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Vibron-phonon coupling strength in a finite size lattice of H-bonded peptide units
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An attempt is made to measure the vibron-phonon coupling strength in a finite size lattice of H-bonded
peptide units. Within a finite temperature density matrix approach, we compare separately the influence of both
the vibron-phonon coupling and the dipole-dipole interaction on the coherence between the ground state and a
local one-vibron state. Due to the confinement, it is shown that the vibron-phonon coupling yields a series of
dephasing-rephasing mechanisms that prevents the coherence to decay. Similarly, the dipole-dipole interaction
gives rise to quantum recurrences for specific revival times. Nevertheless, intense recurrences are rather rare
events so that the coherence behaves as a random variable whose most probable value vanishes. By comparing
the degree of the coherence for each interaction, a critical coupling x*(L) is defined to discriminate between the
weak and the strong coupling limits. Its size dependence indicates that the smaller the lattice size is, the weaker
the vibron-phonon coupling relative to the dipole-dipole interaction is.
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I. INTRODUCTION

As first pointed out by Davydov and Kisluka in the 1970s
[1], vibrons may play a key role to transfer the energy re-
leased by the hydrolysis of adenosine triphosphate in a he-
lices [2-23]. The main idea is that the released energy is
initially stored in the high frequency amide-I mode (C=0O
vibration) of a peptide unit. Then, it delocalizes along the
helix due to dipole-dipole interactions and yields vibrational
excitons called vibrons. Since each C=0 group is engaged
in a H bond, a vibron interacts with acoustical phonons that
describe the H-bond network dynamics.

According to the Davydov model, the vibron-phonon dy-
namics in an « helix reduces to that of a single spine of
H-bonded peptide units. In such a lattice, the phonons propa-
gate faster than the vibron so that the Davydov model corre-
sponds to the nonadiabatic limit of the Frohlich Hamiltonian
[24]. The quantum nature of the phonons plays a crucial role
[5-7] and the vibron dynamics exhibits two asymptotic re-
gimes. In the strong coupling limit, the vibron-phonon cou-
pling predominates over the dipole-dipole interaction. There-
fore, the creation of a vibron is accompanied by a lattice
distortion, i.e., a contraction of the H bonds surrounding the
excited site. The vibron is dressed by a virtual phonon cloud
and it forms a small polaron. The dressed basis is obtained
by performing a Lang-Firsov transformation [25-29]. How-
ever, this transformation is not exact so that a polaron-
phonon coupling remains. It favors relaxation and yields an
incoherent diffusive motion of the small polaron
[17,18,30-33]. By contrast, the weak coupling limit is
reached when the dipole-dipole interaction predominates
over the vibron-phonon coupling. It is thus more efficient to
use a bare basis for characterizing the vibron dynamics. In
that case, a standard perturbation theory is applied to treat
the coupling with the phonons. Within the nonadiabatic limit,
this coupling does not modify the coherent nature of the
vibron. The vibron propagates as if it was insensitive to the
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phonons and a wavelike vibrational energy flow takes place
along the lattice [19,20].

These features reveal that the vibron-phonon coupling
strength, i.e., the so-called y parameter, plays a central role
to define the more efficient way to comprehend the vibron
properties. However, its value is still under debate. Indeed,
most y values extracted from an indirect comparison be-
tween experiments and theories suggest that the strong cou-
pling limit is reached (|y|=30-62 pN [4,12,13]). By con-
trast, estimations of the coupling strength have been carried
out by performing ab initio calculations for the formamide
dimer [34-36]. Most ab initio estimates yield smaller y val-
ues, often negative, indicating that the weak coupling limit is
reached.

In that context, a simple and intuitive procedure has been
established to discriminate between the weak and the strong
coupling limits [37]. The main idea is to compare separately
the influence of both the vibron-phonon coupling and the
dipole-dipole interaction on a one-vibron state that describes
the excitation of a given amide-I mode. To account on finite
temperature effects, this procedure has been achieved within
the vibron reduced density matrix (RDM) approach. Special
attention has been paid to characterize the coherence be-
tween the zero vibron ground state and a local excited state
that generalizes the concept of survival amplitude at finite
temperature. We have shown that the vibron-phonon cou-
pling induces dephasing-limited coherent dynamics whereas
decoherence occurs due to dipole-dipole interactions since
the local excited state couples with neighboring local states.
Consequently, our study simply reveals that the strongest in-
teraction is responsible for the fastest decoherence. It pro-
vides a critical coupling strength x*=25 pN at biological
temperature that discriminates between the weak (y<x®)
and the strong (x> x*) coupling limits.

In the spirit of most theories applied to the Davydov prob-
lem, our measure of the coupling strength has been defined
in an infinite lattice with translational invariance. However,
most proteins have compact and globular shapes due to fre-
quent reversals of the direction of their polypeptide chains
[38]. The analysis of the three-dimensional structures of nu-
merous proteins has revealed that they involve a set of sec-
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ondary structures, such as « helix and 8 sheet, connected to
each other by common structural elements called S-turn
loop. It has been shown, form the Brookhaven Protein Data
Bank, that helices containing from 3 to 15 residues are the
most abundant in nature indicating that most proteins involve
rather small helices [39]. Consequently, the fundamental
question arises whether the finite size of the lattice modifies
our measure of the coupling strength. In a confined environ-
ment, both the vibron energy spectrum and the phonon en-
ergy spectrum exhibit a discrete nature. We thus expect the
occurrence of quantum recurrences that will prevent the vi-
bron RDM to decay in the long time limit. Therefore, the
purposes of the present paper are to address a comprehensive
theory to understand the RDM dynamics in a confined envi-
ronment and thus to provide a measure of the vibron-
coupling strength in a finite size lattice.

This paper is organized as follows. In Sec. II, the vibron-
phonon Hamiltonian is defined and the procedure to dis-
criminate between the weak and the strong coupling limits is
summarized. Numerical calculations are presented in Sec. III
and the results are discussed and interpreted in Sec. IV.

