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Modeling the morphogenesis of brine channels in sea ice
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Brine channels are formed in sea ice under certain constraints and represent a habitat of different microor-
ganisms. The complex system depends on a number of various quantities as salinity, density, pH value, or
temperature. Each quantity governs the process of brine channel formation. There exists a strong link between
bulk salinity and the presence of brine drainage channels in growing ice with respect to both the horizontal and
vertical planes. We develop a suitable phenomenological model for the formation of brine channels both
referring to the Ginzburg-Landau theory of phase transitions as well as to the chemical basis of morphogenesis
according to Turing. It is possible to conclude from the critical wave number on the size of the structure and
the critical parameters. The theoretically deduced transition rates have the same magnitude as the experimental
values. The model creates channels of similar size as observed experimentally. An extension of the model
toward channels with different sizes is possible. The microstructure of ice determines the albedo feedback and

plays therefore an important role for large-scale global circulation models.
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I. INTRODUCTION

Formation and decay of complex structures depend on
changes in entropy. In the long run, structures tend to decay
since the entropy of universe leads to a maximum and
evolves into a “dead” steady state [1]. On the other hand, not
only living cells avoid the global thermodynamic equilib-
rium. Turing [2] showed in his paper about the chemical
basis of morphogenesis which additional conditions are nec-
essary to develop a pattern or structure. For instance, cells
can be formed due to an instability of the homogeneous equi-
librium which is triggered by random disturbances. In this
sense, it should be possible that the habitat of microorgan-
isms in polar areas, the brine channels in sea ice, can be
described through a Turing structure.

The internal surface structure of ice changes dramatically
when the ice cools below —-23 °C or warms above -5 °C
and has a crucial influence on the species composition and
distribution within sea ice [3,4]. This observation correlates
with the change of the coverage of organisms in brine chan-
nels between -2 and —6 °C [4]. Golden et al. [5] found a
critical brine volume fraction of 5% or a temperature of
-5 °C for salinity of 5 parts per thousand where the ice
distinguishes between permeable and impermeable behaviors
concerning energy and nutrient transports. According to Per-
ovich and Gow [6], the brine volume increases from 2 to
37%o and the correlation length increases from 0.14 to 0.22
mm if the temperature rises from —20 to —1 °C. The perme-
ability varies over more than 6 orders of magnitude [7].
Whereas Golden et al. [5] used a percolation model, we will
demonstrate how the brine channel distribution can be mod-
eled by a reaction-diffusion equation similar to the Ginzburg-
Landau treatment of phase transitions. A molecular-dynamics
simulation shows the change between the hexagonal-
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arranged ice structure and the more disordered liquid water
structure [8].

After a short introduction into the key issue of the struc-
ture formation, we describe the brine channel structure in sea
ice and propose a phenomenological description. For the in-
terpretation of the order parameter, we discuss some micro-
scopic properties of water using molecular-dynamics simula-
tion in Sec. II. In Sec. III, we consider the phase transition
and the conditions which allow a structure formation. We
verify the model on the basis of measured values in Sec. IV
and give finally an outlook on further investigations in Sec.
V.

II. MICROSCOPIC PROPERTIES OF WATER
A. Formation of brine channels

Various publications report on the life condition for dif-
ferent groups of organisms in the polar areas in brine-filled
holes, which arise under certain boundary conditions in sea
ice as base or brine channels (lacuna) [9-11]. They are char-
acterized by the simultaneous existence of different phases,
water, and ice in a saline environment. Because already mar-
ginal temperature variations can disturb this sensitive sys-
tem, direct measurements of the salinity, temperature, pH
value, or ice crystal are morphologically difficult [9]. Weis-
senberger et al. [12] developed a cast technique in order to
examine the channel structure. Freeze drying eliminates the
ice by sublimation and the hardened casts illustrate the chan-
nels as negative pattern. Figure 1 shows a typical granular
texture without prevalent orientation.

