the solid. Under these conditions, a liquid
state of composition a1 and a solid state of composition b1
exist simultaneously as a mixture. For a double-tangent line
connecting f l to fs, the line must satisfy

f l��a1� = fs��b1� �16�

and

f l�a1� + �b1 − a1�f l��a1� = fs�b1� . �17�

For later convenience, we rewrite these equations as

f l�a1� + �1 − a1�f l��a1� = fs�b1� + �1 − b1�fs��b1� �18�

and

f l�a1� − a1f l��a1� = fs�b1� − b1fs��b1� . �19�

Using Eqs. �11� and �12�, the system of equations to solve
becomes


fOCP��1� + ln�a1
Z1

�Z� a	 −
Z1

�Z� a

= ln�b1
Z1

�Z� b	 −
Z1

�Z� b − fs + �1b2�g�b2,Z2/Z1�

− b1b2�dg

dx

�b2,Z2/Z1�� , �20�


fOCP��2� + ln�a2
Z2

�Z� a	 −
Z2

�Z� a

= ln�b2
Z2

�Z� b	 −
Z2

�Z� b − fs + �1b1�g�b2,Z2/Z1�

− b1b2�dg

dx

�b2,Z2/Z1�� , �21�
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FIG. 1. �Color online� An example of the double-tangent con-
struction for RZ=34 /8 and �1=�crit /6 �cf. Figs. 4 and 5�. The stable
compositions a2 and b2 �i.e., 1−a1 and 1−b1� are marked by filled
circles; here, one of the mixtures is stable in the liquid state and one
is stable in the solid state. Note that the curves f l and fs plotted in
this figure are given not by Eqs. �11� and �12�, respectively, but by
these equations minus the term �i=1

2 xif l
OCP��i�. The values of a2 and

b2 obtained are the same whether f l
TCP and fs

TCP or these modified
expressions are used: adding terms constant or linear in the xi’s to
both free-energy curves has no effect on the results of the double-
tangent construction.
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where �Z�a=�aiZi, �Z�b=�biZi, and

�dg

dx

�x,RZ� = −

C�RZ��2x − 3�x + 1.21 − 0.105/�x�

�1 +
27�RZ − 1�

1 + 0.1�RZ − 1�
�x��x − 0.3���x − 0.7���x − 1�
2

. �22�

�cf. Eq. �14��. With these two equations �and a1+a2=1, b1
+b2=1�, if we are given �1, we can solve for a1 and b1. This
allows us to trace out the liquid-solid unstable region of the
phase diagram for �1 versus x1. Note that to map out the full
phase diagram, we also need to know the shape of the solid-
solid unstable region; this is most important at large �1. Ex-
amples of phase diagrams for TCPs �including both types of
unstable regions� are shown in Appendixes A–C.

C. Multicomponent plasma

The free energy of an m-component plasma �MCP� can be
described as a function of N, T, the fraction composition of
each ion species xi=Ni /N �though xm is not needed, since
xm=1−�xi�, and the Coulomb coupling parameter of one ion
species. In the following, we solve for �1=Z1

5/3�e and then
use the relation �i= �Zi /Z1�5/3�1 to find the other parameters.

As with the two-component plasma, the free energy of the
liquid phase of a multicomponent plasma is very well de-
scribed by the linear mixing rule �but see Appendix B�

f l
MCP��1,x1, . . . ,xm−1� � �

i=1

m

xi� f l
OCP��i� + ln�xi

Zi

�Z�
	
 ,

�23�

where �Z�=�i=1
m xiZi.

The free energy of the solid phase of the MCP is

fs
MCP��1,x1, . . . ,xm−1� � �

i=1

m

xi� fs
OCP��i� + ln�xi

Zi

�Z�
	


+ fs��1,x1, . . . ,xm−1� . �24�

According to �15�, the deviation of the solid from linear mix-
ing fs for a three-component plasma is given to good accu-
racy by

fs��1,x1, . . . ,xm−1� � �
i=1

m−1

�
j=i+1

m

�ixixjg� xj

xi + xj
,
Zj

Zi
	 ,

�25�

where Z1�Z2� ¯ �Zm and g�x ,RZ� is given by Eq. �14�.
We assume here that Eq. �25� applies for all m�2. A partial
justification for this assumption is provided in Appendix C.

In the m-component plasma, we construct
�m−1�-dimensional hyperplanes tangent to the minimum
free-energy surface in at least two points, corresponding to
the compositions a� and b� . Any homogeneous composition x�
that lies between a� and b� , i.e., any x� which can be expressed

as Aa� + �1−A�b� =x� for some 0�A�1, is unstable with re-
spect to a heterogeneous mixture of a� and b� .