II. THEORETICAL BACKGROUND
A. Model Hamiltonian

Let us consider a one-dimensional (1D) lattice of
H-bonded peptide units with N sites. Each site x=1,...,N
contains an amide-I mode with frequency w,. Restricting our
attention to the one-vibron dynamics, the xth amide-I mode
is equivalent to a two-level system whose first excited state
is denoted |x>. The zero-vibron state, defined as the vacuum
|®>, describes all the amide-I modes in their ground state.
The vibron Hamiltonian H,=H,+V, is thus written as

N

HA=
x=1

N-1

Vy= > AD[|x + 1)(x| +

x=1

(1)

where H, describes N independent amide-I modes whereas
V, defines dipole-dipole interactions between neighboring
amide-I modes. Note that ® is the vibron hopping constant.
In a finite size lattice, one-vibron states do no longer corre-
spond to Bloch waves with well-defined wave vectors. In-
deed, the lattice sides lead to reflections so that the true
eigenstates are superimpositions of incident and
reflected plane waves. They define N stationary states with
quantized wave vectors K;=kw/L and eigenfrequencies
w=wy+2® cos(K;), where k=1,...,N and L=N+1.
The vibron dynamics is accounted by the free propagator
G(t)=exp(—iH,t/h) defined as
N

2 .
G, (1) = ZZ sin(Kx)sin(Kx')e 'K, (2)
k=1

A vibron interacts with the phonons that describe the mo-
tions of the peptide units connected through hydrogen bonds.
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To mimic the fact that a real « helix in a globular protein is
embedded in its protein matrix, we assume that the peptide
units are confined between two potential wells. As a result,
the phonon Hamiltonian is written as

N 2

HBE

w
(ux+l ux)z + E(”% + ulz\]) s (3)
where M is the mass of each peptide unit whose displace-
ment and momentum are u, and p,, respectively, and where
W is the H bond force constant. The last two terms in Eq. (3)
account for the coupling between the side groups x=1 and
x=N and the protein matrix supposed to be rigid. To simplify
our discussion, these couplings are characterized by the force
constant W so that the lattice is equivalent to a 1D chain with
fixed boundary conditions. Due to the confinement, a station-
ary regime takes place and the phonon eigenstates corre-
spond to N normal modes with quantized wave vectors
q,=pm/L, where p=1,...,N. The corresponding frequencies
are (,=Q. sin(pm/ 2L) where Q.=V4W/M. Within this
normal mode representation, the phonon Hamiltonian
[Eq. (3)] is rewritten in terms of the standard phonon opera-
tors a, and a, as Hp= EN_I hQ (apa +1/2).

According to the Davydov model, the phonon bath yields
random fluctuations of the internal frequency of each
amide-I mode. The vibron-phonon coupling Hamiltonian is
thus written as

N N
Ve=>, > ﬁApx(a; +a,) lx) (x|, (4)
x=1 p=1
where A, is defined as
2
Apx=2A0\/—sin(m)cos<m>cos<pﬂ). (5)
L 2L 2L L
In Eq. (5), Ay=x(#*MW)="* depends linearly on the

coupling parameter y introduced in the original Davydov
model. Note that the small polaron binding energy
Ep=2A3/Q.=x*/hW provides also a measure of the cou-
pling strength.

The vibron-phonon dynamics is governed by the full
Hamiltonian H=H,+H+V,+Vy whose Hilbert space can
be partitioned into independent subspaces E=E,® E|, where
E, denotes the v-vibron subspace. Equations (1) and (4)
show that V, and Vj act in E|, only.

B. Measuring the vibron-phonon coupling strength

In this section, a summary of the formalism detailed in
Ref. [37] is presented by including the modifications re-
quired to describe the dynamics in a confined lattice. To dis-
criminate between the weak and the strong coupling limits,
the main idea is to compare separately the influence of V,
and V3 on a one-vibron eigenstate of the unperturbed Hamil-
tonian Hy=H,+Hpg. To proceed, a density matrix formalism
[40] is applied to account on finite temperature effects that
play a key role in proteins under physiological conditions.
The phonons are thus assumed to form a thermal bath whose
quantum state is described by the standard Boltzmann distri-
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bution pp. In contrast, the amide-I vibrations are prepared in
the state |W,)=co|@)+c |xo) (|col*+|ci[*=1) which defines a
superimposition between the ground state and a local excited
state. The initial state of the vibron-phonon system is thus
specified by the full density matrix p=|¥ YV, |® pg. There-
fore, the vibron RDM element that measures the coherence
between |©) and |x,) is equivalent to the survival amplitude
of the initial state of the lattice at finite temperature. When
V, is turned on, with a=A or B, this coherence is defined as

Ua(xo %) ,l‘) — <x0|TrB[g—(i/h)(H0+Va)rpe(i/h)(H0+Va)t]| % >, (6)

where Trp is a trace over the phonon degrees of freedom.

When V,=V,, the vibron does not interact with the pho-
non bath. Its dynamics is governed by the Hamiltonian H, so
that o4(x@ ,1) is expressed in terms of the vibron propagator
[Eq. (2)] as

UA(XO © ’t) = Gx (I)CICS. (7)

When V,=Vj, the time-convolutionless master equation ap-
proach is applied [17-20,41-47] so that op(xy@ ,t) is ex-
pressed as

0%0

1
op(xy @ ,1) = e’ exp[— f dTTXO(T)]clcg. (8)

0

The relaxation operator I, () is written as

T, ()= f drC, (7). )
0

where C,(7) is the vibron-phonon coupling correlation func-
tion defined as [see Eq. (4)]

C(N=2 A [(2n,+ Deos(Q,1) —i sin(Q,n], (10)
p

with n,=[exp(AQ,/kgT)-1]"", kg being the Boltzmann con-
stant.

