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In recent studies a number of research groups have determined that human electroencephalograms �EEG�
have scaling properties. In particular, a crossover between two regions with different scaling exponents has
been reported. Herein we study the time evolution of diffusion entropy to elucidate the scaling of EEG time
series. For a cohort of 20 awake healthy volunteers with closed eyes, we find that the diffusion entropy of EEG
increments �obtained from EEG waveforms by differencing� exhibits three features: short-time growth, an
alpha wave related oscillation whose amplitude gradually decays in time, and asymptotic saturation which is
achieved after approximately 1 s. This analysis suggests a linear, stochastic Ornstein-Uhlenbeck Langevin
equation with a quasiperiodic forcing �whose frequency and/or amplitude may vary in time� as the model for
the underlying dynamics. This model captures the salient properties of EEG dynamics. In particular, both the
experimental and simulated EEG time series exhibit short-time scaling which is broken by a strong periodic
component, such as alpha waves. The saturation of EEG diffusion entropy precludes the existence of
asymptotic scaling. We find that the crossover between two scaling regions seen in detrended fluctuation
analysis �DFA� of EEG increments does not originate from the underlying dynamics but is merely an artifact
of the algorithm. This artifact is rooted in the failure of the “trend plus signal” paradigm of DFA.
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I. INTRODUCTION

The neurons of the human brain form the most complex
dynamical network ever studied. It is therefore hardly sur-
prising that this complexity is reflected in electroencephalo-
grams �EEG�. Like most other biological time series, the
EEG exhibits stochastic properties. Even when a person is
quietly resting with eyes closed her EEG is irregular. How-
ever, an EEG time series is not simply uncorrelated noise but
contains structure, such as alpha, beta, gamma and delta
wave packets �1�. Consequently, EEG waveforms are nonsta-
tionary and require special methods for their analysis. A
number of research groups �2–6� have determined that EEG
time series have scaling properties, with a second moment
that increases as a nontrivial power law in time.

The prevalent method used to determine the power-law
index and to take into account the issue of nonstationarity is
detrended fluctuation analysis �DFA� �7�. DFA is intended to
remove the nonstationary components of the time series,
called trends, and to provide a measure of the standard de-
viation of the detrended fluctuations as a function of the data
window length. In the original formulation of DFA, physi-
ological time series are integrated �accumulated� prior to de-
trending and calculation of standard deviations. However, the
scaling properties of EEG dynamics were quantified not only
by application of the original DFA to EEG signals �3,5� but
also without data integration �4,5�. The latter approach is
equivalent to application of DFA to the differenced EEG time
series or in other words to EEG increments. In this paper we
investigate the scaling properties of EEG increments. The
scaling of EEG waveforms is the subject of the companion
paper.

Hwa and Ferree �4�, for example, using the DFA of EEG
increments found that the standard deviation exhibits two
distinct scaling regions. They identify alpha waves as the
cause of the crossover effect. Robinson �8�, on the other
hand, in his analysis of EEG time series, pointed out the
existence of scaling up to a point after which saturation in
the standard deviation occurred. He attributed this saturation
effect to the influence of DFA detrending on the EEG Fourier
spectrum. Thus, there are fundamental differences in inter-
pretation of statistical properties of EEG fluctuations.

Herein we demonstrate that the Shannon entropy imple-
mented using the diffusion entropy approach �9� provides
insight into the EEG dynamics. The functional form of the
time evolution of diffusion entropy suggests a linear
Ornstein-Uhlenbeck Langevin equation �OU Langevin equa-
tion� as a suitable mathematical framework �10�. The statis-
tical properties of the OU Langevin model can be determined
analytically and this is why it is the starting point of our
analysis of scaling in EEG time series.

In Sec. II we introduce stochastic differential equations
�Langevin equations� as a way to model complex phenom-
ena. Using diffusion entropy analysis �DEA� we show how
the EEG dynamics of subjects in the resting condition can be
described by an Ornstein-Uhlenbeck Langevin equation with
a quasiperiodic forcing that mimics the dynamics of alpha
waves. The coherence of the periodic modulation is also dis-
cussed. In Sec. III we introduce the DFA, an increasingly
popular technique in the neuroscience literature for the
analysis of EEG time series. We then compare the results of
the DFA and DEA of �1� the numerical solution of the OU
Langevin equation, �2� the numerical solution of the OU
Langevin equation with the quasiperiodic forcing, and �3� the
EEG records. We discuss the influence of alpha waves on the
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outcome of DEA and DFA. In Sec. IV the inherent limita-
tions of DFA of EEG time series are discussed. We present
our conclusions in Sec. V.