Solving for the liquid-solid equilibrium
of the multicomponent plasma

For a multicomponent plasma, liquid-solid phase transi-
tions occur at compositions and � values where double-
tangent hyperplanes can be drawn connecting the free-energy
surfaces of the liquid and the solid. For a double-tangent
hyperplane connecting f l�a�� to fs�b��, the hyperplane must
satisfy

dfl

dxi
�a�� =

dfs

dxi
�b��, i � �1,m − 1� �26�

and

f l�a�� + �b� − a�� · �� f l�a�� = fs�b�� , �27�

or

f l�a�� +
dfl

dxi
�a�� − a� · �� f l�a�� = fs�b�� +

dfs

dxi
�b�� − b� · �� fs�b�� ,

i � �1,m − 1� �28�

and

f l�a�� − a� · �� f l�a�� = fs�b�� − b� · �� fs�b�� . �29�

Using Eqs. �23� and �24�, the system of equations to solve
becomes


fOCP��i� + ln�ai
Zi

�Z� a	 −
Zi

�Z� a

= ln�bi
Zi

�Z� b	 −
Zi

�Z� b − fs��1,x1, . . . ,xm−1�

+ �
j=1

i−1

� jbj�g� bi

bi + bj
,
Zi

Zj
	 +

bibj

�bi + bj�2�dg

dx



	� bi

bi + bj
,
Zi

Zj
	� + �

j=i+1

m

�ibj�g� bj

bi + bj
,
Zj

Zi
	

−
bibj

�bi + bj�2�dg

dx

� bj

bi + bj
,
Zj

Zi
	� �30�

for i� �1,m�. Here, �Z�a=�aiZi, �Z�b=�biZi, and
� dv

dx ��x ,RZ� is again given by Eq. �22�. With these m equa-
tions �and �ai=1, �bi=1�, if we are given the liquid com-
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position a� , we can solve for the solid composition b� and
Coulomb parameter �1 at which the liquid and solid states
are in equilibrium; if we are given b� , we can solve for a� and
�1. In this manner, we can trace out the liquid-solid unstable
region of the phase diagram for �1 versus x�. As in the TCP
case, to map out the full phase diagram, we also need to
know the shape of the solid-solid unstable region.

Alternatively, if we are given an initial composition x� and
the fraction 0�A�1 of the solution in the liquid state �or
the fraction 1−A in the solid state�, we can solve for �1 and
the compositions of both the liquid and solid mixtures in
equilibrium. We have 2m−1 unknowns, a1 , . . . ,am−1,
b1 , . . . ,bm−1, and �1; but in addition to the m equations Eq.
�30� above, we have the m−1 equations

Aai + �1 − A�bi = xi, i � �1,m − 1� . �31�

III. RESULTS

As described in Sec. I, Horowitz, Berry, and Brown �2�
�hereafter HBB� used a molecular-dynamics simulation to
study the phase transition of a 17-component plasma. A total
of 27 648 ions are placed in a simulation volume of length
727.5 fm on a side. At the start of the simulation, 50% of the
plasma is in the liquid state and 50% is in the solid state.
There is a uniform composition throughout the volume,
given by the results of Gupta et al. �5� �who calculated the

composition of an accreting neutron star at a density of 2
	1011 g /cm3 after the accreted material has undergone pro-
ton and electron capture and various other reactions�. As the
system evolves, the temperature is adjusted so that approxi-
mately half of the plasma remains in the liquid state and half
remains in the solid state. After a simulation time of 5
	106 fm /c, the simulation is run at constant energy until
the total time reaches 151	106 fm /c. The results of the
numerical simulation are shown in Table I. The final tem-
perature of the simulation is expressed in terms of �1 as well
as the “average” Coulomb coupling parameter, �= �Z5/3��e.
For each entry in Table I, a statistical ��Ni� error is provided.

We have applied our semianalytic calculation �Sec. II C�
to the same 17-component mixture as is considered by HBB.
In Eq. �31�, we set x� to the “initial” composition given in
Table I and choose A=0.5, such that we are solving for the
equilibrium state where 50% of the mixture is liquid and
50% is solid. We then use Eqs. �30� and �31� to find the final
composition of the liquid and solid states, a� and b� . The result
is given in Table II. For each entry in Table II, an error is
provided in terms of the percent difference from the corre-
sponding HBB result.

The results of Table II are relevant under equilibrium con-
ditions, which in the accreting neutron star means that the
particles solidify and diffuse through the liquid and the solid
faster than new material is accreted. Here we attempt to es-
timate the importance of the diffusion rate on the overall
results. In order to do that, we repeat our calculation done

TABLE I. Abundance of chemical element Z for various mixtures from the numerical simulation of
Horowitz et al. �2�. Abundances are provided for the initial mixture �in the column labeled “Initial”� and the
final liquid and solid mixtures �in the columns labeled “Liquid” and “Solid,” respectively�. For each final
mixture, the average charge �Z� and Coulomb coupling parameter �= �Z5/3��e are provided as well. The
percentage error for each entry is given by 100 /�Ni, where Ni=xiN and N=27 648.