In an infinite lattice, o4(xo@ ,7) [Eq. (7)] decreases over a
time scale of about the vibron correlation time 7,=1/2®.
This correlation time measures the delay needed to the vi-
bron to cover a lattice site and thus to leave the excited state.
It defines the time during which the initial coherence sur-
vives. In contrast, Eq. (8) describes dephasing-limited coher-
ent dynamics due to the vibron-phonon coupling. This cou-
pling induces random fluctuations of the local excited state
energy which destroy the coherence o(xo@ ,f). In that con-
text, our measure of the coupling strength has been defined
as follows [37]. Let € the parameter defined in terms of the
dephasing rate Y(r)=Re I', (¢) as

ezfrudty(t). (11)

0

When €<<1, 04(xy@,t) decays faster than op(x,@ ,1). The
dipole-dipole interaction predominates over the vibron-
phonon coupling and the weak coupling limit is reached. By
contrast, when €>1, og(xo@,) decays faster than
o4(xo@ ,1). The opposite situation takes place and the strong
coupling limit is reached.
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FIG. 1. Time evolution of (a) K(¢) and (b) y(z) for y=30 pN,

T=310 K, and L=22. Gray lines correspond to the Debye model
(see the text).

As it will be shown in the following sections, a fully
different behavior takes place in a confined environment.
Mainly due to the ability of both the vibron and the phonons
to be reflected by the lattice sides, o4(xy@ ,7) and o(xy@ ,1)
do no longer tend to zero in the long time limit. Time recur-
rences occur so that the coherent nature of the initial state is
more or less restored. Nevertheless, as unbelievable as it
seems, we are going to show that our measure of the cou-
pling strength still remains valid when the lattice size is not
too small.

III. NUMERICAL RESULTS

In this section, the previous formalism is applied to char-
acterize the vibron-phonon coupling strength in a finite size
lattice of H-bonded peptide units. To proceed, typical values
for the parameters are used: wy=1660 cm™!, ®=7.8 cm™,
W=15 Nm™!, and M=1.8X1073 kg. The phonon cutoff
frequency is 2.=96.86 cm™! so that the adiabaticity
B=2d/Q). is about 0.16. The vibron correlation time is
7,=0.34 ps. The temperature is fixed to 310 K unless other-
wise stated. Finally, to simplify the discussion, the lattice
size L is assumed to be an even number and xy=L/2.

The time evolution of the coupling correlation function
K(r)=Re CXO(t) is illustrated in Fig. 1(a) (y=30 pN and
L=22). In the short time limit, K(7) behaves as in an infinite
lattice. It shows a peak centered on =0 whose amplitude is
1188.70 cm™. Then, K(z) decays over a time scale of about
0.11 ps by exhibiting small amplitude damped oscillations.
Nevertheless, it does not vanish and it converges to a nega-
tive value of about —118.0 cm™. A second peak appears at
t=2.55 ps. Its amplitude is equal to 761.59 cm™ and its
width is about 0.34 ps. After this peak, K(¢) decreases again
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FIG. 2. Time evolution of the decoherence factor for
T=310 K and for (a) y=10 pN and (b) =30 pN. Black lines
correspond to L=12, whereas gray lines refer to L=22.

by exhibiting damped oscillations around the same negative
value. As time passes, similar features are observed and K(z)
shows a series of peaks more or less regularly distributed.

As shown in Fig. 1(b), the dephasing rate y(r) exhibits a
jerk-and-jump time evolution. Initially equal to zero, ()
first increases linearly with time to reach a maximum value
equal to 24.97 cm™! at t=0.19 ps. Then, it decreases almost
linearly and reaches a minimum value of about —19.04 cm™!
at =2.14 ps. Note that y(r)=0 at r=1.21 ps. As time in-
creases, (f) increases again and it vanishes again at
t=2.47 ps. This scenario continues so that the dephasing rate
behaves almost periodically [48] and it shows a series of
positive and negative values.

The time evolution of oy(xy@1) is characterized by the
decoherence factor F(r)=exp[—[{dTy(7)] whose behavior is
illustrated in Fig. 2. For =10 pN [Fig. 2(a)], F(z) is an
almost periodic function. Its main period increases linearly
with the lattice size from 1.34 ps for L=12 (black line) to
2.46 ps for L=22 (gray line). Initially equal to unity, F(r)
decreases according to a Gaussian law in the very short time
limit. Then, a slowdown in its decay occurs and F(¢) reaches
a minimum value F,, that decreases with L. For L=12, the
first minimum F,,=0.85 occurs at t=0.67 ps. In contrast, for
L=22, the minimum F,,=0.73 takes place at r=1.23 ps. As
time passes, F(¢) increases and it reaches a maximum whose
value is rather close to unity. Such a behavior continues al-
most periodically so that F(z) varies between a maximum
value and a minimum value that remains about F,, V t.
Similar features take place for y=30 pN [Fig. 2(b)]. Indeed,
F(r) still oscillates between a minimum and a maximum
value. The minimum values are almost time independent and
they are typically of about F,,=0.25 for L=12 and
F,,=0.06 for L=22. In contrast, the maximum value slightly
varies with time although it remains close to unity. The main
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FIG. 3. Time evolution of the decoherence factor for
T=310 K and L=22. (a) x=10 pN and (b) xy=30 pN.

period of F(¢) is x independent and it reduces to the period
observed in Fig. 2(a).

The evolution of F(¢) over a larger time scale is illustrated
in Fig. 3 for L=22. For =10 pN [Fig. 3(a)], F(r) exhibits
low-frequency oscillations that support a high-frequency
small amplitude modulation. The high-frequency component
refers to the short time behavior of F(r) described in Fig.
2(a). The low-frequency component exhibits a rather small
amplitude that appears almost size independent. Its main pe-
riod only depends on the lattice size. However, this period
does no longer scale linearly with L and it typically varies
form 20 ps for L=12 (not drawn) to 120 ps for L=22. A
slightly different behavior occurs for y=30 pN [Fig. 3(b)].
Indeed, F(r) still involves the mixing between a low-
frequency component and a high-frequency component, this
latter component referring to the short time behavior ob-
served in Fig. 2(b). However, the low-frequency component
yields an asymmetric modulation of the decoherence factor.
Although its minimum value is not significantly modified
and remains close to F,, V ¢, the low-frequency modulation
strongly affects its maximum value. This effect is enhanced
as L increases so that the maximum value of F(z) typically
ranges between 0.7 and 1 for L=12 (not drawn) whereas it
extends from 0.4 to unity for L=22. Note that the main pe-
riod of these low-frequency oscillations is y independent. It
reduces to the period observed in Fig. 3(a).