II. EEG MODELS

In this Section, we first introduce the Ornstein-Uhlenbeck
Langevin equation, which is the simplest dynamical model
including both fluctuation and dissipation �Sec. II A�. We
then review the DEA and calculate the information entropy
for the OU Langevin equation �Sec. II B�. In Sec. II C we
identify the distinct features of the time evolution of diffu-
sion entropy of EEG increments. Finally, we extend the OU
Langevin model by adding a quasiperiodic forcing to mimic
the dynamics of alpha waves which are usually strongly pro-
nounced in awake subjects with closed eyes �Sec. II D�.

A. Ornstein-Uhlenbeck Langevin equation

In the physics literature there are two main strategies for
treating stochastic phenomena �see for example, Lindenberg
and West �11��. The first employs stochastic differential
equations, Langevin equations, to model the evolution of dy-
namical variables. In the second strategy the time evolution
of the probability density in phase space is determined using
partial differential equations known as Fokker-Planck equa-
tions. In this work we choose a Langevin equation to model
the EEG dynamics.

Let us recall that the OU Langevin equation for a linearly
dissipative stochastic process reads

dX�t�
dt

= − �X�t� + ��t� , �1�

where � is the dissipation rate and the Gaussian random
force ��t� is delta correlated in time with strength D

���t���t + ��� = 2D���� = ��
2���� . �2�

In the above equation the symbol � . . . � indicates the Gibb-
sean ensemble average and �� is the standard deviation of
the noise �.

In the context of physiological time series analysis, we
refer to an average � . . . � over statistically independent real-
izations of random walk Eq. �1� as a multiple trajectory en-
semble �MTE� average. However, very seldom do physi-
ological data allow for such averaging. In most applications
expectation values must be calculated by partitioning a
single experimental time series. For brevity, we call such an
approach the single trajectory ensemble �STE� averaging.

Equation �1� contains two physical mechanisms; the influ-
ence of the environment, which gives rise to the random
force, and the dissipation, which models the average energy
extracted from the dynamic system and absorbed by the en-
vironment.

The solution of Eq. �1� is

X�t� = e−�t�
0

t

��t��e�t�dt�, �3�

where we assumed without loss of generality that X�0�=0.
Using Eq. �3� it is possible to calculate the variance of X�t�

�2�t� � �X2�t�� − �X�t��2 =
D

�
�1 − e−2�t� . �4�

Consequently, for t�1 /� the variance increases linearly
with time

lim
t→0

�2�t� 	 2Dt . �5�

It follows from the above equation that in the short-time
limit

log2 ��t� 	
1

2
log2 t + const. �6�

Thus, the short-time scaling index for the OU Langevin
equation is equal to 0.5. See �12,13� for a review of scaling
in the natural sciences and medicine.

For t�1 /� the variance becomes time independent

lim
t→	

�2�t� =
D

�
�7�

with a saturation induced by the dissipation. This saturation
precludes the asymptotic scaling of the OU Langevin model.

B. Diffusion entropy analysis

The solution to the OU Langevin equation, Eq. �3�, de-
fines a stochastic trajectory whose statistical properties are
described by the probability density function �pdf� p�x , t�:
the probability density of finding the trajectory in an infini-
tesimal neighborhood of x at time t. The pdf is determined
from the histogram of X�t� and may be used to calculate the
information entropy. This concept was introduced in discrete
form for coding information by Shannon �14� and is now
commonly referred to as the Shannon entropy. The continu-
ous form

S�t� = −� p�x,t�log2 p�x,t�dx �8�

was first applied by Wiener to the problem of noise and
messages in electrical filters �15�. In the context of time se-
ries analysis S�t� was named diffusion entropy �9�.

Entropy is frequently used to quantify variability of time
series. One of the advantages of this measure over the vari-
ance is that the entropy gives a more complete description of
the stochastic process when the pdf is not Gaussian, e.g., the
EEG records studied here. If the pdf scales in the following
way:

p�x,t� =
1


�t�
F
 x


�t�
� �9�

then it is straightforward to show that the entropy reads

S�t� = −� F�y�log2 F�y�dy + log2 
�t� . �10�

As a consequence, when the scaling function is a power law
in time
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�t� � t� ⇒ S�t� = � log2 t + const �11�

the diffusion entropy increases linearly on a log-linear plot,
with the slope equal to the scaling exponent �. Note that the
scaling of the pdf given by Eq. �9� is satisfied by a Gaussian
process, with 
�t� being the time-dependent standard devia-
tion ��t�. Even when the distribution is Gaussian, there is no
guarantee that the standard deviation increases as a power
law in time as, for example, in Eq. �5�. Finally, processes
such as Lèvy flights may satisfy the scaling condition for the
pdf but do not have a finite variance. In this case 
�t�= t1/�,
where � is the Lèvy index. It is worth emphasizing that for
Lèvy flights 
2 is not the variance of fluctuations. Conse-
quently, any second moment analysis is useless in determin-
ing the scaling exponent 1 /�, while DEA does yield the
correct estimate. Also in the case of Lèvy walks, which do
have finite variance, DEA correctly detects the Lèvy scaling
of the central part of the pdf unlike second moment methods
�16�.

