
Phenomenological approach to eukaryotic chemotactic efficiency

Bo Hu,1 Danny Fuller,2 William F. Loomis,2 Herbert Levine,1 and Wouter-Jan Rappel1
1Department of Physics and Center for Theoretical Biological Physics, University of California–San Diego, La Jolla,

California 92093-0374, USA
2Department of Biology, University of California–San Diego, La Jolla, California 92093-0319, USA

�Received 28 July 2009; revised manuscript received 22 January 2010; published 8 March 2010�

Eukaryotic cells are capable of detecting small chemical gradients for a wide range of background concen-
trations. Ultimately, fluctuations place a limit on gradient sensing and recent work has focused on the role of
stochastic receptor occupancy as one possible limiting factor. Here, we use a phenomenological approach to
add spontaneous motility fluctuations to receptor noise and predict the directional statistics of eukaryotic
chemotaxis. Specifically, an Itô diffusion equation with direction-dependent multiplicative noise is developed
and analytically studied. We show that our approach can naturally accommodate recent experimental data for
the chemotaxis of the social amoeba Dictyostelium.
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I. INTRODUCTION

During chemotaxis, cells direct their movement by sens-
ing chemical gradients. Chemotaxis plays an important role
in various biological processes including fertilization, neu-
ronal development, wound healing, and cancer metastasis
�1,2�. Unlike prokaryotes, eukaryotic cells use a spatial mea-
surement of the asymmetric distribution of bound receptors
following the external gradient. These bound receptors trig-
ger the activation of intracellular signaling pathways, even-
tually leading to the generation of directional movement. In-
terestingly, eukaryotic cells are able to direct their motion in
shallow gradients. For example, the social amoeba Dictyos-
telium discoideum is observed to crawl up a chemoattractant
gradient when the front-back difference in the concentration
is around 1% �3,4�. Furthermore, the cells respond even
when the average local concentration is well below the dis-
sociation constant Kd. These findings have led to significant
interest from the biophysics community in understanding the
effect of noise on chemotaxis �5–12�.

Studies to date have mainly focused on fluctuations in
gradient sensing arising, for example, from stochastic recep-
tor dynamics �6,10�. However, there are other sources of
noise as is evidenced by the fact that cells move randomly in
the absence of directional information �13,14�. The simplest
approach to adding random motility to directional bias is to
assume that the cell executes Brownian motion in a deter-
ministic periodic potential �15�; however, this approach fails
to take into account uncertainties in evaluating gradient
steepness and direction. Thus, what is needed is a new model
of directed cell motility that takes into account both sources
of fluctuations. Such a model should be able to relate the
relative importance of gradient-determination noise versus
motility noise to testable predictions for the behavior of
chemotactic cells. Here, we propose a phenomenological sto-
chastic differential equation �SDE� model for this purpose
and compare its predictions with the available data. As we
will see, our approach naturally accounts for the unusual
shape of the directional probability distribution for chemot-
axing cells.

II. MODEL

In our model, the cellular surface takes a circular geom-
etry where N independent receptors are uniformly distributed
�Fig. 1�. We divide the surface into M sectors such that the
local ligand concentration near each sector is constant, while
the number of receptors in each sector Nm=N /M is large
enough for the continuous approximation. For Dictyostelium,
a typical value is N=60 000, and one may choose M =300
and Nm=200. We define the gradient steepness parameter as
p= �L /C0��dC /dr�, where C0 is the average local ligand con-
centration across the cell length L. Then, the local concen-
tration at the mth sector with angular position �m is given by
Cm=C0�1+ p

2cos��m−���, where � specifies the gradient di-
rection. The time for receptor decorrelation is dominated by
the individual receptor rate �m= �k−+k+Cm�−1, which is typi-
cally faster than the process by which motion can be me-
chanically altered �16�. This allows us to use the white-noise
approximation in which the number of occupied receptors is
Ym= �Ym�+�m=NmCm / �Cm+Kd�+�m for m=1, . . . ,M, with
��m�t��n�s���NmCmKd / �Cm+Kd�2��t−s��mn �7,17�. Thus,
the receptor signal is decomposed into M independent
Gaussian random variables.
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FIG. 1. �Color online� Schematic representation of our model.
The forward rate k+ and backward rate k− determine the transition
between the unoccupied R0 and occupied R1 states. The dissociation
constant Kd is the ligand concentration at which half the receptors
are bound in equilibrium.
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The simplest estimate a cell can make of the
gradient is obtained by the following statistic: Z
=�m=1