The almost periodic behavior observed in Fig. 3 yields an
apparent randomness of F(z) whose properties can be inves-
tigated by performing a statistical analysis. To proceed, F(t)
can be viewed as a realization of a random variable F. Over
a sufficiently long time scale 7, the curve F(r) defines a
sample over which statistical quantities can be computed in
an empirical way, i.e., without deploying a statistical model.
Note that 7 is assumed to be sufficiently long so that the
ergodic principle can be applied, i.e., all the possible realiza-
tions of the random variable F are assumed to occur over the
range [0,7]. Within this point of view, the distribution g(F)
is displayed in Fig. 4. For =10 pN [Fig. 4(a)], g(F) is
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FIG. 4. Distribution of the decoherence factor for T=310 K. (a)
x=10 pN and (b) y=30 pN. The simulation has been carried out
over 5000 ps with 5X 10° time steps.

almost uniform over the range [Fy,, 1], where F,, decreases
from 0.83 for L=12 to 0.70 for L=20. More precisely, g(F)
exhibits two peaks. The first peak is close to unity. It is
slightly shifted when L increases and its position varies from
0.96 for L=12 to 0.92 for L=22. The second peak is more
sensitive to the lattice size. It decreases from 0.86 for
L=12 to 0.76 for L=20. In fact, the position of this latter
peak corresponds to the minimum decoherence factor F,, ob-
served in the short time limit [Fig. 2(a)]. When x=30 pN
[Fig. 4(b)], g(F) becomes broader. The peak close to unity
tends to disappear whereas the second peak, which remains
centered around F,, [see Fig. 2(b)], becomes more intense.
This peak moves closer to zero when both L and y increase.

With the ingredients that define op(x,@1) being charac-
terized, let us now focus our attention on the coherence
04(xo@1) that describes the survival amplitude of the local
excited state |x,) when the dipole-dipole interaction is turned
on [Eq. (7)]. Information about this local coherence is ex-
tracted from the survival probability P(f)=|G, Mo(t)|2 whose
behavior is displayed in Fig. 5 for L=16.

When t<4 ps, P(t) behaves as in an infinite lattice so
that its evolution is governed by the vibron correlation time
(7,=0.34 ps). Initially equal to unity, P(¢) decreases with
time. It reaches a value of about 0.60 when 7= 7,, indicating
that 40% of the population of the excited site have been
transferred to neighboring sites. Nevertheless, P(¢) does not
vanish in the long time limit. Due to the confinement, the
memory of the initial vibron state is more or less recovered
as time increases. Indeed, over a rather short time scale [Fig.
5(a)], P(r) exhibits peaks which are almost periodically dis-
tributed. These peaks take place at r=5.77 ps, t=10.80 ps,
and r=16.60 ps and the corresponding amplitudes are equal
to 0.40, 0.43, and 0.60. They characterize quantum recur-
rences that occur at specific revival times. Nevertheless,
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FIG. 5. Time evolution of the survival probability

P(t):\GX( }x()(z)|2 for L=16.

these recurrences define quantum states that only slightly
resemble the initial local state. Less than or about to 60% of
the initial population recurs on the excited site, the remaining
population being delocalized over the other sites. Over a
time scale equal to 200 ps (not drawn), P(z) exhibits a series
of peaks, most of which are characterized by an amplitude
smaller than 0.60. Between two successive peaks, P(¢) shows
high-frequency small amplitude oscillations. Nevertheless,
eight peaks whose amplitude is larger than 0.60 have been
observed. As shown in Fig. 5(b), similar features occur over
2000 ps. The curve P(r) shows a series of discrete peaks
more or less intense that emerges from a continuous back-
ground. The number of intense quantum recurrences in-
creases and 29 peaks whose amplitude is larger than 0.8 are
clearly observed. For instance, P(r)=0.88 at r=70.82 ps and
it reaches 0.97 at t=1588.20 ps. These intense peaks occur
at revival times for which the initial coherence almost recurs
exactly. They thus describe quantum recurrences for which
the vibron quantum state strongly resembles the initial state
with only a phase factor.

The occurrence of quantum recurrences that emerge for a
continuous background provides a random nature to P(z).
Consequently, in analogy with our study of the decoherence
factor, the behavior of the survival probability can be inves-
tigated by performing a statistical analysis. In that context,
the distribution g(P) is displayed in Fig. 6. This distribution
is independent of the vibron hopping constant. It only de-
pends on the lattice size, and, for rather large L values
[Fig. 6(b)], g(P) scales as a power law g(P)=~P~* whose
exponent is about @=(.7. This feature indicates that P=0 is
the most probable value of the survival probability. The
mean value of P decreases with the lattice size and it reduces
to 2/L. Similarly, the second moment also scales as 2/L in
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FIG. 6. Distribution of the survival probability for (a) L=12 and
(b) L=16. The simulation has been carried out over 5000 ps with
5 10° time steps.

accordance with the fact that g(P) is strongly peaked on
P=0. Nevertheless, for smaller L values, a slightly different
behavior takes place. When L=12 [Fig. 6(a)], in addition to
the main peak that occurs for P=0, g(P) exhibits a second
peak for P=0.11. This latter peak is about five times smaller
than the main peak, so that P=0 still remains the most prob-
able value. The presence of this additional peak is respon-
sible for a broadening of the distribution. This second peak
disappears when L=10 and L=8 but it recurs when L=6. In
that case, g(P) supports a third peak centered on unity. The
second and the third peaks are about two times and three
times smaller than the main peak still centered on P=0. Fi-
nally, when L=4 a fully different behavior occurs since g(P)
shows two peaks with the same amplitude and centered on
zero and on unity. This case corresponds to a special situa-
tion in which P(¢) is a true periodic function.