The applicability of DEA goes far beyond scaling detec-
tion. For example, this algorithm has been successfully used
to determine the seasonal influence and the demographic
pressure on the daily number of teen births in Texas �17�, to
study the effect of solar cycles on the statistics of solar flares
�18�, and to investigate the influence of solar dynamics on
the fluctuations of average global temperature �19�. Recently,
the DEA has been used to characterize statistical properties
of the EEG time series �10�.

We now calculate the information entropy S�t� for the OU
Langevin equation �1�. Given the Gaussian statistics of the
random force and the linear form of the equation we know
that the fluctuations of the dynamical variable X�t� are also
Gaussian. Substituting a Gaussian distribution with a vari-
ance �2�t� into Eq. �8� we obtain

S�t� = log2��2
e��t�� =
1

2
log2
2
eD

�
�1 − e−2�t�� .

�12�

Consequently, employing the approximate variance Eq. �5�
we can show that for t�1 /� the entropy increases as

lim
t→0

S�t� =
1

2
log2�4
De� +

1

2
log2 t �13�

and a linear-log plot yields a straight line of slope 1/2, the
value of the short-time scaling index Eq. �6�. At the other
extreme t�1 /�, using the approximate variance Eq. �7� we
can calculate the saturation level of the diffusion entropy S	,

S	 = lim
t→	

S�t� =
1

2
log2
2
De

�
� . �14�

C. Diffusion entropy of EEG waveforms

Let us consider a time series �� j� j=1
N of length N of an

evenly sampled waveform. In order to estimate the entropy,
Eq. �8�, of this data segment we first construct a set of M
=N− t+1 diffusive trajectories,

Zk�t� = �
j=k

k+t−1

� j k = 1,2,..,N − t + 1. �15�

This procedure amounts to accumulating all possible t con-
secutive data points � j. The trajectories Zk�t� are used to
evaluate the pdf p�Z=x , t�, the probability density for the
variable Z to be in an infinitesimal neighborhood of x at time
t. For each value of the variable t a bin size ��t� is selected
and the histogram of the number of points falling in each bin
is calculated. The bin size ��t� is chosen as a predetermined
fraction of the standard deviation of the sequence �Zk�t��.
Then the summation over bins in Eq. �8� is performed to
estimate the information entropy S�t�. The adoption of the
time-dependent bin size prevents a lack of statistics due to
the spreading of the trajectories Zk�t� with time. In other
words, if the bin width was fixed, the number of points fall-
ing in some bins could become very low with the passage of
time. A detailed description of the numerical implementation
of the DE method can be found in �17�.

Here, �� j� j=1
N is the time series of the EEG increments

obtained from EEG waveforms by ordinary differencing. We
refer to the corresponding information entropy as the EEG
entropy. The data set for the analysis was comprised of EEG
records of twenty awake healthy volunteers. EEG monitoring
was performed for subjects in a supine position, in the ab-
sence of external stimulation and with eyes closed. The EEG
was recorded using the 10–20 standard of electrode place-
ment with a sampling frequency of 250 Hz. For each subject
we selected an artifact free EEG epoch �segment�. The length
of these segments varied from 55 to 400 s with mean value
of 128.1 s. For eight individuals only the channels O1, O2,
C3, and C4 were recorded, for the remaining twelve all 19
leads were used. Consequently, the statistical analysis was
restricted to the channels O1, O2, C3, and C4, which are the
channels traditionally used in sleep studies. The absolute am-
plitude of EEG is irrelevant both in entropy calculations and
scaling analysis. Therefore we expressed the amplitudes of
EEG waveforms in the units of analog-to-digital converter
�559 units correspond to 10 �V�.

Figure 1 shows the diffusion entropy for channel O1 of
one of the subjects. We can see in this figure three features
which turn out to be generic: �1� initial fast growth of en-
tropy, �2� “alpha” ��7.6 HZ in the case of this subject�
modulation which is attenuated with time, and �3� asymptotic
saturation. As expected, the modulation is strongly pro-
nounced in the occipital region where the amplitude of alpha
waves is high. This effect is illustrated by Fig. 2 where the
time evolution of diffusion entropy is plotted for all 19 chan-
nels of one of the subjects.