HBB results
�Z�l=28.04, �Z�s=30.48, �1=27.7, �l=233, �s=261

Z Initial Liquid % Error Solid % Error

8 0.0301 0.0529 3 0.0087 6

10 0.0116 0.0205 4 0.0021 13

12 0.0023 0.0043 9 0.0006 24

14 0.0023 0.0043 9 0.0005 27

15 0.0023 0.0043 9 0.0004 30

20 0.0046 0.0055 8 0.0029 11

22 0.0810 0.1024 2 0.0616 2

24 0.0718 0.0816 2 0.0635 2

26 0.1019 0.1065 2 0.1017 2

27 0.0023 0.0025 12 0.0027 12

28 0.0764 0.0744 2 0.0746 2

30 0.0856 0.0773 2 0.0949 20

32 0.0116 0.0099 6 0.0130 5

33 0.1250 0.1079 2 0.1388 1

34 0.3866 0.3408 1 0.4297 0.9

36 0.0023 0.0012 17 0.0030 11

47 0.0023 0.0030 11 0.0013 17
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with “instantaneous diffusion” �Table II�, this time assuming
“no diffusion” in the solid �36�. As in the equilibrium case,
the calculation starts with the plasma in the liquid state with
initial composition given by HBB and ends when 50% of the
plasma is liquid and 50% is solid. Unlike in the equilibrium
case, however, we solve Eqs. �30� and �31� many times, each
time producing a small amount of solid material �1−A�1�.
Solid particles created in one step are removed from consid-
eration in all future steps, since we are assuming that these
particles do not mix. The liquid composition �a�� calculated in
one step is used as the “initial” composition �x�� in the next
step.

While an exact treatment of the no diffusion limit would
require solving Eqs. �30� and �31� on a particle-to-particle
basis, we find that a good approximation can be obtained
using 500 steps with Ak=1−1 / �1001−k� for each step k.
�The difference between the final abundances calculated us-
ing 50 steps with Ak=1−1 / �101−k� and 500 steps with Ak
=1−1 / �1001−k�, e.g., is less than 0.2%.� The result is given
in Table III. Note that for this choice for Ak, the number of
solid particles created is the same in each step. The average
solid composition is given by

�b�� =
1

50�
k=1

50

b�k, �32�

where b�k is the composition of the solid particles created in
the kth step.

A comparison of Tables II and III shows that calculations
done under the two diffusion limits give very similar results.
For example, the abundance differences between these two
calculations are generally much smaller than between either
calculation and the results of HBB. Therefore, we conclude
that the error introduced into our calculation by assuming
instantaneous diffusion rather than the actual diffusion rate
�whatever that may be� is small. Note that even though the
rate of diffusion has very little effect on the average compo-
sition in the solid, it has a strong effect on the how that
composition varies locally. For sufficiently low diffusion
rates, lamellar sheets or other structures may form in the
solid �see, e.g., Ref. �32��; these structures can have a strong
effect on the thermal conductivity and strength of the crust.

A comparison of Tables II and III to Table I shows that the
semianalytic calculation does quite well at reproducing the
results of the HBB numerical simulation. All of the abun-
dances from the semianalytic calculation are with 65% of the
HBB values and most are significantly closer. Also, many of
the table entries that match poorly between the two works
correspond to chemical elements with very low abundances,
i.e., those elements that are most affected by the finite size of
the simulation. For example, the two entries that match the
worst between Tables I and II, the solid abundances of ele-
ments Z=10 and 15, are represented in the simulation by
only 58 and 11 ions, respectively.

Figures 2 and 3 provide further comparison of our results
and those of HBB. Figure 2 �cf. Fig. 2 of HBB� presents in
graphical form the data from Tables I and II, i.e., the final

TABLE II. Abundance of chemical element Z for the liquid and solid mixtures from our equilibrium
calculation. Here, instantaneous diffusion is assumed �see text�. For each mixture, the average charge �Z� and
Coulomb coupling parameter �= �Z5/3��e are provided as well. The initial liquid mixture is given by its value
from HBB and the system is evolved until there is 50% liquid material, 50% solid material. The percent error
for each entry is given by 100	 �entry−HBB� /HBB.

Instant diffusion
�Z�l=27.667, �Z�s=30.930, �1=26.57, �l=218.3, �s=256.1 ��1 error: −4%�

Z Initial Liquid % Error Solid % Error

8 0.0301 0.0513 −3 0.0089 +3

10 0.0116 0.0197 −4 0.0035 +66

12 0.0023 0.0039 −8 0.0007 +10

14 0.0023 0.0040 −7 0.0006 +22

15 0.0023 0.0040 −7 0.0006 +54

20 0.0046 0.0073 +32 0.0019 −33

22 0.0810 0.1213 +18 0.0407 −34

24 0.0718 0.0947 +16 0.0489 −23

26 0.1019 0.1161 +9 0.0877 −14

27 0.0023 0.0024 −4 0.0022 −19

28 0.0764 0.0758 +2 0.0770 +3

30 0.0856 0.0759 −2 0.0953 +0.5

32 0.0116 0.0095 −4 0.0137 +5

33 0.1250 0.1013 −6 0.1487 +7

34 0.3866 0.3076 −10 0.4656 +8

36 0.0023 0.0018 −12 0.0028 −8

47 0.0023 0.0033 +9 0.0013 +2
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compositions of the liquid and solid states for both the HBB
numerical simulation and our semianalytic calculation. Fig-
ure 3 �cf. Fig. 6 of HBB� shows the ratio of the solid abun-
dance to the liquid abundance versus atomic number Z for
both works.