Sometimes, both columnar and mixed textures occur. Us-
ing an imaging system, Light et al. [3] found brine tubes,
brine pockets, bubbles, drained inclusions, transparent areas,
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FIG. 1. Scanning electron microscopy (SEM) image of a cast of
brine channels [9].

and poorly defined inclusions. Air bubbles are much larger
than brine pockets. Bubbles possess a mean major axis
length of some millimeters and brine pockets are hundred
times smaller [13]. Cox et al. [14—16] presented a quantita-
tive model approach investigating the brine channel volume,
salinity profile, or heat expansion but without pattern forma-
tion. They also described the texture and genetic classifica-
tion of the sea ice structure experimentally. A crucial factor
for the brine channel structure formation is the spatial vari-
ability of salinity [17].

Different mechanisms are employing the mobility of brine
channels which can be used to measure the salinity profile
[17]. Advanced microscale photography has been developed
to observe in situ the distribution of bottom ice algae [18]
which allows determining the variability of the brine channel
diameter from bottom to top of the ice. By mesocosm stud-
ies, the hypothesis was established that the vertical brine
stability is the crucial factor for ice algae growth [19]. There-
fore, the channel formation during solidification and its de-
pendence on the salinity is of great interest both experimen-
tally and theoretically [20]. Experimentally, Cottier et al.
[17] presented images, which show the linkages between sa-
linity and brine channel distribution in an ice sample.

To describe different phases in sea ice dependent on tem-
perature and salinity, one possible approach is based on the
reaction-diffusion system

%:f(x,t)+DV2w(x,t), (1)
where w=(}) is the vector of reactants, x=(x,y,z) is the
three-dimensional space vector, f is the nonlinear reaction
kinetics, and D=(ODID2) is the matrix of diffusitivities, where
D, is the diffusion coefficient of water and D, is the diffu-
sion coefficient of salt. For the one- and two-dimensional
cases, we set y=z=0, respectively, z=0. The reaction kinet-
ics described by f(x,7) can include the theory of phase tran-
sitions by Ginzburg-Landau for the order parameters. Refer-
ring to this, Fabrizio [21] presented an ice-water phase
transition. Under certain conditions, spatial patterns evolve
in the so-called Turing space. These patterns can reproduce
the distribution ranging from sea water with high salinity to
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FIG. 2. (Color online) Hexagonal ice (left) and liquid water at
300 K (right).

sea ice with low salinity. The brine channel system exists
below a critical temperature in a thermodynamical nonequi-
librium. It is driven via the desalination of ice during the
freezing process that leads to a salinity increase in the brine
channels. The higher salt concentration in the remaining lig-
uid phase leads to a freezing point depression and triggers
the ocean currents.

B. Different states of water

Already Rontgen had described the anomalous properties
of water with molecules of the first kind, which he called ice
molecules and molecules of the second kind [22] and which
represent the liquid aggregate state. Dennison [23] deter-
mined the ordinary hexagonal ice-I modification from x-ray
pattern methodically verified by Bragg [24]. This so-called
E,, ice is formed by four oxygen atoms which build a tetra-
hedron as illustrated in Fig. 2. In E), ice, each oxygen atom is
tetrahedrically coordinated by four neighboring oxygen at-
oms, each accompanied by a hydrogen bridge. The arrange-
ment is isomorphous to the wurtzite form of zinc sulphide or
to the silicon atoms in the tridymite form of silicon dioxide.
Bjerrum [25] and Eisenberg and Kauzmann [26] provided a
survey about the structure differences between the different
polymorphic forms of ice and liquid water.