These results show that o4(x,@1) exhibits intense recur-
rences that correspond to rather rare events which occur ran-
domly provided that L>4. Therefore, the most probable
value of a4(xy@1) vanishes as in an infinite lattice. In other
words, the vibron correlation time 7, remains the relevant
time scale over which o,(x,@1) survives in a statistical
sense. Consequently, the procedure established in an infinite
lattice still remains valid to measure the vibron-phonon cou-
pling strength. In that context, from the knowledge of the
decoherence factor we can compute the parameter
e=—In[F(7,)] and then extract the critical value of the cou-
pling strength x*(L) that discriminates between the weak
coupling limit [y<x*(L)] and the strong coupling limit
[x>x*(L)]. For L=6, the dependence of the critical cou-
pling x*(L) with respect to the lattice size is illustrated in
Fig. 7. The figure reveals that x*(L) exhibits two regimes
whatever the temperature. For large L values, x*(L) is a
slowly decaying function of the lattice size that converges to
a constant value when L tends to infinity. We thus recover the
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FIG. 7. Size dependence of the critical coupling x*(L).

behavior of the critical coupling in an infinite lattice and
x(L— ) increases when the temperature decreases. For
L=102, it ranges between 25.29 and 36.25 pN when T re-
duces from 310 to 150 K. However, when L decreases, x*(L)
increases whatever the temperature. At 7=310 K, they are
equal to 27.83, 28.90, 31.20, and 39.77 pN when L is
successively equal to 18, 14, 10, and 6. Note that a diver-
gence seems to occur when L reaches a critical value of
about L=4. Nevertheless, in that case, our measure of the
coupling strength breaks down since the survival probability
P(1) is a true periodic function (see the discussion of Fig. 6).

IV. DISCUSSION

In a finite size lattice, the numerical results reveal that the
coherence o(xo@1) evolves almost periodically when the
vibron-phonon coupling is turned on. The decoherence factor
does not vanish in the long time limit but it oscillates, ac-
cording to at least two time scales, between a minimum F,,
and a maximum close to unity. From a statistical point of
view, F,, is typically the most probable value of the decoher-
ence factor. It decreases with both L and y indicating that the
larger the lattice size and the vibron-phonon coupling are, the
smaller the degree of the coherence is. Similarly, the finite
size of the lattice induces quantum recurrences in the time
evolution of the coherence ,(x,@1). Nevertheless, provided
that L>4, intense recurrences correspond to rather rare
events that appear more or less randomly. They are not rep-
resentative of the behavior of the coherence whose most
probable value is zero, as in an infinite lattice. This means
that o4(xo@¢) survives, in a statistical sense, over a time
scale of about the vibron correlation time. The main conse-
quence is that the procedure established in an infinite lattice
still remains valid when the lattice size is not too small.
However, this procedure has now a statistical meaning and it
allows us to compare the degree of the vibronic coherence
when either V, or Vy is turned on. In other words, when
€<1, the coherence op(x,@1) remains close to its initial
value whereas o4(x,@1) vanishes in a statistical sense. The
dipole-dipole interaction predominates over the vibron-
phonon coupling and the weak coupling limit is reached. In
contrast, when €> 1, the opposite situation occurs indicating
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that the strong coupling limit is reached. From the equation
€=1, a critical coupling x*(L) has been identified to charac-
terize the transition between the weak and the strong cou-
pling limits. The main point is that y*(L) increases when L
decreases indicating that the vibron-phonon coupling de-
creases relative to dipole-dipole interactions when the con-
finement is enhanced.

To interpret these observed features, let us first investigate
the way the vibron-phonon coupling affects the vibronic co-
herence. To proceed, the so-called Debye model is applied so
that the phonon dispersion curve is linearized according to
the relation Q,~Q pm/2L [18,19]. Within this model, the
coupling correlation function K(r) at biological temperature
is expressed as

K(t) = 2EgkpT] ¢, (1) + ¢yt + Tp)], (12)

where kp=kg/h, Ty=L7., and 7,=2/Q, is the phonon
correlation time. In Eq. (12), ¢ ()=f.(t)+1/2f (t+7,)
+1/2f;(t—7.) involves the function f;(¢) defined as

X Tt
1 (N Sm(z_rc) 1
fL(t):ZCOS<_2LTL.>—, ( — )—z (13)
sin

2L,

Equation (12) reveals that K(z) is a Ty-periodic function
which exhibits a series of peaks whose amplitude is
2EgkpT(1-2/L) and whose width is about 27, [see gray line
in Fig. 1(a)]. With the parameters used in the simulation, the
peak amplitude is equal to 1183.24 cm™ whereas the period
is Ty=2.41 ps (7,~0.11 ps and L=22). Between two suc-
cessive peaks, K(f) does not vanish. It is equal to a negative
value —4EgkzT/L which is about —118.32 cm™2. In other
words, over a single period (0<t<T,), K(¢) scales as
(with 7=t/ 17,)

if r=1

if 1=7=N (14)

2EgkT(1-2/L)
— 4EgkpT/L
2EgksT(1-2/L) if N=T<L.

Since y(1)=K(z) [Eq. (9)], the integration of Eq. (14) pro-
vides an analytical expression of the dephasing rate. This
procedure reveals that () is also a Ty-periodic function de-
fined as

K(r) =

Y1) = ¥ —(2—1> if 1<7T=<N (15)

(1 2>t—TO
L) .
\

where 7()=4EBEBT/ Q. is the dephasing rate in an
infinite lattice [37]. Equation (15) shows that (r) varies
periodically between two size dependent values *v;, with
v.=vo(1=2/L). In the short time limit, y(¢) increases from
zero to reach +1v; at t=7,.. Dephasing-limited coherent dy-

PHYSICAL REVIEW E 81, 031913 (2010)

namics occurs. However, when 7. <t <T,—7,, ¥(t) decreases
linearly with time. It remains positive provided that
t<T,/2 indicating a slowdown in the decoherence process.
Then, when t>T,/2, ¥(t) becomes negative so that a rephas-
ing mechanism takes place. It continues to decay and it
reaches —vy, at r=T,—7,. Finally, as time increases, () re-
mains negative but it increases with time and vanishes at
t=T,. As shown in Fig. 1(b) (gray line), the Debye model
provides a theoretical expression for the dephasing rate that
mimics quite well the numerical results. It yields
v,=24.43 cm™!, in a rather good agreement with the nu-
merical observations.