Also plotted in Fig. 3 are the abundance ratios in the
two-component approximation. In this approximation, the
abundance ratios for each element are calculated assuming
the plasma is composed of only two ion species, the element
itself, and the most abundant element in the mixture �i.e., i
=15 or Z=34; see Table I�. The initial composition of the
mixture is chosen such that the ratio of the abundances of the
two elements is the same as in HBB �e.g., x1 /x15
=0.0301 /0.3866, but now x1+x15=1�; however, the results
do not change much qualitatively if we choose some other

scheme. As with the 17-component plasma, we solve for the
point where half of the plasma is liquid and half is solid.
Note that the Z=34 abundance ratio is not plotted in Fig. 3
for this approximation, as its value is different for each two-
element pairing. The two-component approximation repro-
duces the abundance ratio trend of the 17-component plasma,
including the relatively constant behavior at low Z and the
peak at Z=34. It does not give accurate absolute values of
the ratios, particularly for Z around Z=34 �where the true
solid-to-liquid ratio is greater than unity�.

TABLE III. As in Table II, except that diffusion is assumed to be negligible in the solid �see text�.

No diffusion
�Z�l=27.370, �Z�s=30.680, �1=27.38, �l=221.2, �s=260.6 ��1 error: −1%�

Z Initial Liquid % Error Solid % Error

8 0.0301 0.0526 −0.5 0.0076 −13

10 0.0116 0.0204 −0.5 0.0028 +34

12 0.0023 0.0041 −5 0.0005 −14

14 0.0023 0.0041 −4 0.0005 −5

15 0.0023 0.0041 −4 0.0005 +19

20 0.0046 0.0077 +39 0.0015 −47

22 0.0810 0.1289 +26 0.0331 −46

24 0.0718 0.1018 +25 0.0418 −34

26 0.1019 0.1240 +16 0.0798 −22

27 0.0023 0.0025 +1 0.0021 −23

28 0.0764 0.0786 +6 0.0742 −0.5

30 0.0856 0.0753 −3 0.0959 +1

32 0.0116 0.0091 −8 0.0141 +8

33 0.1250 0.0953 −12 0.1547 +11

34 0.3866 0.2863 −16 0.4869 +13

36 0.0023 0.0017 −18 0.0029 −4

47 0.0023 0.0034 +15 0.0012 −11
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Z
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FIG. 2. �Color online� Abundances x as a function of chemical
element Z for the final liquid and solid mixtures. Both the values
from our equilibrium calculation �Liquid and Solid, large open
squares and circles, respectively� and from the numerical simulation
of HBB �HBB, small filled squares and circles� are shown.
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FIG. 3. �Color online� Ratio of the solid abundance to the liquid
abundance xs /xl as a function of chemical element Z. Both the
values from our equilibrium calculation �Current work, open
squares� and from the numerical simulation of HBB �HBB, filled
diamonds and triangles� are shown, as are the values predicted from
the two-component approximation �TCP approx., open circles; see
text�. If for a given element the HBB ratio is still evolving at the
end of the simulation, it is plotted with a triangle that points in the
direction of evolution; if the ratio is not changing or is oscillating
up and down, it is plotted with a diamond.
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The abundances listed in Table I are the compositions of
the HBB liquid and solid states at the end of the simulation.
These results may not represent the true equilibrium state of
the mixture because of the finite run time of the simulation.
To show this effect, the HBB abundance ratios are plotted in
Fig. 3 using one of three symbols: for a given chemical ele-
ment, if at the end of the simulation run the ratio is evolving
upward in time, it is plotted with an upward-pointing tri-
angle; if the ratio is evolving downward in time, it is plotted
with a downward-pointing triangle; and if the ratio is not
changing or is oscillating upward and downward, it is plotted
with a diamond. The determination of the evolution direction
for each element is made using data from the simulation time
steps t6= t / �106 fm /c�=71, 113, and 151, i.e., the last three
time steps shown in Fig. 6 of HBB. If the abundance ratio
decreases �increases� from t6=71 to 113 and from t6=113 to
151, and the total decrease �increase� across both time inter-
vals is more than 0.1, the ratio is said to be evolving down-
ward �upward� in time; otherwise the ratio is said to be
stable. Note that, for the most part, the HBB results are
evolving toward the equilibrium values found in our calcu-
lation; this behavior is especially apparent for Z� �20,34�,
which is also where the abundance ratios differ in the two
works by their largest values �37�. This suggests that the
errors given in Tables II and III are strong upper limits to the
actual accuracy of our calculation.

IV. DISCUSSION

Using results from simulations of one-, two-, and three-
component plasmas, we have developed a method for calcu-
lating the equilibrium properties of the liquid-solid phase
transition in a plasma with an arbitrary number of compo-
nents in the approximation of a classical ion plasma in a
uniform electron background. We used this method to calcu-
late the phase-transition properties for a 17-component
plasma with a composition similar to that which might exist
in the ocean of an accreting neutron star and compared the
results to those of a molecular-dynamics simulation done at
the same composition �2�. We found that our method accu-
rately reproduces the results of the HBB simulation. Two
sources of error in the simulation may mean that our results
represent the actual system even more accurately than this
comparison suggests. First, the finite size of the simulation
introduces statistical errors which for some components are
larger than the discrepancies between the two works. Second,
the system is still evolving at the end of the simulation, with
many components approaching the values predicted by our
calculation.