Molecular dynamics simulations with the three-site trans-
ferable intermolecular potential model of water using the
nanoscale molecular dynamics software by the Theoretical
and Computational Biophysics Group of the University of
[linois show the change from a regular hexagonal lattice
structure to irregular bonds after the melting (Fig. 2). Nada et
al. [8] developed a better six-site potential model of H,O for
a crystal growth of ice from water using molecular dynamics
and Monte Carlo methods. They computed both the free en-
ergy and an order parameter for the description of the water
structure. Also Medvedev and Naberukhin [27] introduced a
“tetrahedricity measure” My for the ordering degree of water.
It is possible to discriminate between ice and water mol-
ecules via a two-state function (G=0 if M;=M{ and G=1 if
M;<MY). This tetrahedricity is computed using the sum

1

Mp=——
7 15¢%)

2 (=1, 2)
]

where [; are the lengths of the six edges of the tetrahedron
formed by the four nearest neighbors of the considered water
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molecule. For an ideal tetrahedron, one has M;=0 and the
random structure yields My=1. The tetrahedricity can be
used in order to define an order parameter according to the
Landau—de Gennes model for liquid crystals, which refers to
the Clausius-Mosotti relation. Other simulations such as the
percolation models of Stanley er al. [28,29] use a two-state
model, in which a critical correlation length determines the
phase transition. A mesoscopic model for the sea ice crystal
growth is developed by Kawano and Ohashi [30] who used a
Voronoi dynamics.

III. REACTION-DIFFUSION MODEL
A. 1+1-dimensional model equations

We consider the reaction-diffusion system

Au(x,t FPulx,t
u((;; )=a1u—cu3+du5+blv +D, u(); ), (3)
Jdu(x,t Fv x,t
((9t )=—a2U—b2M+D2 (2 ) (4)

in one space dimension. The order parameter according to
the Ginzburg-Landau theory is wu(x,7) with u,,;, =< u,= i,
and proportional to the tetrahedricity u~ M. If the variable
u is smaller than u, (u<u,), the phase changes from water to
ice and vice versa. Thus, changes in u reflect temperature
variations. The variable v is a measure of the salinity. The
coefficient a; depends on the temperature T as (T-T,)/T.
with the critical temperature T,.. The salt exchange between
ice and water is realized by the gain term byv and the loss
term —a,v. The positive terms a;u and bv are the
temperature- and salt-concentration-dependent “driving
forces” of the system.

In order to realize the T-dependent phase transition, one
can expand the order parameter in a power series corre-
sponding to Ginzburg and Landau in Eq. (3). In order to
describe properly a temperature-induced phase transition of
second order, an expression —cu? is necessary. The first-order
phase transition is dependent on du’. Supercooled or super-
heated phases can coexist, i.e., a hysteresis behavior is pos-
sible. Without the term du’, we can also realize a brine chan-
nel formation. But this second-order phase transition does
not allow us to consider the specific heat as a jump in the
order parameter ¢ (Figs. 3 and 4). We write Egs. (3) and (4)
in dimensionless form (see Appendix A) by settin
=\bybyt, =\b\by/Dx, y={c/bbou, and p=Vb,c?/b3v
and get

w(g 7) g+ ﬁzl/f(j ,7) 5)
ap(,1) Ppl&, T)
P =glpl+ D—5— PP (6)

with a;=a,/\b,b,, 6=d\b\bs/c%, ar=ay/\bb,, and D
=D,/D; as well as the reaction kinetics

ﬂ¢,P]=a1¢—¢3+5¢5+Ps (7)
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FIG. 3. (Color online) Landau function (9) vs the dimensionless
order parameter (tetrahedricity) for various 6.

glpl=—ap— 4, (8)

where ¢ is the dimensionless order parameter of the water-
ice system and p the dimensionless salinity. Thus, the dy-
namics only depends on four parameters «;, @,, &, and D.
Without the salinity p in Eq. (3), respectively, Eq. (5), the
above equation system is reduced to a Ginzburg-Landau
equation for the first-order phase transition.