The inset in Fig. 1 depicts the pdf psat�x� �solid line� after
entropy saturation is attained. This distribution is not Gauss-
ian as indicated by the deviation of the best Gaussian fit
�solid thick line� from the tails of psat�x�. These tails can be
well approximated by an exponential function: C exp�−�x�.
The asymptotic probability density function in this figure is
typical of the cohort of subjects.

D. EEG OU Langevin equation

To account for all three features of EEG diffusion entropy
�initial growth, possible alpha wave modulation and
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asymptotic saturation� we extend the OU Langevin model
equation �1� by adding quasiperiodic driving with random
amplitude and frequency

dX�t�
dt

= − �X�t� + ��t� + �
j=0

Aj� j,s�t�sin�2
f jt� . �16�

For brevity, we dub this equation the EEG OU Langevin
equation. The amplitude Aj and the frequency f j of the driv-
ing remain constant in the time interval �jts , �j+1�ts�,
�j=0, . . . ,N−1�, of duration ts. The function � j,s is defined as

�� j,s�t� = 1 if t � �jts,�j + 1�ts�
� j,s�t� = 0 otherwise

� , �17�

ts is the “stability” time after which a new frequency and
amplitude are selected. The parameters of the driving are
determined from the EEG spectrogram. For each time inter-
val j of duration ts we search for the peak in the alpha wave

spectrum �7–12 Hz�. The location and the amplitude of this
peak determine f j and Aj. We arbitrarily set the stability time
ts to 0.5 s. This choice provides a reasonable tradeoff be-
tween time and frequency resolution. The influence of the
stability time on the dynamics of the EEG OU Langevin
equation is analyzed in Appendix. A detailed description of
the numerical algorithm may be found in �10�.

Assuming, as before, without loss of generality that
X�0�=0, the formal solution to Eq. �16� reads

X�t� = e−�t�
0

t ���t�� + �
j=0

Aj� j,s�t�sin�2
f jt���e�t�dt�.

�18�

Averaging over the MTE, we may obtain an expression for
the standard deviation of the variable X,

�2�t� =
D

�
�1 − e−2�t� +

e−2�t

4 
�
j=0

Aj�
0

t

� j,s�t��e��+2
if�t�

+ e��−2
if�t��dt��2

. �19�

If we consider a monochromatic alpha wave �∀j Aj =A and
f j = f� then Eq. �16� describes a stationary ergodic process. In
this case Eq. �19� reduces to

�2�t� =
D

�
�1 − e−2�t� +

A2e−2�t

��2 + 4
2f2�2

��e�t��2 + 4
2f2 cos�2
ft + �� + 2
f�2 �20�

with �=arctan�� /2
f�. In contrast with the standard OU
Langevin equation �cf. Eq. �5��, the variance in Eq. �20� does
not exhibit algebraic scaling for t�1 /�. For the asymptotic
behavior �t→	� we get

lim
t→	

�2�t� =
D

�
+

A2

�2 + 4
2f2cos�2
ft + �� . �21�

Thus, the asymptotic variance oscillates around the mean
value D /�.

Periodic driving �monochromatic or not� induces a depar-
ture from the Gaussian distribution of X. The inset in Fig. 1
illustrates this effect. As a consequence, the S�t� and ��t� are
no longer related through Eq. �12�, although the standard
deviation can still be considered as a proxy measure of the
entropy: larger standard deviation implies larger entropy.

In the case of a nonmonochromatic alpha waves the sto-
chastic process described by Eq. �16� is nonstationary and
thus nonergodic. The MTE average reads

�2�t� =
D

�
�1 − e−2�t� + e−2�t��

j=0

j0−1

� j��j + 1�ts� + � j0
�t��2

�22�

where j0 is such that j0ts� t� �j0+1�ts,
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FIG. 1. Time evolution of diffusion entropy for: channel O1
�solid line� and the increments of the variable X which is the solu-
tion of the EEG OU Langevin equation �16� �squares�. Inset: the
comparison between the asymptotic probability density functions at
t=8 s for: channel O1 �solid line�, variable X of Eq. �16� �squares�,
and the best Gaussian fit to the pdf of the experimental data �thick
line�.
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FIG. 2. Time evolution of diffusion entropy S�t� of all 19 EEG
channels of one subject.
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� j�t� =
Aj

��2 + 4
2f j
2�

���2 + 4
2f j
2�e�t cos�2
f jt + � j�

− e�jts cos�2
f j jts + � j��� , �23�

and � j =arctan�� /2
f j�. Time dependence of the variance in
Eq. �22� is similar to that of Eq. �20�. In fact, the coefficient
e−2�t attenuates all modulation terms except � j0