As in the simulation of HBB, we have followed the 17-
component mixture until it reaches the state of 50% liquid
and 50% solid. Under these conditions, the term representing
the deviation from the linear mixing rule for the solid, fs, is
a perturbation on the other terms in the free energy of the
solid �see Eq. �24��. In principle, our calculation can con-
tinue to larger fractions of solid, i.e., larger values of the
Coulomb coupling parameter �. However, because fs in-
creases linearly with � and eventually dominates the free
energy, the calculation at � above the half-freezing point is

more sensitive to the form chosen for fs. There is some
numerical confirmation of our simple approximation for fs
�Eqs. �14� and �25�� for two- and three-component mixtures
at large �, but only for a very limited set of parameters �see
Ref. �15��. Further numerical simulations are necessary to
test the validity of these equations at large � for general
parameters and �m�3�-component plasmas.

Another consequence of the large and positive fs term is
that for certain compositions, it is energetically favorable for
a single solid phase to separate into two or more solid phases
�see Sec. II B�. Such a phase separation occurs at large � in
the 17-component plasma simulated by Horowitz et al. �19�.
With our calculation, we have not yet found any two-solid
mixtures that represent the lowest-energy state of the HBB
plasma in part because the shape of free-energy surface for
the solid phase is very complicated at large �. We leave a
more careful study of the solid-solid unstable region for fu-
ture work.

Once these issues are resolved, our calculation will allow
the complete phase diagram of multicomponent mixtures to
be determined. We expect that these results will have impor-
tant implications for the structure of the liquid-solid bound-
ary in accreting neutron stars. For example, for an ocean
temperature of T=108T8 K, an O-Se mixture with the same
proportion of oxygen and selenium as in the HBB mixture
�i.e., �10%–90%� will begin to freeze at a density of �
�2	107T8

3��e /2� g /cm3, where �e is the mean molecular
weight per electron. Assuming that accretion is slow enough
that the liquid and solid can come into equilibrium at each
depth, our phase diagram for a charge ratio RZ=34 /8 in Fig.
4 �or Fig. 5� shows that the mixture will reach 50% solid
within a factor of 2 in density, but that complete freezing will
not occur until much deeper, by a factor of ��34 /8�5

�1400 in density �corresponding to ��3	1010T8
3 g /cm3�.

This is a very different picture than the sharp transition be-
tween liquid and solid expected for a one-component plasma
and assumed in previous work on accreting neutron stars.
Further work is needed to understand the effects of the vari-
ous time-dependent processes that are active concurrent with
accretion in the ocean-crust transition layer, such as crystal-
lization, diffusion, and sedimentation. For example, sedimen-
tation of the heavier solid particles could be important at low
accretion rates, narrowing the transition layer.
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APPENDIX A: THE HELMHOLTZ FREE ENERGY
VERSUS THE GIBBS FREE ENERGY

Because phase transitions in stars occur at constant pres-
sure, not constant volume, the energy which is at a minimum
when the system is in equilibrium is the Gibbs free energy,
i.e., G=F+ PV. We discuss here how our results �Sec. III�
change when the Gibbs free energy, rather than the Helm-
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holtz free energy, is used to determine the equilibrium state.
To calculate the Gibbs free energy, we follow the pertur-

bation method of Ogata et al. �15�, though we ignore terms
due to the electron exchange energy �see, e.g., Ref. �33�;
these terms are small for highly relativistic plasmas such as
are found at the ocean-crust boundaries of accreting neutron
stars�. In the degenerate interiors of white dwarfs and neu-
tron stars, the electrons make the dominant contribution to
the total pressure �Pi���Z2/3�Pe for ��1; see, e.g., Ref.
�34�� and so we can treat the ion partial pressures as pertur-
bations.

The Helmholtz free energy of the system is

F = F0 + F1, �A1�

where F0 is the kinetic energy of the electrons and F1 is the
free energy of the ions �the electron exchange term is ignored
and the Coulomb term is folded into the ion free energy�.
The total pressure of the system is

P � −
�F

�V
= −

�F0

�V
−

�F1

�V
. �A2�

Let V0 be the volume of the unperturbed system when only
electrons contribute to the total pressure; let V01 be the vol-
ume of the perturbed system when both ions and electrons
contribute to the total pressure. Then the total pressure can
also be expressed as