M Ym cos �m+ i�m=1
M Ym sin �m	z1+ iz2. When M is

large, one can evaluate Z via replacing the sum with an in-
tegral. For small gradients �p�10%�, the integrand can be
expanded around p and we find

�Z� �
pNC0Kdei�

4�C0 + Kd�2 + O�p3� 	 �ei� + O�p3� , �1�

�z1,2
2 � �

NC0Kd

2�C0 + Kd�2 + O�p2� 	 �2 + O�p2� . �2�

It is easy to check that z1 and z2 are uncorrelated Gaussian
random variables, with different means but with the same
variance. This implies that Z is a complex Gaussian variable
which can be written in polar coordinates as Z=	ei
. Here, 	
measures the degree of asymmetry in the ligand-bound re-
ceptor distribution, while the phase 
 estimates the gradient
direction �. Mathematically, 	 follows the Rice distribution
and 
 takes a symmetric unimodal circular distribution �18�.
It was found that for large signal-to-noise ratio
�SNR=� /��3� both 	 and 
 are asymptotically Gaussian
�18�. Thus, 	��+�	 with ��	�t��	�s��=�2��t−s�, and

��+�
 with ��
�t��
�s��= ��2 /�2���t−s�. As an
orthogonal transformation from the Cartesian coordinates,
�	 is independent of �
. For typical Dictyostelium
values we find that SNR�3, consistent with the Gaussian
approximation.

Cellular motion can be decomposed into two stochastic
processes: speed and direction. Recent experimental data in
Dictyostelium �4� show that the average speed is roughly
identical for all directions. In these experiments, cells were
exposed to stable exponential chemoattractant profiles using
microfluidic devices. The centroid of each cell in the field of
view was automatically tracked every 5 s for 100 frames.
Cells that moved the furthest without colliding with another
cell were chosen for the data analysis. 10–25 such cells were
collected in each experiment, giving thousands of data points
for each particular gradient. The average speed as a function
of the angle is plotted in Fig. 2 for two different gradient
steepnesses. From this figure, we can conclude that any pos-
sible correlation between angle and speed is smaller than can
be obtained from the data. Thus, we restrict ourselves to the

directional process, parametrized by the migration angle 
�t�,
by assuming a uniform migration speed.

Let us temporarily suppose that cells have perfect knowl-
edge about the gradient direction �. In general, the equation
of 
�t� can be written as d
 /dt=G�	 ,
−��+�0 along with
��0�t��0�s��=�0

2��t−s�. The incorporation of the gradient-
independent noise �0 above allows the cell to perform a ran-
dom walk in the absence of any gradient. Note that unlike a
recent study of random motility �13�, we do not include col-
ored noise in our model. The function G�	 ,
� must exhibit
the following symmetry properties �15�: �1� 2� periodicity,
G�	 ,
�2n��=G�	 ,
� for any integer n; �2� polar symme-
try, G�	 ,
���=−G�	 ,
�, because the system’s polarity will
be reversed under the reversal of gradient direction; and �3�
reflection symmetry, G�	 ,−
�=−G�	 ,
�, i.e., cells cannot
distinguish between left and right with respect to the direc-
tion �. The simplest form obeying these requirements is
G�	 ,
−��=−��	�sin�
−��. Of course, cells have only im-
perfect knowledge of the gradient direction. The phase vari-
able 
 in our model serves as an unbiased estimator of � for
the cell. Thus, we arrive at the phenomenological Langevin
equation

d
/dt = − ��	�sin�
 − 
� + �0. �3�

This phenomenological equation describes a chemotactic cell
trying to align its movement with the estimated gradient di-
rection 
. The first term describes a gradient-dependent re-
storing force which steers the cell toward the gradient direc-
tion and which contains gradient-dependent fluctuations
�arising from receptor-ligand dynamics and downstream
pathways�, while the second term represents gradient-
independent noise in the random motility machinery.

Without loss of generality, we will set �=0. In
the small noise limit we can perform a Taylor
expansion d
 /dt�−����sin 
+�����sin 
 �	+����cos 
 �


+�0=−����sin 
+�tot, where the variance of the total noise
is

��tot
2 � 	 �tot

2 = �������sin 
�2 + ���−1���cos 
�2 + �0
2,

�4�

with �����=���x� /�x 
x=� and �−1���=���� /�. The first term
in Eq. �4� describes the fluctuations arising from 	, the am-
plitude of the gradient estimate, while the second term de-
scribes the fluctuations in 
, the direction of the gradient
estimate. Both of them vary with the instantaneous direction
of motion 
�t� and therefore are multiplicative fluctuations.
Since the cell responds to noise at its current position, the
multiplicative noise is defined with the Itô prescription. From
the previous expression it is clear that the ultimate
directional dependence in �tot