2 �t�. Consid-
ering only the nonattenuated contribution, we have the same
behavior as in Eq. �20� and asymptotically—Eq. �21�. The
overall effect of the attenuated terms amounts to the modifi-
cation of the mean value around which the oscillations occur.
This similarity to the monochromatic case is due to the fact
that at any time t �jts� t� �j+1�ts� all the trajectories of the
MSE have the same amplitude and frequency for the alpha
wave modulation: Aj and f j. However, this condition is bro-
ken when time averages on a single trajectory are performed.
In the latter case we are forced to use fixed length portions of
the trajectory as different samples of the ensemble. Thus, for
a fixed t the amplitude and frequency of the alpha modula-
tion may vary in the ensemble which results in decaying
oscillation exhibited by both the variance and the informa-
tion entropy. In Fig. 1, one can see these damped oscillations
of the diffusion entropy for the EEG �solid line� and simu-
lated EEG �squares�. The agreement of these two curves is
excellent. The agreement extends also to the pdfs after satu-
ration psat�x�: compare the thin solid line to the squares in
inset of Fig. 1.

In Table I the group-average values of the best-fit param-
eters � and �� are presented as mean � standard deviation
�std� for channels C3, C4, O1, and O2. For each data seg-
ment of a given volunteer these two parameters were inde-
pendently varied to achieve the best possible agreement be-
tween the time evolution of diffusion entropy of EEG and
that of the model Eq. �16�. The amplitudes and the frequen-
cies of the quasiperiodic driving remained constant during
the fitting procedure. Note that the occipital channels are
generally noisier than the central channels.

III. DEA VERSUS DFA

In this section, we first review detrended fluctuation
analysis �Sec. III A� which in neuroscience is the most com-
monly used scaling detection algorithm. Then, in Sec. III B,
both DFA and DEA are applied to: the numerical solution of
the OU Langevin equation �1�, the numerical solution of the
EEG OU Langevin model equation �16�, and EEG wave-
forms. We carry out calculations using the increments of ei-

ther the stochastic variable X�t� or EEG. The rationale for the
comparison of DFA to DEA was provided by the theoretical
analysis of the dynamics of the EEG OU Langevin model. In
particular, it is apparent from Eqs. �20� and �22� that in the
presence of strong monochromatic or quasimonochromatic
driving the variance of the dynamical variable X�t� does not
exhibit short-time scaling �t�1 /��. Thus, the question arises
as to the influence of alpha waves on the outcome of scaling
analysis of EEG. This question is particularly pertinent to
DFA, which employs polynomial detrending. Such detrend-
ing implies that EEG is made up of trends, to a large extent
perceived as unwanted ”noise,” superposed on the actual sig-
nal whose statistical properties are the subject of analysis.
We focus attention on the validity of such decomposition.

A. Detrended fluctuation analysis

We now briefly describe the DFA algorithm �7�. Given a
time series �� j� j=1

N , the zero-centered time series is aggregated

Zk = �
j=1

k

�� j − �avg� k = 1,2, . . . ,N , �24�

where �avg= �1 /N�� j=1
N � j. The integrated signal �Zk� is di-

vided into nt nonoverlapping windows of size t �nt=N / t�.
For each window l=1, .. ,nt, a least-squares polynomial fit
yl

�m��k� is computed. The degree of the polynomial m can be
varied in order to eliminate linear �m=1�, quadratic �m=2�
or higher order trends. The fitted trend is subtracted from the
integrated time series and the standard deviation Fl�t� of re-

siduals Z̃k,l=Zk,l−yl
�m��k� is calculated,

Fl�t� =�1

t
�
k=1

t

Z̃k,l
2 �t� . �25�

After averaging Fl over all nt windows we obtain the mean
value F�t�. These steps are repeated for increasing values of
the window size t. The scaling condition for the standard
deviation F�t�� t� implies

log2 F�t� � � log2 t . �26�

DFA may be performed for either nonoverlapping or sliding
windows. The latter variant is available in the original imple-
mentation of DFA available at the Physionet website �http://
www.physionet.org �20��.

The DFA assumes �21� the time series �Zk� to be the su-
perposition of two independent contributions: the trend T and
the signal S

Zk = Tk + Sk �27�

with the zero covariance �Cov�T ,S�=0�. However, the out-
come of DFA does not by itself allow for the validation of
the decomposition assumption Eq. �27�. As we will show,
DFA must not be indiscriminately applied, since there are
many dynamical systems for which Eq. �27� is unphysical.
Linear dependence of log2 F�t� on log2 t does not necessarily
imply the existence of underlying power-law correlations but
may be just an artifact of data analysis. The difficulties of
scaling analysis of physiological time series are compounded

TABLE I. The group-average values of the parameters � and ��

of Eq. �16�.