First-order phase transitions

When we neglect the salinity p, the integration of the
kinetic function (7) yields the Landau function for the order
parameter i of water-ice

a1, 0
e o)

as plotted in Fig. 3. It possesses three minima

«pmm:{o, + \/%5(1+\"1—45a1)}. (10)

When several different minima of equal depth exist, then
there is a discontinuity in ¢ due to Maxwell construction and
one has a first-order phase transition [31]. This is the case if

3
6=06.= (11)
16“16
and
1.5 .
? 1'_ a, =07 |
>
0.5 i
Ok Il Il Il Il
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FIG. 4. The minimal order parameter i, of Eq. (10) dependent
on «;.
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Thus the critical parameter 6=9, is determined by the
temperature-dependent critical value a;=a;.. The jump in
Figs. 3 and 4 is a measure for the latent heat of the phase
transition from water to ice. Feistel and Hagen [32] deduced
theoretically the latent heat of sea ice for various salinities.

B. Linear stability analysis

First, we perform a linear stability analysis by linearizing
the equation systems (5) and (6) according to =+ and
p=po+p. We obtain the characteristic equation for the fixed
points with

(l:ﬂ) = (l:ﬂ">exp()\(/<)7+ ik) (14)
P Pi

as

95 Z
oy _(a1—3%+55¢fé ! )(&) 7€

a_ | -1 —®/\p >
077'p ° Da§2

as outlined in Appendix B.

There are five fixed points for the kinetics (7) and (8)
which satisfy f=0 and g=0. In order to get a stable nonoscil-
lating pattern, we need a stable spiral point as fixed point.
Moreover, the associated eigenvalues have to possess a posi-
tive real part for a positive wave number, i.e., they have to
allow to create unstable modes. Not each fixed point satisfies
both conditions. Therefore, for the following discussion, we
choose the steady state, ;=0 and p,=0, which corresponds
to the observable brine channel structures measured by a
casting experiment [17,18].

Short-time experiments may also record structures that
are formed under nonsteady conditions. Since those struc-
tures are beyond the scope of the present paper, we proceed
with the steady state which leads from Eq. (15) to

NK)?+[K*(1+ D)+ ap — a;]N(k) + h(k}) =0, (16)
with
h(k*) =Dk* + (o — ;D) k* — ayar + 1 (17)

and which is readily solved

1
NK)i 2= E{al -a,—(1

+D)k* + \e’/[al +a,+ (D-1)K*P -4} (18)
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C. Turing space

Let us discuss Egs. (16) and (17) concerning the condi-
tions for the occurrence of Turing structures in detail. First,
we concentrate on the situation k=0 where a homogeneous
phase is formed. Then, the fixed points =0 and p=0 are
stable according to the eigenvalues (18) if

a) —a

N 2(0)=- 5

1
= V@ - @)’ =41 - aay) (19)
are negative, otherwise we would have a globally unstable
situation which we rule out. Also, homogeneous oscillations
do not describe a brine channel formation. It is easy to see
that the solution (19) gives only two negative values if

condition I: @, > a; and aja, < 1. (20)

The trajectories of salinity p and the order parameter ¢ con-
verge to the steady-state value zero by damped oscillations.
Therefore, the structure formation does not follow from the
initial condition in time but from the range of the interaction
in space.

Next we discuss the spatial inhomogeneous case, K2>0,
where some spatial fluctuations may be amplified and form
macroscopic structures, i.e., the Turing structure. Therefore,
we search for such modes of Eq. (18) which grow in time,
i.e., ReN(k)>0. Time oscillating structures appear if
Im \(k) # 0, which can be seen from the solution of Eq. (18)
to be the case if a;+a,—2<(1-D)xk*<a;+a,+2. In this
region, we have

—a,—K*(1+D)

o
Re )\osc(K) = B

(21)
Demanding to be positive means «*(1+D) < a;—a,. Due to
Eq. (20), this cannot be fulfilled since the diffusion constant
D is positive and « real. Therefore for a time-growing mode,
we do not have an imaginary part of A in our model. In other
words, we do not have oscillating and time-growing struc-
tures. The restriction for the only allowed region is

|(1-D)K* - o) — ay| > 2. (22)