Within the Debye model, the decoherence factor is a
Ty-periodic function expressed as
r -

nt

27,

L (&

exp } if 7=1

T, ot

2
F(1) = - (t————)} if 1=7=<
(1) GXP_ Yo 2T, if l=fr=N

y(t = Ty)*
PITT L

¢

if N=7t=L.

L L
(16)

When t<7, F(tf) decays according to the Gaussian law
F(r) = exp[—EgkpT(1-2/L)¢*] indicating that dephasing oc-
curs as in the infinite lattice. However, as time increases, a
slowdown in the decay of F(r) is observed. Consequently, at
t=Ty/2, F(r) reaches a minimum value defined as

2EgksT

= (L—Z)}. (17)

F,,=exp |: -
As observed in Fig. 2, F,, decreases with both L and y. For
x=10 pN, it decreases from 0.86 to 0.73 when L ranges
between 12 and 22. Similarly, for y=30 pN, F,, varies from
0.25 to 0.06 when L increases from 12 to 22. Then, over the
time scale 7)/2 <t<T,, the decoherence factor increases. It
finally reaches unity at time 7, indicating that the initial co-
herence is restored. Note that the behavior observed in an
infinite lattice is recovered from Egs. (15) and (16) within
the limit L — o [37].

The Debye model captures the main part of the physics
that characterizes the dephasing rate and the decoherence
factor. To understand this physics in a simple way, let us
assume that the phonon bath is initially in a quantum state
|W ) that corresponds to a well-defined number state for each
phonon mode. Note that, in practice, a statistical average
is performed to account on finite temperature -effects
(see Sec. II). In contrast, the vibron state is a superimposition
that involves the ground state and a local excited state |x,).
The vibron-phonon state at =0 is thus a tensor product be-
tween the two previous quantum states. When the vibron-
phonon coupling Vjp is turned on, this state evolves in an
entangled vibron-phonon state as

[W(0)=col @) @ [W50)) + cre”Vxg) @ [W3(0)), (18)

where |W%(r)) and [Wj(t)) are the phonon states at time
when the phonon dynamics is governed by Hp and
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Hp+ Vi(xpxo), respectively. After performing a trace over the
phonon degrees of freedom, o5(x,@ ,1) (V| lIfllg(t)) defines
the survival amplitude of the initial phonon state when the
phonons experience the coupling Vg(xyxg).

This coupling brings each phonon mode in a coherent
state. Consequently, the phonons reach a quasiclassical state
that corresponds to a lattice distortion, i.e., a contraction of
the H bonds surrounding the site x,. Since each phonon co-
herent state evolves in time, the lattice distortion propagates
according to two acoustic wave packets that are emitted on
each side of the excited site. These wave packets propagate
with sound velocity ¢=()./2 and they cover a lattice param-
eter after a time scale of about 7,. In that context, K() mea-
sures the lattice memory at time ¢ of the initial distortion, i.e.,
the memory of the initial phonon state.

Consequently, K(z) takes a significant value when the ini-
tial distortion is still localized around the excited site. Then,
it decreases after a time scale of about 7, indicating that the
two emitted wave packets have left the excited region. Over
this short time scale, the phonon state develops a rather fast
evolution so that the phonon bath rapidly loses the memory
of its initial state. This memory loss drastically affects the
coherent nature of the vibronic superimposition. The corre-
sponding coherence decreases according to a decay rate that
increases linearly with time to reach a maximum value y; at
t=r,. This rate depends on the lattice size because the inten-
sity of the vibron-phonon coupling is reduced in a confined
environment. A measure of the coupling strength is provided
by the parameter eg(L)=%X, AIZ,X/ ), which is equal to
Eg(1-2/L) ¥V x[29].

When 7> 7, the phonon state continues to evolve and the
two emitted wave packets delocalize far from the excited
region. Nevertheless, K(¢) does not vanish. It converges to a
time independent negative value indicating that the phonon
bath slightly keeps the memory of its initial state. Therefore,
correlations remain between the initial distortion and the two
propagating deformations located around x,* ct. These cor-
relations are mediated by the quantum fluctuations of the
lattice site motions when the phonons occupy the initial state
|W ). Note that, at biological temperature, these correlations
have a thermodynamics origin since they result form the
thermal fluctuations of the lattice site motions. These corre-
lations play a fundamental role since they give rise to a slow-
down in the decoherence process. Therefore, dephasing-
limited coherent dynamics remains but the corresponding
dephasing rate y(t) = y,—2yyt/ L7, decreases with time due to
the confinement.

In fact, because they evolve in a confined lattice, it is as if
the phonons knew that they were going to recover their ini-
tial state and thus to restore the initial coherence of the vi-
bronic superimposition. Indeed, at r=T7,/2, the two wave
packets are reflected. They propagate back to the excited
region and they reappear simultaneously on x at time Tj. At
that time, K(r) exhibits a new peak indicating that the
phonons recover their initial state with only a phase factor. In
other words, it is as if the phonon state went back in time
after experienced the reflection on the lattice sides. Over this
time scale, the dephasing rate becomes negative. A rephasing
mechanism takes place that exactly compensates the previ-
ous dephasing mechanism. The decoherence factor increases
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over a time scale of about 7/2 and, at t=T,, the initial
vibronic coherence recurs.