EEG channel � �mean�std� �� �mean�std�

O1 0.05�0.02 16�7

O2 0.05�0.02 16�7

C3 0.04�0.02 10�4

C4 0.04�0.02 11�4
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by the fact that quite often one deals not only with short-time
scaling but also with crossover effects �different scaling re-
gions�.

In the next subsection we carry out the scaling analysis
using both DFA and DEA. To make a more direct compari-
son we employ the overlapping window variant of DFA.
However, the original nonoverlapping algorithm did not
yield qualitatively different results. We have chosen a linear
detrending.

B. Comparison of DEA and DFA

Figure 3 illustrates DEA and DFA of the increments of the
variable X�t�. The initial value problem for X�t� was solved
by the numerical integration of Eq. �1� with �=0.055 and
��=40. Please note that in Sec. II we derived the analytical
formulas for the diffusion entropy and standard deviation of
the OU Langevin equation, cf. Eqs. �12� and �4�, respec-
tively. However, these expressions are not directly applicable
to DEA or DFA. Recall that they were derived using the
ensemble of statistically independent trajectories originating
at X=0. However, both in DEA and DFA averaging involves
relative displacements Zk�t�,

Zk�t� = X�t + k� − X�k� k � �0,N − t� , �28�

cf. Eq. �15�. Consequently, it can be shown that the expres-
sions for the standard deviation Eq. �4� and diffusion entropy
Eq. �12� of the OU Langevin equation must be modified.
Calculations performed in �22� show that required modifica-
tion is surprisingly simple and amounts to replacing the dis-
sipation rate in Eqs. �4� and �12� by the effective dissipation
rate,

�ef f = �/2. �29�

One can see in Fig. 3 that the time evolution of diffusion
entropy �triangles� closely follows the theoretical prediction
given by Eq. �12� with the modified dissipation rate �ef f. In
particular, the slope of the initial linear growth of diffusion
entropy in this semilog plot coincides with the analytical
value 0.5 �Eq. �13��. The values of F�t� �open circles� are
significantly smaller than those given by Eq. �4� with the
modified dissipation rate �ef f. This is not surprising taking
into account that F�t� is the standard deviation of detrended
fluctuations. However, we can see in Fig. 3 that F�t� ap-
proaches the asymptotic value at least a decade later than
does the corresponding theoretical curve. We elucidate the
origin of this discrepancy in Sec. IV. For the arbitrary choice
of 0.04 s� t�0.4 s we obtain the slope of 0.44, slightly
smaller than the analytical value of 0.5.

The filled circles in Fig. 3 denote F�t� for the nonoverlap-
ping window variant of DFA. One can see that the agreement
with the sliding-window calculations is good.

In Fig. 4 the diffusion entropy of the EEG segment ex-
tracted from the channel O1 of one of the volunteers is plot-
ted as a function of time �solid line in the upper half of the
graph�. The triangles denote the diffusion entropy of the
simulated EEG, generated by integration of the EEG OU
Langevin equation ��=0.055 and ��=40�. The growth of the
diffusion entropy of the EEG waveform �in the semilog plot�
is essentially linear with the slope 1.07 �0.004 s� t
�0.04 s�. Note that the short-time scaling exponent for the
simple OU Langevin equation is 0.5, which is just the mani-
festation of a lack of correlations for the stochastic variable
� �cf. Eq. �1��. Thus, taking into account the agreement be-
tween the diffusion entropy of the experimental data and that
of the EEG OU Langevin model equation �16� in Fig. 4, the
observed difference in scaling exponents must be caused by
the strong alpha waves in the occipital channel. It turns out
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FIG. 3. DEA and DFA of the dynamics of the stochastic variable
X�t� which is the solution of the OU Langevin equation Eq. �1� with
�=0.055 and ��=40. The triangles denote the values of the diffu-
sion entropy S�t� while open circles represent the values of base-2
logarithm of F�t�. The filled circles correspond to the DFA calcula-
tions with nonoverlapping windows. The solid lines indicate the
analytical values for S�t� and standard deviation of X�t�, cf. Eqs.
�12� and �4�, respectively. Note that these analytical values were
calculated for the effective dissipation rate �ef f =� /2, see the dis-
cussion in the text. The dashed lines were drawn to guide the eye.
Their slopes are equal to 0.5 which is the value of short-time scal-
ing exponent for the OU Langevin equation �1�.
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that for times smaller than the typical period of the alpha
waves, the dynamical effect of these oscillations amount to
trends which enhance the initial growth of entropy, cf. the
short-time limit of Eq. �22�. Consequently, in this case, the
value of the scaling exponent is not a straightforward indi-
cator of correlations in EEG time series. For a detailed dis-
cussion of the influence of periodic driving on the dynamics
of diffusion entropy see �17�.