In this region, we search now for the condition A>0. The
term before the square in Eq. (18) is negative as can be seen
from Eq. (20). Therefore, we can only have positive \ if the
square of this term is less than the content of the root. This
leads to

(a; — k)(ay + DK?) > 1, (23)
which restricts the « region to the interval

1 ——
K e E(alD —a, = (D + a,)* - 4D). (24)

Due to Eq. (20), the term under the square root is smaller
than the square of the first term in Eq. (24) and we get only
a meaningful condition from Eq. (24) if

Moreover, the square root must be real, i.e.,

036106-4



MODELING THE MORPHOGENESIS OF BRINE CHANNELS...

0.4 ] T T T T T T

0.2

0

=
<

-0.2

045 02 04 06 08 ;

FIG. 5. (Color online) Dispersion of the linear stability (18) vs
the dimensionless wave number « for «;=0.7, a,=1, and D=6
together with the function (k) of Eq. (17).

(a\D + ay)*>—4D >0, (26)
which leads to
1-+1- 2 1+\1- 2
D< ( 20(1%) D> ( 201102) ' (27)

a a

This has to be in agreement with Eq. (25) and discussing the
different cases results finally into

(1+V1 - a;ay)?
D>—2.

a

condition 1II: (28)
Having determined the ranges of «;, a,, and D, we have
to inspect the two conditions on k, i.e., Egs. (24) and (22).
Discussing separately the cases D= 1, one sees that Eq. (22)
gives no restriction on Eq. (24).
Collecting now all conditions for the occurrence of a Tur-
ing structure, Egs. (28), (20), and (24), we obtain

condition I: &, =, and aja, =1,

(1 + \/1 - a1a2)2
2 9

@

condition II: D=

1
condition II: «* e i[alD —a, = (yD + a,)* - 4D].

(29)

The Turing space as phase diagram is determined by condi-
tions I and II and is plotted in Fig. 6. One can see that the
Turing space starts at the minimal (tricritical point)

(30)

ay=ay=D,=1,

which means that we have only a Turing space for sufficient
large diffusivity D=1. For the Turing space, we obtain the
possible wave numbers according to condition III as plotted
in Fig. 7.

D. Critical modes

The critical wave number can be found from the largest
modes. These are given by the minimum of Eq. (17) from
which we find the wave numbers

PHYSICAL REVIEW E 81, 036106 (2010)

FIG. 6. (Color online) The Turing space as phase diagram where
spatial structures can occur. The lower limiting line, a,=1/ay, D
=1/ a%, is plotted as thick line.

2

1 1
Kmin:E(Dfu,//'i' gp)=5(D011—a2) (31)

and the minima

1.75
@2,5

FIG. 7. (Color online) The possible wavelengths x> where spa-
tial structures can occur for D=6 in dependence on ¢; and «,.
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FIG. 8. (Color online) Dispersion h(x) for different D, a;=0.7,
and a,=1.

Df,+g,)* Da; + ay)?
hmm=f¢pgp L/lfp ( f(//Dgp) 1_( a;Daz) . (32)

For Kmm>0 and #h,,, <0, we find again the corresponding
inequalities (25) and (26). The formation of a spatial Turing
structure, a nonoscillating pattern, requires a negative h,,;,
for Kmm>0 In this case, there is a range of wave numbers
which are linearly unstable as seen in Fig. 5. In Fig. 8, we
illustrate the behavior of h(k) for different diffusion con-
stants. Only those which lead to negative /4 are forming the
Turing structure as discussed in the previous chapter. This
critical range can be obtained if the diffusion coefficient D is
greater than the critical diffusion coefficient of condition II,

Eq. (29) D,
(1+V1 - aya,)?
D=, (33)
@
which we get from #,,;,,=0 with the critical wave number «..,
e D.fy+g, _ D.a -
‘ 2D 2D,

(34)

c c

The size of the structure can be estimated from 2—. The
pattern size depends on the both parameters a; and az. The
parameters determine the brine channel size and vice versa.
With the parameters chosen in Fig. 5, we obtain a pattern
size of 12.6. In the next chapter, we compare this value to
experimental quantities. With a small initial random pertur-
bation, we plot snapshots of the time evolution of the order
parameter ¢ and the salinity p in Fig. 9. The quantities ¢ and
p are opposite to each other; domains with low salinity cor-
respond to domains with ice and domains with high salinity
to water domains. We see the formation of a mean mode
given by the wavelength «,.