P = − F0��V0� �A3�

and

P = P�V0� + 
VP��V0� +

V2

2
P��V0� + ¯ , �A4�

where 
V=V01−V0 and we are using the notation P��V0�
= � �P

�V �V=V0
, etc. From Eqs. �A2�–�A4� and assuming 
V is

small �which can easily be checked a posteriori�, we obtain


V = −
F1��V0�
F0��V0�

. �A5�

The Gibbs free energy can be written as

G = G�V0� + 
VG��V0� +

V2

2
G��V0� + ¯ �A6�

=F0�V0� + F1�V0� + P�V0�V0 + 
VP��V0�V0

+

V2

2
P��V0�V0 +


V2

2
P��V0� + ¯ �A7�

=F0�V0� + F1�V0� + PV0 −
�F1��V0��2

2F0��V0�
, �A8�

where in going from Eq. �A6� to Eq. �A7�, we have made use
of the thermodynamic relation
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FIG. 4. �Color online� Phase diagrams for charge ratios RZ

=34 /20 �top panel� and RZ=34 /8 �bottom panel�. Phase transitions
at constant volume are labeled Helmholtz and transitions at constant
pressure are labeled Gibbs. To maintain consistency with earlier
works �e.g., Refs. �13,15��, �1

−1 in units of �crit
−1 is plotted vs x2,

where Z2=34 for all transitions. The unstable regions are marked by
dots. The mixture is liquid for �x2 ,�crit /�1� points entirely above
the unstable region; for points below any part of the unstable region
�such as the peninsula in the bottom-left corner of the top panel and
the banana-shaped island in the bottom panel�, the mixture is solid.
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FIG. 5. �Color online� Phase diagrams for charge ratios RZ

=34 /26 �top panel� and RZ=34 /8 �bottom panel�. Phase transitions
where the liquid deviation term f l is ignored are labeled “f l=0”
and transitions where the liquid deviation is given by Eq. �9� of �35�
are labeled PCCDR.
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V � −
�G

�P
. �A9�

The Gibbs free energy is obtained from Eq. �A8� once the
value of V0 is known. For a given total pressure P, the vol-
ume V0 is determined by Eq. �A3�. We have �e.g., Ref. �33��

P = − F0��V0� =
mec

2

8�2�c
3�y�1 + y2�2y2

3
− 1	

+ ln�y + �1 + y2�
 , �A10�

where the “relativity parameter”

y �
pF

mec
= �c�3�2ne�1/3 = �9�

4
	1/3 kBT

�mec
2�e �A11�

is evaluated at V=V0. Here, �=e2 / ��c� is the fine-structure
constant and �c=� / �mec� is the reduced Compton wave-
length. The volume V0 depends only on the total pressure of
the system and so is the same for both the liquid and solid
states. The Helmholtz free energy in the unperturbed state,
F0�V0�, is also the same for both states. We can therefore
ignore the F0�V0� and PV0 terms in Eq. �A8� when calculat-
ing the state of lowest free energy. Using

F0��V0� =
1

V0

mec
2

9�2�c
3

y5

�1 + y2
, �A12�

we arrive at our final expression for the Gibbs free energy of
the liquid �i= l� or solid �i=s� state

gi �
Gi

NkBT
= f i��e� −

�

3�18��1/3�Z�

�1 + y2

y
�e� � f i

��e

2

,

�A13�

where f i is the Helmholtz free energy given in Secs.
II A–II C, y�P� is found from Eq. �A10�, and �e�y� is found
from Eq. �A11� �i.e., �e is evaluated at V=V0�.

We calculate the phase diagrams for two-component plas-
mas with charge ratios RZ=Z2 /Z1 up to 34/8, first using the
relevant expressions for f l and fs from Sec. II B �i.e., ignor-
ing pressure terms� and then using Eq. �A13� �including
pressure terms�. Note that the �e values in Eq. �A13� are
evaluated at V=V0, while those in Sec. II B are evaluated at
�V01. In order to show the two sets of phase diagrams on the
same axis, we use the relation �cf. Eq. �A5��

�e�V01� = �e�V0��V01

V0
	1/3

= �e�V0��1 +
2�

�18��1/3�Z�

�1 + y2

y

� f l

��e

1/3

,

�A14�

where all instances of y and �e on the right-hand side of Eq.
�A14� are evaluated at V=V0. Here, we choose to solve for
�e�V01� of the liquid, although the results are practically the
same if �e�V01� of the solid is used instead �since the two �e
values differ by at most 0.004% even for RZ�4�. Our re-
sults, plotted as a function of �1�V01�=Z1

5/3�e�V01�, are

shown in Fig. 4. Not surprisingly, we obtain results very
similar to those found by �15�: the assumption of transitions
at constant volume rather than at constant pressure has no
effect on the phase diagram unless RZ�2, in which case the
only effect is to widen the unstable region slightly. For 2
�RZ�5, the unstable region widens by at most 1%–2%,
with the largest change occurring for �1��crit. Since the
calculation of Sec. III was done at a relatively low value of �
�at �Z=8�27, which is below �crit for all species Z�25�, we
expect that the results shown there will not change when the
Gibbs free energy is used. At large �, however, when nearly
all of the mixture is in the solid state �see Sec. IV�, inclusion
of the Gibbs free energy in the equations of Sec. II C may be
necessary to accurately determine the phase-transition prop-
erties under these conditions.

APPENDIX B: THE DEVIATION FROM LINEAR
MIXING IN THE LIQUID

In our calculation, we assume perfect linear mixing in the
liquid state by setting f l=0. We discuss here how our re-
sults �Sec. III� change when a more accurate form for f l is
used.