One might hope that polynomial detrending of DFA could
alleviate the difficulties of EEG scaling analysis. In fact, in
Fig. 4 the standard deviation F�t� does not exhibit the alpha
wave modulation characteristic of diffusion entropy. How-
ever, one can identify two pseudoscaling regions with differ-
ent slopes: 0.65 for 0.01 s� t�0.06 s and 1.2 for 0.08 s
� t�0.2 s. None of these slopes, represented in Fig. 4 by
thick solid lines, correspond to genuine dynamical scaling.

Using the analytical formula for the standard deviation for
the OU Langevin equation, we have identified the limitation
of DFA: the slow approach of F�t� to its asymptotic value
�Fig. 3�. The same effect may be observed in Fig. 4 for both
the EEG waveform and the simulated time series. One can
see that F�t� continues to grow long after the diffusion en-
tropy S�t� reaches the saturation level. Such spurious, slow
growth may be easily misinterpreted as yet another scaling
region. The third thick line in Fig. 4 represents the slope of
the linear least-squares fit to F�t� of EEG for 0.3 s� t
�1.6 s. Such an interval was used by Hwa and Ferree in
their studies of the scaling properties of EEG �4�. However,
such an interval lies within the saturation region so that the
justification of scaling analysis is lost.

IV. DISCUSSION

Let us analyze the results of the previous studies of the
scaling properties of EEG increments from the perspective of
the OU Langevin equation �1� and its extension Eq. �16�. As
we demonstrated, these models capture the salient features of
EEG dynamics.

Hwa and Ferree �4� argue that the fluctuations of short
��10 s� EEG segments may be quantified by two scaling
exponents: 0.19��1�1.44 and 0.018��2�0.489. The first
index is broadly distributed while the other is peaked at 0.1.

The application of the first index is justified. In the ab-
sence of alpha waves the value of the short-time scaling ex-
ponent of the OU Langevin equation is equal to 0.5, cf. Eq.
�6�. One of the physiological mechanisms that contribute to
the spread of �1 are alpha waves which, as discussed in the
previous section, enhance short-time growth of diffusion en-
tropy. One can see in Fig. 2 that out of 19 EEG channels the
fastest growth of entropy is observed in the occipital chan-
nels O1 and O2 for which the spectral power of the alpha
waves is highest.

The low value of the second index �2 and its small stan-
dard deviation are not surprising taking into account that the
fitting interval, used to determine this index, overlaps the
saturation region �cf. Figs. 3 and 4�. Note that the asymptotic
values of the standard deviation Eq. �7� or diffusion entropy
Eq. �14� may be expressed in terms of D /�; in other words,
they are determined by the interplay of fluctuations and dis-

sipation. Moreover, monochromatic driving does not affect
the saturation level. The driving merely induces periodic os-
cillations around the asymptotic value Eq. �21�. We empha-
size that there exists no asymptotic dynamical scaling region
for EEG increments as indicated by the fast saturation of
diffusion entropy in Fig. 4. The fundamental question arises
as to the nature of crossover observed in detrended fluctua-
tion analysis of EEG. Such an effect, reported by Hwa and
Ferree, is clearly seen in Fig. 4.

Figure 5 shows detrended fluctuation analysis of the dy-
namics of the stochastic variable X�t� which is the solution of
the OU Langevin equation �1�. The circles correspond to
linear detrending. The solid thin line is the analytical expres-
sion for the standard deviation Eq. �4� calculated for the
effective dissipation rate �ef f =� /2 �see discussion of the ef-
fective dissipation rate in Sec. III�. It turns out that the slow
approach of F�t� to the asymptotic value touches the very
foundation of DFA algorithm.

DFA has been widely used in neurophysiology because of
the nonstationarity of EEG time series. Many argue that de-
trended fluctuation analysis is particularly applicable to EEG
because the drift of EEG baseline, a common artifact, may be
interpreted as a semilocal linear trend. DFA adopts this very
specific model of nonstationarity Eq. �27� that consists of
trends superposed on the signal. In this case trends are the
source of nonstationarity. However, it is not true that every
nonstationary time series must be of the kind described by
Eq. �27�. In particular the OU Langevin equation �1� and its
extension Eq. �16� do not satisfy the condition Eq. �27�. Al-
though one can always arbitrarily decompose the solution of
these equations for X�t� into the sum of two terms, these two
terms would not have null covariance, which is the underly-
ing assumption of the DFA algorithm. To demonstrate this
point in Fig. 5 we plot the result of the second moment
analysis of the numerical solution of the OU Langevin model