A positive h(k=0), respectively, a negative N\(k=0), for
k=0 guarantees that p and ¢ converge to the stable fixed
point py=0, ,=0. Therefore, the structure formation does
not follow from the initial oscillations in time (Fig. 10). In
order to obtain a new spatial structure, there must exist at
least a negative h for x>0, respectively, a positive eigen-
value N\, for k>0 as was discussed in the last section.

E. 2+1-dimensional model

From the characteristic equation in the spatially two-
dimensional case

PHYSICAL REVIEW E 81, 036106 (2010)

— v
--p

FIG. 9. (Color online) Time evolution of the order parameter i
and salinity p vs spatial coordinates for 7=100, 170, and 400 (from
above to below) for a;=0.7, a,=1, 5-16& , and D=6 with the
initial condition p(7=0)=0.5*0.01N(0,1) and periodic boundary
conditions.

N +[(1G+ )1+ D) + ay— ay N+ h(kz.ky) =0, (35)
we find the corresponding dispersion relation

h(Kg13) = D(K; + 13)7 + (ay = D) (kg + K3) — ayay + 1
(36)

which is illustrated in Fig. 11.

The Turing space is bounded by the sectional plane £=0.
The evolution of the order parameter ¢/ and the salinity p is
illustrated in Figs. 12 and 13. Their behavior is inversely
proportional and corresponds to the fact that a high salinity
occurs in the water phase and a low salinity in the ice phase.
Similar as in the one-dimensional case, we see the dominant
formation of one wavelength. The model kinetics generate
brine channels of similar size. In order to obtain a hierarchi-
cal net of brine channels of different size, the kinetics in the
basic equations can be altered accordingly [33].

F. Note on second- and third-order Kinetics

If we replace the kinetics (7) by

fApl=ayp— ¢’ +p (37)

or

40

FIG. 10. (Color online) Time evolution of the order parameter i
and the salinity p for a;=0.7, a,=1, 6=—"— 160{ ,
parameter (7=0)=1 and the dimensionless salinity p(7=0)=0.5.

and the initial order

036106-6
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FIG. 11. (Color online) Dispersion of the two-dimensional char-
acteristics (35) and (36) for a;=0.7, a,=1, and D=6.

fbpl=arp— ¢ +p, (38)

we can carry out the same linear stability analysis for the
fixed point =0 and py=0. Then we obtain the same char-

(a)

0.4

FIG. 12. Structure formation for three time steps 7=100,
170, and 400 [from top to bottom (a)—(c)] for the order pa-
rameter W (left) and the salinity p (right). The parameters are a;
=07, ap=1, 5——, and D=6 with the initial condition p(7=0)
=0.5*=0.01N(0, 1) and periodic boundary conditions.
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FIG. 13. Magnification of a detail of Fig. 12 for 7=400.

acteristic equation as Egs. (16) and (17). Therefore, we get
the same Turing space for the structure formation. Conse-
quently, both kinetics allow us to realize a brine channel
formation but the third-order kinetics describes a second-
order phase transition only. In this connection, it is possible
to discuss second-order phase transitions with spin models
too.