There are several fitting formulas of f l available in the
literature �e.g., Refs. �15,18,35��. We choose to implement
the fit from Eq. �9� of Potekhin et al. �35� �hereafter PC-
CDR�, since it provides accurate results for f l over a wide
range of � values, Z ratios, and fractional abundances of
each species. It is also the only fit we are aware of that is
immediately applicable to plasmas with more than two com-
ponents, though we do not make use of that feature here.

We calculate the phase diagrams for two-component plas-
mas with charge ratios RZ up to 34/8, first for f l=0 and then
using Eq. �9� of PCCDR �i.e., for f l�0�. Our results are
shown in Fig. 5. We find that the assumption f l=0 has no
effect on the phase diagram unless RZ�3, in which case the
only effect is to shift the low-x2 side �left side in Fig. 5� of
the unstable region toward even smaller values of x2. The
shift is most significant for large RZ and �, with shifts of
around 5% of the width of the unstable region for RZ�4 and
�1��crit. Since our calculation was done at a relatively low
value of �, we expect that the results of Sec. III will not
change when an accurate form for f l is used �cf. Appendix
A�. At larger values of �, a f l term may be necessary to
ensure the accuracy of the calculation.

Here and in Appendix A, we have compared phase dia-
grams generated by our calculation to those that are gener-
ated if additional terms are considered. We can also compare
our phase diagrams to those of other works. Particular fruit-
ful comparisons can be made with Segretain and Chabrier
�13� and Ogata et al. �15�, since these works present phase
diagrams at several different values of RZ; the RZ values in
Figs. 4 and 5 were chosen in part because of the similarity to
the ratios presented in these two works �i.e., RZ=34 /26
�4 /3=1 /0.75, RZ=34 /20�5 /3�1 /0.55, and RZ=34 /8
�13 /3�. Our diagrams agree closely with those of �15�, with
one important exception: for most values of RZ, this group
finds “azeotropic points” or eutectic points at x2�0.04
that do not exist in our diagrams. The close agreement for
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x2�0.04 is due to the fact that both our group and theirs
used fitting formulas with the same form for fs �Eq. �13��,
while the poor agreement at x2�0.04 is due to the fact that
we used f l=0 while �15� used a form for f l that was
negative for x2�0.05. Our diagrams agree less closely with
those of �13�, though the agreement is still very good at
small � �in the upper half of each diagram�. Even at large �,
the diagrams of our group and theirs are qualitatively similar,
with the main differences being the larger amount of stable
solid regions at high x2 and the delayed �in terms of increas-
ing RZ� transition from spindle type to azeotropic type in the
diagrams of �13�. We find that the transition from spindle-
type to azeotropic-type phase diagrams occurs at RZ�1.2
�28 /34�1 /0.83, which is a somewhat lower value of RZ
than found by Segretain and Chabrier �13� or DeWitt et al.
�18� �1 /0.72�1.4�.

APPENDIX C: THE DEVIATION FROM LINEAR
MIXING IN THE SOLID

In this section, we provide a simple estimate of fs for
multicomponent plasmas using the approximation that only
nearest neighbors contribute to the interaction energy of each
ion �see, e.g., Ref. �32��. The expression found here is too
simplistic for use in our calculation, but illustrates the gen-
eral form of fs for plasmas with three or more components;
the fs term of Sec. II �Eq. �25�� has a very similar form.

Let uij =Uij / �NkBT� be the interaction energy between
nearest-neighbor ions of species i and j �uij =uji�. When all
ion species are completely separated, the interaction energy
per ion for species i is uii /2 and the total interaction energy
of the system is given by

usep =
1

2 � xiuii. �C1�

When the ion species are mixed, the interaction energy per
ion for species i is � jxjuij /2, assuming that the various ions
are randomly distributed throughout the mixture. The total
energy of the system is then

umix =
1

2�
i

�
j

xixjuij . �C2�

The internal energy of mixing for the solid, us=umix−usep,
is given by

us =
1

2�
i

xi��
j

xjuij − uii�

=
1

2�
i

xi�
j�i

xj�uij − uii� = �
i

�
j�i

xixj�uij −
uii + ujj

2
	 .

�C3�

The free energy of mixing can be found from the thermody-
namic identity

f = �
0

� u����
��

d��, �C4�

where �=1 / �kBT� �see, e.g., Ref. �10��. Assuming that the
interaction energies uij scale linearly with � �which is true,
e.g., if uij ��e�, we have

fs = �
i

�
j�i

xixj�uij −
uii + ujj

2
	 , �C5�

which of the same form as Eq. �25�.

�1� B. M. S. Hansen and J. Liebert, Annu. Rev. Astron. Astrophys.
41, 465 �2003�.

�2� C. J. Horowitz, D. K. Berry, and E. F. Brown, Phys. Rev. E 75,
066101 �2007�.

�3� J. Isern, R. Mochkovitch, E. García-Berro, and M. Hernanz,
Astron. Astrophys. 241, L29 �1991�.