Within the Debye model, the previous scenario shows that
a series of dephasing-rephasing mechanisms takes place pe-
riodically. However, due to the phonon dispersion, this peri-
odicity is more or less broken. Indeed, the real phonon dis-
persion curve exhibits a nonlinear dependence with respect
to the phonon wave vector. This dispersion is responsible for
the spreading of the wave packets so that the initial phonon
state is no longer exactly recovered after each reflection.
However, because the time evolution of the wave packets is
governed by a discrete energy spectrum, quantum recur-
rences take place [49-53]. The dynamics is thus character-
ized by so-called revival times for which the two wave pack-
ets recur simultaneously in the excited region and provide a
quantum state that strongly resembles the initial phonon
state. The revival times can be extracted from the Taylor
series of the phonon dispersion curve expressed as

where T, is the classical time, 7, is the revival time, and 7,
is the super-revival time. Form the phonon dispersion curve
one obtains T,,=2L7,, T,=, and T,,=8L37./ 7. Neverthe-
less, since xy=L/2, only even phonon modes p=2.,4,6,...
are excited. Consequently, the relevant time scales are no
longer T,; and T, but Ty=T,,/2 and Tx=T,,/23. For the pa-
rameters used in the simulation, one finally obtains
To=131 ps and Ty=19.18 ps for L=12 whereas
To=2.41 ps and Tr=118.18 ps for L=22. In a rather good
agreement with the features observed in Fig. 3, T is the
period of the high-frequency component of the decoherence
factor whose local maxima characterize phonon quantum
states that more or less resemble the initial phonon state. In
contrast, the super-revival time T} is the period of the low-
frequency component of the decoherence factor whose
maxima, close to unity, refer to situations in which the pho-
non state becomes almost identical to the initial phonon
state.

Let us now discuss how the vibronic coherence behaves
when the dipole-dipole interaction is turned on. As shown in
Eq. (7), this coherence o (x(@1) is proportional to the diag-
onal element of the free vibron propagator Gxoxo(t) [Eq. (2)].
From a physical point of view, G, OXO(t) defines the probabil-
ity amplitude to observe the vibron in a state |x,) at time ¢
given that it occupies this state at r=0. It thus measures the
lattice memory of the initial vibron state. This memory
evolves in time since the vibron delocalizes along the lattice
due to dipole-dipole interactions. Indeed, the initial excita-
tion of the vibron yields the emission of two wave packets
that propagate with group velocity v=2® on each side of the
exited site x,. After a time scale of about 7,, these wave
packets have left the excited region so that the memory de-
creases and almost vanishes. However, at t=L7,/2, the
wave packets reach the lattice sides, are reflected, and propa-
gate back to the central site. Consequently, the memory re-
curs at time 7,=Lr,, i.e., when the two wave packets reap-
pear simultaneously in the excited region. The vibron
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reaches a quantum state that resembles the initial state. As
observed in Fig. 5(a), such a mechanism takes place periodi-
cally, with a period of about 7,=5.44 ps (L=16), and it
gives rise to the occurrence of quantum recurrences.

Nevertheless, the vibron experiences a strong dispersion
that induces a fast spreading of the two propagating wave
packets. Consequently, the initial vibron state is only par-
tially recovered after each reflection. However, as the pho-
non dynamics, the properties of the vibron in a confined
environment are governed by a discrete energy spectrum.
Therefore one may expect to observe revival times for which
the reappearance of the two wave packets in the excited re-
gion provides quantum states that strongly resemble the ini-
tial vibron state. Information about time revivals can be ex-
tracted form the Taylor expansion of the vibron dispersion
curve. To proceed, let us assume that the initial wave packet
is centered around a quantum number k(. The vibron disper-
sion curve is thus approximated as

k=ky 1 (k=k)?

T, 20 17,

+ ) (20)

Wy = Wy + 27T<—

where 7_,=L/[® sin(kym/L)] is the vibron classical time and
T,=L*/[®m cos(kym/L)] is the vibron revival time. When
the initial state consists of many eigenstates close to the band
center w=w,, ky is about L/2. Consequently 7,— o so that
the dynamics is dominated by the classical time 7.~ L/®.
In contrast, when the initial state involves eigenstates whose
energy is close to the band edges w=w,*2®, k, is about 0
or L. The relevant time scale is now the revival time
T,=L?/[®] since T,,— .

Unfortunately, the two previous asymptotic situations mix
in a complex manner which prevents the occurrence of in-
tense quantum recurrences. Indeed, since xy=L/2, the initial
vibron state involves all the eigenstates characterized by an
odd quantum number k=1,3,5,.... Moreover, each eigen-
state occurs with the same weight in the initial wave packet.
Consequently, the eigenstates close to both the band center
and the band edges participate simultaneously in the vibron
dynamics. Since only odd quantum numbers are involved,
the relevant time scale is neither 7,; nor 7, but 7,,/2 (for
ko=L/2*=1) and 7,/4 (for ky=1 or N). The signature of
these two time scales has clearly been observed in Fig. 5.
Nevertheless, these two time scales do not yield exact quan-
tum recurrences since the vibron dispersion curve is neither a
linear nor a quadratic function of the wave vector. The main
consequence it that the memory exhibits a kind of random
time evolution in the course of which intense recurrences
correspond to rather rare events. Therefore, from a statistical
point of view, these intense recurrences are not representa-
tive of the behavior of the coherence o4(x,@1). One can thus
conclude that the coherence only survives over a time scale
of about 7,, as in an infinite lattice.

In that context, in spite of the confinement, the vibron
correlation time 7, has a physical meaning so that the proce-
dure established in Ref. [37] still remains valid. It involves
the calculation of the parameter e=—In F(7,) from the evalu-
ation of the decoherence factor at time 7,. The weak cou-
pling limit arises when e€<<1, whereas the strong coupling
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limit takes place when e€> 1. Nevertheless, this measure of
the coupling strength must be handled extremely carefully
and two main conditions must be fulfilled. First, since it is
based on a statistical analysis, our measure requires that
04(xo@1) behaves more or less randomly. However, this
condition breaks down when the lattice size is too small
because o4(xo@1t) becomes a periodic function. More pre-
cisely, when L=4, two vibron eigenstates with quantum
number k=1 and k=3 govern the time evolution of the vi-
bron propagator. The corresponding frequencies being
wy = \2®, the coherence 04(xg@1) is proportional to
cos(V2®dr). Exact recurrences appear so that the coherence
survives over an infinite time scale. It is thus difficult to say
if whether or not the dipole-dipole interaction predominates
over the vibron-phonon coupling. The second condition
stipulates that our measure is valid if and only if the adiaba-
ticity B belongs to a given interval. Indeed, the nonadiabatic
limit is reached provided that B=B,, with B.=0.5, so that
7.< 7, [20]. Moreover, due to the periodic nature of the de-
coherence factor, 7, must be at least shorter than 7,,/2. As a
result, the adiabaticity is bounded from below, i.e., B=B,,
with B,,=1/L. Situations in which 7,>T7,/2 will provide a
paradox. For instance, a small ® value and a large ® value
can yield two vibron correlation times whose associated €
parameters are identical.