IV. CONNECTION TO EXPERIMENTAL DATA

The critical domain size is determined by Eq. (34). Due to
this relation, we can infer other parameters in the model Egs.
(3) and (4). From the relation between the dimensionless
wave number « and the dimensional wave number k,

> alD—az

K= = k2, (39)
2D \/blb2

we get

2m 27T\/ﬁ

—=12.6=
K, k. \/_1
The observed diameters of the brine channels range from
pm to mm scale [9]. For a size of 27/k,=10 um and a
diffusion coefficient D;=10"° cm?s~' for H,O molecules,
we obtain the product b;h,=2.5X10° s72 and a transition
rate aF@al:llll s™!. The rate a, is proportional to
reorientations of the molecules per second, 1/7,=10° s7!

(40)

. T-T
(Eisenberg) [26] and to the scaled temperature T

L-T1 (41)
Tc Td’

ay ~

where T, is the melting point depending on the salinity. The
mean salinity in sea ice of 35 g/l corresponds to 1 NaCl
molecule per 100 H,O molecules, i.e., 1 Na* ion and 1 CI~
ion per 100 H,O molecules in a diluted solution after the
dissociation or a ratio of x=(nyy++nc-)/nu,0=1/50. From
these facts, we obtain according to Clausius-Clapeyron

XRT?

AT=-""—
AH

(42)

a freezing point depression from 0 to —2 °C, where AH
=6 kJ/mol is the latent heat of the phase transition from
water to ice, R=8.314 J/mol K is the universal gas constant
and 7=273 K. Thus we obtain correctly 7,=271 K. For an
environmental temperature of 7=-5 °C=268 K according
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to Eq. (41), a transition rate of 27127f68 X 10° s71=1107 s~!
follows which nearly corresponds to a;=1111 s~!, which we

estimated from the domain size (39). o

Furthermore, we find the transition rate a,=\bbya,
=1587 s7' and the diffusion coefficient D,=6
X 107> cm?/s. Due to the transformation of Eq. (3) into the
dimensionless form (5), there exists a fixed relation (11) be-
cause of c=1. We obtain for the Eq. (3) the rate d, with a;
—al/\b b, S=d\b,b, 1by/ c? of

3¢?

which is proportional to ¢?. A transition rate ¢=1000 s~
yields a critical rate d.=169 s~!. From the knowledge of the
diffusion coefficient D, and the size of brine channels, we
can deduce the two rates a; and a,. Both rates possess the
same order of magnitude and are inside the Turing space of
structure formation. If the experiments would lead to other
parameters a, and a,, especially to rather different values, a
brine channel could not arise because of the limitation of the
Turing space in Figs. 6 and 7. In other words, the model here
seems to describe the experimental finding of brine channel
formation.

Due to the small difference between the time constants a;
and a,, we obtain a dynamic interference between the reori-
entation of the water molecules and the desalinization. Both
are evolving on nearly the same time scale. In particular, we
cannot simplify the kinetics by separating time scales using
the Tichonov theorem [34] known as steady-state hypothesis
in order to reduce our reaction-diffusion systems (3) and (4)
but have to consider both dynamics as demonstrated.

V. CONCLUSION

In this paper, it has been shown that a reaction-diffusion
system which connects the basic ideas both of Ginzburg and
of Turing can describe the formation of brine channels with
realistic parameters. For the chosen parameters, patterns of
similar size emerged. Eicken [35] and Weissenberger [9] dis-
tinguished between six various texture classes of sea ice de-
pendent on the crystal morphology, brine inclusions, and the
genesis. The different ice crystal growth depends on snow
deposition, flooding, turbulent mixing, quiescent growth rate,
or supercooling. Each condition determines the character of
the kinetics. Nonlinear heat and salt dissipation, for example,
lead to dendritic growth (snowflakes) whereas one observes
in sea ice mostly lamellar or cellular structures rather than
complete dendrits [7]. Hence, the morphology of sea ice is
one criterion for the choice of an appropriate kinetics for the
genesis of sea ice. Therefore, in order to simulate different
structure sizes and textures, we can modify the dispersion
relation by varying the parameters «,;, @,, and D or by a
modified kinetics [36]. The crucial point is the shape of the
dispersion function. If there are multiple different positive
unstable regions for the wave numbers with positive real part
of eigenvalues, we could expect that differently large chan-
nels evolve. For instance Worster and Wettlaufer [20] pre-
sented a general theory for convection with mushy layers.
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The two different minima of the neutral curve, determined by
the linear stability analysis, correspond to two different
modes of convection, which affect the kinetics and determine
the size distribution of the brine channels. We note that the
initial conditions are decisive for the appearance of specific
pattern [33]. Hence, one should investigate how dislocations
or antifreeze proteins influence the formation of the brine
channel distribution.
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APPENDIX A: DIMENSIONLESS QUANTITIES