�4� H. Schatz, A. Aprahamian, V. Barnard, L. Bildsten, A. Cum-
ming, M. Ouellette, T. Rauscher, F. Thielemann, and M. Wie-
scher, Nucl. Phys. A 688, 150 �2001�.

�5� S. Gupta, E. F. Brown, H. Schatz, P. Möller, and K. Kratz,
Astrophys. J. 662, 1188 �2007�.

�6� C. J. Horowitz and D. K. Berry, Phys. Rev. C 79, 065803
�2009�.

�7� P. S. Shternin, D. G. Yakovlev, P. Haensel, and A. Y. Potekhin,
Mon. Not. R. Astron. Soc. 382, L43 �2007�.

�8� E. F. Brown and A. Cumming, Astrophys. J. 698, 1020 �2009�.
�9� C. J. Horowitz and K. Kadau, Phys. Rev. Lett. 102, 191102

�2009�.
�10� A. Y. Potekhin and G. Chabrier, Phys. Rev. E 62, 8554 �2000�.
�11� R. Mochkovitch, Astron. Astrophys. 122, 212 �1983�.
�12� J. L. Barrat, J. P. Hansen, and R. Mochkovitch, Astron. Astro-

phys. 199, L15 �1988�.

�13� L. Segretain and G. Chabrier, Astron. Astrophys. 271, L13
�1993�.

�14� L. Segretain, Astron. Astrophys. 310, 485 �1996�.
�15� S. Ogata, H. Iyetomi, S. Ichimaru, and H. M. Van Horn, Phys.

Rev. E 48, 1344 �1993�.
�16� H. DeWitt and W. Slattery, Contrib. Plasma Phys. 43, 279

�2003�.
�17� H. Iyetomi, S. Ogata, and S. Ichimaru, Phys. Rev. B 40, 309

�1989�.
�18� H. DeWitt, W. Slattery, and G. Chabrier, Physica B 228, 21

�1996�.
�19� C. J. Horowitz, O. L. Caballero, and D. K. Berry, Phys. Rev. E

79, 026103 �2009�.
�20� G. S. Stringfellow, H. E. DeWitt, and W. L. Slattery, Phys.

Rev. A 41, 1105 �1990�.
�21� S. Ogata and S. Ichimaru, Phys. Rev. A 36, 5451 �1987�.
�22� J. M. Caillol, J. Chem. Phys. 111, 6538 �1999�.
�23� J. P. Hansen, Phys. Rev. A 8, 3096 �1973�.
�24� R. T. Farouki and S. Hamaguchi, Phys. Rev. E 47, 4330

�1993�.
�25� D. H. E. Dubin, Phys. Rev. A 42, 4972 �1990�.
�26� W. L. Slattery, G. D. Doolen, and H. E. DeWitt, Phys. Rev. A

ZACH MEDIN AND ANDREW CUMMING PHYSICAL REVIEW E 81, 036107 �2010�

036107-12



26, 2255 �1982�.
�27� E. L. Pollock and J. P. Hansen, Phys. Rev. A 8, 3110 �1973�.
�28� S. Ichimaru, H. Iyetomi, and S. Tanaka, Phys. Rep. 149, 91

�1987�.
�29� H. Iyetomi and S. Ichimaru, Phys. Rev. A 27, 3241 �1983�.
�30� H. Iyetomi, S. Ogata, and S. Ichimaru, Phys. Rev. A 46, 1051

�1992�.
�31� A. Y. Potekhin, G. Chabrier, and F. J. Rogers, Phys. Rev. E 79,

016411 �2009�.
�32� P. Gordon, Principles of Phase Diagrams in Materials Systems

�McGraw-Hill, New York, 1968�.
�33� E. E. Salpeter, Astrophys. J. 134, 669 �1961�.
�34� Neutron Stars 1: Equation of State and Structure, edited by P.

Haensel, A. Y. Potekhin, and D. G. Yakovlev, Astrophysics and
Space Science Library Vol. 326 �Springer, New York, 2007�.

�35� A. Y. Potekhin, G. Chabrier, A. I. Chugunov, H. E. DeWitt,

and F. J. Rogers, Phys. Rev. E 80, 047401 �2009�.
�36� In both calculations, we assume that the liquid diffusion is

rapid. This is usually the case for terrestrial mixtures undergo-
ing phase transitions �e.g., Ref. �32��, but it appears to be true
for the ocean of an accreting neutron star as well �C. Horowitz
�private communication��.

�37� After their work was published, HBB ran their simulation an
additional 208	106 fm /c to a total simulation time of 359
	106 fm /c. Of the solid-to-liquid abundance ratios that were
still evolving at the time of the HBB publication �i.e., those
presented with upward- or downward-pointing triangles in our
Fig. 3�, by 359	106 fm /c, just over half had evolved closer
to our results �Z=15, 20, 22, 30, 32, and 34�, while the rest
either had remained steady �Z=8� or had evolved farther away
�Z=26, 33, and 47� �D. Berry �private communication��.

CRYSTALLIZATION OF CLASSICAL MULTICOMPONENT… PHYSICAL REVIEW E 81, 036107 �2010�

036107-13