2 relies on the sign of
�����−�−1���. To capture possible nonlinear input-output
characteristics of downstream pathways, we assume that
���� has a power-law functional form, i.e., ����=a�b. We
can distinguish between two qualitatively different cases. In
the first, b�1, the total variance is of the “sin 
” type,
�tot

2 =�0
2+ ���−1�2+ ���2−�−1

2 ��� sin 
�2, and is maximal at

=� /2; in the second, b�1, the variance is described by a
“cos 
” type and is maximal at 
=0. In the special case

FIG. 2. The average cell speed in the experiments of Ref. �4� as
a function of angle for �A� p=5% and �B� p=10%. For each gra-
dient steepness, the speed was computed by tracking the position of
the centroid of 30–40 cells during 8 min. For more experimental
details, see Ref. �4�.
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b=1, the total variance is reduced to �tot
2 =�0

2+a2�2 with no
directional dependence.

III. RESULTS

We first study the case of b�1 where the restoring force
is ultrasensitive to the input signal. Define the direction-
independent noise ��

2 =�0
2+ ���−1�2 and the direction-

dependent noise ��
2= ���2−�−1

2 ��2. Then the previous Lange-
vin equation can be approximated as the Itô SDE,

d


dt
= − ����sin 
 + ���� sin 
�2 + ��

2 ��t� , �5�

where ��t� is white noise. One can solve the associated
Fokker-Planck equation on the interval �−� ,�� by imposing
periodic boundary conditions �19�. The stationary distribu-
tion reads

Ps�
� =

� exp
�
1 − �2

�
arctanh�� cos 
��

1 − �� cos 
�2 , �6�

where �=2� /��
2 is a parameter that compares the direction-

biased force with the direction-independent noise and where
�=�� /���

2+��
2 is the ratio of the direction-dependent and

maximal total variance. The normalization parameter
� can be determined numerically. For a vanishing �, we
recover the circular normal �CN� distribution:
lim�→0 Ps�
 ;� ,��=exp�� cos 
� / �2�I0����. For large �, our
stationary distribution will appreciably deviate from the CN
distribution with a sharper peak at 
=0 and heavier tails near

= �� �see Fig. 3�A��. A physical interpretation of this lep-
tokurtic feature can be given by realizing that the first term in

the Langevin equation �Eq. �3�� functions as a restoring
force. Contrary to the CN case, the amplitude of this force,
��	�, is taken from a distribution. Thus, large values can
occur and correspond to large restoring forces which lead to
a sharper peak in Ps�
�. Using the same argument, one can
see that the occurrence of small values in this distribution is
responsible for the heavy tails in Ps�
�.

We can further explore the extrema and directionality of
Ps�
� by recalling that arctanh�x�= 1

2 ln� 1+x
1−x � and setting

�	��1−�2� / �2��=����� /��
2, after which we obtain the al-

ternative form Ps�
�=��1+� cos 
��−1 / �1−� cos 
��+1. The
solution of �
 ln Ps=0 contains five possible roots in the in-
terval �−� ,��: 
=0, 
= ��, and 
= �arccos�−� /��, which
exist only if ���. As seen in Fig. 3�A�, Ps�
= ��� corre-
sponds to global minima if ���, but become local maxima
once ���, in which case the new global minima are located
at 
= �arccos�−� /��. This change in extrema occurs at a
critical point �c=� �equivalent to ��

2=�� where the direction-
dependent noise becomes comparable to the magnitude of
the restoring force. Direct numerical simulations of the full
model described by Eq. �3� indicate that our analytical ex-
pression for Ps�
� works well when SNR�3 and ���, jus-
tifying the Gaussian noise approximation.

As is common in the experimental literature, we can de-
fine an order parameter �cos 
�, the chemotaxis index �CI�,
which is a measure of the directionality of the angular dis-
tribution. In Fig. 3�B�, we plot the CI for different values of
� using our model. The dashed line in Fig. 3�B� corresponds
to the CI with a value of � that satisfies the critical condition
�=� or equivalently �=2�2 / �1−�2�. To the right of this line
the distribution shows a local maximum at ��. The slope of
the CI is close to zero over a large range of values for �. This
can be understood by realizing that the negative effect of the
heavy tails on the CI is partially compensated by the positive
effect of a sharpened peak.