If we set T—r f:i, u= C (ﬂ and v=C,p, we get with

T _ Loy _'.é 9 v _
ot (9;{ T~ 1y It and T ox 9T xo r7§’
du d C,d
— = l_w — _l_lp (Al)
at at  ty It
and
du d Cd
Mo G (A2)
ax ax  xg 9¢é
Vi . a
Because of 2% agz dx‘( )2+ 3)%195); x(z)(?—‘f, we obtain i—x‘f:f%i—g‘f
and consequently
Fu Py C P
T
ox ox=  xy 0&
Accordingly one has
W _Cyp
at  ty It
0—'21) C2 0—'2p
5= g (A4)
ox=  xp 0&

From Egs. (3) and (4) follow the dimensionless equations

o P

W fpp]+ D2 . ag‘f, (AS)
o &

= slvepl+ Ds 5 ag‘j, (A6)

with

fb.pl = atoh— ctyCy ¢3+dt0C4¢5+b1t0 P,
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C
glpl=—axtop— bzfogl . (A7)
2
If we choose
G
ctyCi=1, bitg—=1,
0C 10C1
) C
D,—=1, byy—=1, A8
lx(z) 20C2 ( )

. 4[b1by 4/ b3 1 4/ D?
we obtain C;=1/ 2 C,= \/blcz, to= Nt and X0=\pp,-

APPENDIX B: LINEAR STABILITY ANALYSIS

Let ¢ and p denote small displacements from the equilib-
rium values , and p, and write =i+ and p=py+p.
With respect to Egs. (5) and (6), we obtain

P& =a (o + ) — (Yo + >+ o+ ) +po+p
'HZgg(f,T),

PAET) =Dpel£7) — an(po+p) — (Yo + ). (B1)

If we consider only linear terms

PED =+ b= 3U+ SSYI+ b+ -+ Pl £,7),

PAET) = ——ap+ -+ DplE1), (B2

we get

PHYSICAL REVIEW E 81, 036106 (2010)

il_ﬂ ﬁ 0
ar <a1—3¢§+55¢3 1 )(fp) I
= +
J _ -1 ) ﬁ (92
N P\ v
-
‘l('/’='/’()vP=P())

(B3)

where J(t/f=¢0,p=p0) is the Jacobian

fu f,,)
8y gp

_<a1—3<//20+55¢3 1 )

-1 )

(B4)

J(¢:w0,p=po>=< o
=¥nP=Py

which we can calculate also considering Egs. (7) and (8).

Using the Fourier ansatz ¢=iy exp(N\m+ikf) and p
=py exp(NT+ik€) in Eq. (15), we find

(A,zi>_<al—3¢3+55¢g 1)(@1.) (—K2 0 )
N -1 ~a)\5) "\ 0 -p

x(%) (BS)
Pi

With =0 and p,=0, the eigenvalue equation

|:(K2—a’1 —1 ) (x o)}(lp)
0= L)+ Y] (B6)
1 a, + Dk 0 X pi

follows with the characteristic equation
a - k2= X\ 1

-1 —a,—DK> =\
=N+ [K*(1+D)+a,— o)\

0=

+Di*+ (- ayD)K* — oy + 1.
— _J

h(iP) (B7)
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