Therefore, by assuming L=6 and B e [B,,,B.], the pa-
rameter € can be extracted form the decoherence factor over
the time scale te[7.,7y/2] [Eq. (16)]. Then, solving the
equation e=1 yields the critical coupling as

BL :|1/2

(=B)L-L) @)

X'(L)= XO[

where L*=1/[2B(1-B)] and y,=%W/\VMkyT. We have veri-
fied that Eq. (21) provides a very good approximation for the
numerical results shown in Fig. 7. It reveals that x*(L) in-
creases with the adiabaticity and it extends from
XoN2/(L=2) to xoVL/(L-2) when B varies from B,, to B..
Note that for a fixed L value, the curve x*(L) vs B lies above
the critical curve that characterizes an infinite lattice. In con-
trast, as in an infinite lattice, x"(L) decreases with the tem-
perature according to the law x*(L)o1/\T. These features
indicate that the larger the T is and the smaller the ® is, the
stronger the vibron-phonon coupling strength is. Note that
although x*(L) seems to behave singularly when L=L*, no
divergence takes place since B=B,,.

Finally, Eq. (21) allows us to understand the way the criti-
cal coupling depends on the lattice size. On the one hand,
when L— o0, y*(L) tends to yoVB/(1—B) which corresponds
to the critical value in an infinite lattice. Since B,, tends to
zero, the procedure established in Ref. [37] is recovered. On
the other hand, as observed in Fig. 7, x*(L) increases when L
decreases. Consequently, for a fixed set of the relevant pa-
rameters of the model, the vibron-phonon coupling strength
decreases relative to dipole-dipole interactions when the size
of the lattice is reduced. This feature originates from the
behavior of the decoherence factor that oscillates between
unity and a minimum value F,, [Eq. (17)]. This time evolu-
tion indicates that a series of dephasing-rephasing mecha-
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nisms governs the vibron dynamics. When L decreases, F,,
increases because each dephasing-rephasing process occurs
over a shorter time scale. Therefore, the dephasing is too
weak to strongly modify the degree of the coherence that
remains close to its initial value. In other words, the smaller
the lattice size is, the weaker the decoherence induced by the
phonon bath is.

V. CONCLUSION

In this paper, an attempt has been made to measure the
vibron-phonon coupling, relative to the dipole-dipole inter-
action, in a finite size lattice of H-bonded peptide units. In
such a lattice, the vibron dynamics originates in the interplay
between the coupling with the phonons, which induces its
localization according to a polaron mechanism, and the
dipole-dipole interaction, which favors its delocalization. In
both cases, each interaction tends to modify the nature of a
local one-vibron state corresponding to the excitation of a
given amide-I mode. Therefore, to measure the coupling
strength, we have compared separately the influence of each
interaction on a local excited state. To account on finite tem-
perature effects, this procedure has been achieved by study-
ing a specific element of the vibron RDM that characterizes
the coherence between the zero-vibron ground state and a
local one-vibron state.

We have shown that under the vibron-phonon coupling
the vibronic coherence measures the survival amplitude of
the initial phonon state. In a confined environment, the pho-
non dynamics is characterized by revival times for which
intense quantum recurrences occur. Mainly due to the ability
of the phonons to be reflected by the lattice sides, the initial
phonon state is recovered almost periodically. This feature
gives rise to the occurrence of a series of dephasing-
rephasing mechanisms that restores almost periodically the
vibronic coherence. Similarly, under the dipole-dipole inter-
action, the vibronic coherence is the survival amplitude of
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the initial one-vibron state. The vibron dynamics being gov-
erned by a discrete energy spectrum, quantum recurrences
take place at specific revival times. Nevertheless, since the
initial vibron state consists of many eigenstates and because
the vibron dispersion is rather large, most of the recurrences
give rise to quantum states that slightly resemble the initial
state. Therefore, the vibronic coherence behaves as a random
variable whose most probable value is zero and intense re-
currences correspond to rare events. Consequently, in a sta-
tistical sense, the vibronic coherence survives over the vi-
bron correlation time as in an infinite lattice.

In that context a procedure has been established to com-
pare the degree of the vibronic coherence when either the
vibron-phonon coupling or the dipole-dipole interaction is
turned on. From this procedure, a critical coupling x*(L) has
been defined to discriminate between the weak [y < x*(L)]
and the strong coupling limits [ x> x*(L)]. We have shown
that x*(L) increases when L decreases, indicating that the
vibron-phonon coupling decreases relative to the dipole-
dipole interaction when the size of the lattice is reduced. For
instance, at biological temperature, x*(L)=35 pN for L=8
whereas it decays to x*(L) =25 pN when L— o,

To conclude, let us mention that in spite of the limitations
of the present approach, the two conditions that required to
apply our procedure are fulfilled for a lattice of H-bonded
peptide units. Indeed, for L=6, the lower bound of the adia-
baticity is B,,=0.16. Fortunately, with the parameters used in
our simulation, the adiabaticity is also about B=0.16. Nev-
ertheless, small variations in the parameters may provide an
adiabaticity smaller than 0.16. Our measure of the coupling
strength will remain valid but for a larger lower bound of the
lattice size. Therefore, the fundamental question arises
whether is it possible to measure the coupling strength when
both the lattice size and the adiabaticity become extremely
small. This question will be investigated in forthcoming
works.
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