Next we look at the case of b�1. The corresponding
stationary distribution is

Ps�
� =

� exp
�
1 − �2

�
arctan�� cos 
��

1 + �� cos 
�2 , �7�

with ��
2 =�0

2+ �����2 and ��
2= ��−1

2 −��2��2 in the definitions
for � and �. The analysis proceeds as above and we only
highlight the differences. The angle distribution exhibits not
only heavy tails but also an obtuse peak for increasing values
of � �Fig. 3�C��. This can be understood since in this case the
noise in 
, i.e., the second term in Eq. �4�, dominates and
reduces the accuracy in directionality. Due to the Gaussian
approximation, the analytical probability distribution exhib-
its double peaks at 
= �arccos�−� /�� when ��� �20�. Also,
the CI decays quickly with increasing � even before the bi-
furcation �Fig. 3�D��, suggesting that cells should operate in
a regime where b�1. Finally, for b=1, the directional de-
pendence in �tot

2 disappears and the stationary distribution
reduces to the CN distribution with shape parameter
�̃=2a� / ��0

2+a2�2�. Obviously, for larger values of the pa-
rameter a, the system is more sensitive to the gradient, and
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FIG. 3. The stationary distribution Ps�
 
�=0;�=1.5,�� for �A�
b�1 and �C� b�1 as a function of the parameter � representing the
ratio of direction-dependent noise to maximal total variance. The CI
vs � for �B� b�1 and �D� b�1, with the dashed lines indicating
where the bifurcation occurs.
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more of the receptor noise is transmitted to the directional
output.

For any given a and �0
2, there exists a unique value of b

that maximizes the CI �Fig. 4�A��. We found numerically that
the combination of a�=�0 /� and b�=1 optimizes the CI over
the whole parameter space �a ,b� given the level of �0. The
optimal pair �a� ,b�� corresponds to the ridge of the CI sur-
face in Fig. 4�A�. In summary, the exponent b is critical for
the chemotactic responses. The optimal output requires
b=1, while b�1 is suboptimal and b�1 leads to poor di-
rectionality. This can be understood by realizing that when
the restoring force ���� is a nonlinear function �i.e., b�1� of
the receptor signal �, the associated sensor noise is modu-
lated to be direction dependent, which leads to heavy tails in
the angle distribution �Fig. 3�. In other words, there is a
significant probability that cells may move in the wrong di-
rection and the chemotactic performance is not optimal. An
important implication of our model is that the CI is always
lower than that predicted by models neglecting receptor
noise �see Fig. 4�B��. In fact, previous experimental data

indicate that when the gradient steepness increases the satu-
rating value of the CI is less than 1 �5,9�. This feature is not
consistent with previous CN models but may be successfully
explained by our b�1 model where the total noise �tot

2 be-
comes an increasing function of p.

We can compare our model to the results of recent experi-
ments in which Dictyostelium cells were exposed to stable
exponential chemoattractant profiles �4�. The data allow us to
compute directional distributions for different gradient pa-
rameters. To eliminate the slight asymmetric bias introduced
by the flow in the microfluidic chambers, we collected the
data into 20 bins according to their absolute deviation from
the gradient direction, 

−�
. The resulting distribution is
shown as symbols for p=5% and p=10% in Figs. 4�C� and
4�D�, respectively. We have also plotted as a solid line a
least-squares fit to the data using our model �Eq. �6��. Our fit
captures well the heavy tails and the sharp peaks, features
that the CN distribution—plotted as a dashed line—is unable
to reproduce. A goodness of fit analysis using a Pearson’s
chi-square test revealed that the CN distribution is rejected at
a significance level of less than 1%, while our model exhibits
large p values �21�. The observed leptokurtic feature sug-
gests that Dictyostelium cells are operating close to the opti-
mal regime with the exponent b estimated as slightly larger
than 1.

IV. DISCUSSION

A key assumption in our model is that the chemotaxing
cell experiences a relatively stable gradient steepness
�p=const� regardless of the cell’s location or moving history.
Thus, our model results can be directly compared to experi-
ments in which the gradient is carefully quantified and con-
trolled. If the gradient steepness is spatially varying, the
chemotactic response would be heterogeneous in space, pos-
sibly obscuring the structure of the angular distribution.

Although we focus here on the role of receptor noise, it is
easy to extend our model to include extra gradient-dependent
fluctuations, by adding them to the magnitude of the restor-
ing force ��	�. Such fluctuations might arise from noise in
the downstream signal transduction pathways. Future work
will track cells for longer periods of time and test for the
presence of long-lived cell individuality and other fluctua-
tions sources �22�. Should the data indicate such memory
effects, our model could be extended to include quenched
fluctuations in cell responses.
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