4

5

6

7

8

0.001 0.01 0.1 1 10 100

2
lo

g
[F

(t
)]

(a
rb

.u
ni

ts
)

t (seconds)

expected std

DFA linear
No Detrending

FIG. 5. DFA of the dynamics of the stochastic variable X�t�
which is the solution of the OU Langevin equation �1� with �
=0.055 and ��=40. The circles correspond to linear detrending.
The squares denote the second moment analysis �“zeroth order de-
trending”�. The solid thin line is the analytical expression for the
standard deviation Eq. �4�. Note that the standard deviation was
calculated for the effective dissipation rate �ef f =� /2, see the dis-
cussion in the text. The dashed lines were drawn to guide the eyes.
Their slopes are equal to 0.5 which is the value of short-time scal-
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�squares�. Informally, one may interpret second moment
analysis as zeroth order DFA. The two vertical gridlines in
this figure were drawn to emphasize that linear detrending
delays at least by a decade the approach of F�t� to its
asymptotic value. This slow growth may be easily misinter-
preted as a pseudoscaling region especially when the DFA is
done on very short data segments. Robinson’s analysis �8�
corroborates our conclusion that the crossover effect ob-
served in DFA of EEG increments is spurious.

V. CONCLUSIONS

In a continuing search for clinically significant measures
that are superior to those based on simple statistical or spec-
tral analyses one is often forced to relax the stringent as-
sumptions of the relevant mathematical formalisms. This
pragmatic approach is fundamentally sound as long as the
resulting algorithm does not obscure the underlying character
of the physiologic process being investigated.

Fractional Brownian motion �fBm� is the simplest model
of fractal time series. The statistics of such a random walk
are Gaussian and the autocorrelation function can be long
range. The long-range correlations of fBm and other similar
scaling processes may be characterized by a scaling index
originally introduced by Hurst to quantify the power-law in-
crease in the second moment with time �12,23�. Detrended
fluctuation analysis was developed to detect long-time,
power-law scaling of the second moment in the presence of
polynomial nonstationarities. Early on, the application of
DFA to heart rate variability, namely to the interbeat interval
time series, revealed the existence of two scaling regimes
�24�. Interestingly enough, the short-time scaling exponent
also turned out to be clinically significant. The existence of
two scaling regions was later observed in a number of other
physiologic phenomena; the dynamics of arterial blood pres-
sure and in cerebral blood flow, to name two �13,25�. Over
time DFA has become the tool of choice also for analysis of
the short-time fluctuations in physiologic time series despite
the fact that its validity in this domain had never been dem-
onstrated.

In this work we studied the caveats of fractal time series
analysis of EEG time series. In particular, we demonstrated
that a short-time scaling exponent can be used to quantify
EEG fluctuations. However, in the presence of strong peri-
odic modulation, such as ubiquitous alpha waves, the ratio-
nale of such approach is lost since in such circumstances
EEG waveforms simply do not scale. We pointed out that the
crossover between two scaling regions seen in detrended
fluctuation analysis of EEG increments does not originate
from the underlying dynamics but is merely an artifact of the
algorithm. This artifact is rooted in the failure of the “trend
plus signal” paradigm of DFA. Havlin et al. �26� while re-
viewing the application of statistical physics methods to car-
diac diagnostic wrote: “The DFA analysis yields a crossover

point for the fractal slope for the scale m=4. It should be
noted, however, that the crossover point in the DFA analysis
is not a sharply defined point, rather the change in fractal
slope takes place in a gradual way.” The analytical analysis
of the OU Langevin model, discussed in this work, has pro-
vided the explanation of this effect that may be relevant in
interpretation of short-time dynamics of physiological time
series.
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APPENDIX

Stability time ts is the adjustable parameter of the EEG
OU Langevin model Eq. �16�. To elucidate the choice of its
value, in Fig. 6 we display the diffusion entropy of the in-
crements of four simulated EEGs. The solid curves corre-
spond to ts=1 /8, 1/4, 1/2, and 1 s. The other parameters were
fixed ��=0.055 ��=40�. The curves were vertically shifted
to facilitate comparison. The dashed curves, which are in fact
identical, denote the diffusion entropy of EEG segment that
was used to construct a spectrogram. Recall, that the spec-
trogram is needed to generate the amplitudes Aj and the fre-
quencies f j of the quasiperiodic driving. As we can see a
reasonable agreement between the entropy of the simulated
and original EEG is achieved for stability time 0.125–0.5 s.
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