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We consider the thermally activated fragmentation of a homopolymer chain. In our simple model the
dynamics of the intact chain is a Rouse one until a bond breaks and bond breakdown is considered as a first
passage problem over a barrier to an absorbing boundary. Using the framework of the Wilemski-Fixman
approximation we calculate activation times of individual bonds for free and grafted chains. We show that
these times crucially depend on the length of the chain and the location of the bond yielding a minimum at the
free chain ends. Theoretical findings are qualitatively confirmed by Brownian dynamics simulations.
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The problem of thermally activated chain fragmentation
�thermolysis� is of fundamental interest in understanding the
degradation and stabilization properties of polymers �1�.
Whenever the corresponding fragmentation kernel �i.e., the
probability per unit time for a bond at a given position to
break� is known as the function of the breakdown position,
time, chain’s length etc., the overall fragmentation process is
well-described, and the distribution of fragments at whatever
time can be obtained by the solution of the corresponding
kinetic equation �2–5�. Here the fragmentation kernel is the
input into the universal theory and many model forms for
such kernels were formulated on the basis of parameterizing
experimental observations or as simple analytical examples.
However, up to our notion, the question of how does the
corresponding kernel follow from the single polymer chain’s
dynamics was hardly considered. The only example known
to us is contained in �6� which however deal with a model
whose relation to the standard polymer dynamics ones is not
quite evident.

In what follows, we discuss the thermally activated break-
down within a model which assumes that the dynamics of
the chain is a Rouse one �7,8� �as long as it doesn’t break�,
i.e., we disregard excluded volume effects, which is a rea-
sonable assumption in the case of tagged chains in melts and
concentrated solutions, as well as hydrodynamical interac-
tions. We moreover assume that the breakdown of the bond
�represented as the breakable harmonic spring� takes place as
soon as its elongation achieves the preassigned value �equal
for all bonds in the chain�. The possibility of reestablishing
the bond after breakdown �defect healing� is neglected. We
consider the relevant situations of free and grafted chains.

The thermally activated bond breakdown is essentially an
example of an intrachain chemical reaction. However, con-
trary to, e.g., polymer cyclization �9–15� which was consid-
ered in quite a detail, this one was hardly tackled. The as-
sumption that the bond breaks when achieving the given
elongation simplifies the description, and corresponds to as-
suming the corresponding reaction to be purely diffusion-
controlled reaction on a contact. Such problems can be cast
into mathematical form of the first passage problem over a
barrier to an absorbing boundary. Although the formulation
of the overall problem is extremely simple, its solution is
not, since the projection of the overall chain motion onto the
reaction coordinate makes the corresponding diffusion
strongly non-Markovian �16�. This strongly non-Markovian

nature of the problem involving multiple characteristic ti-
mescales reflects the fact that the reaction essentially takes
place in a many-particle system.

In recent years theoretical methods have emerged to treat
diffusion-controlled reactions among sites attached to poly-
mers. Pioneering works go back to Wilemski and Fixman
�17,18� and conceptual advances were made by Doi �9�, de
Gennes �19�, and others �16�. But for all that, except for
some special cases �10�, the analytical theories of reaction
diffusion in polymer physics fail to give an exact description
of the reaction rates and rely on additional assumptions �14�.
However, as we proceed to show, the outcome of theoretical
considerations within the framework of Wilemski and Fix-
man agrees qualitatively very good with the results obtained
in Brownian dynamics simulations. Distinct from numerous
studies on chain end reactions �9–15� or the studies on inte-
rior loop forming reactions �20�, we focus on the related but
somewhat different problem of thermal activation of bonds,
i.e., the first passage problem of nearest-neighbor monomer
distances.

As we proceed to show the dissociation dynamics of a
bond strongly depends on its location within the chain and
the size of the system. Although the equilibrium distributions
and activation barriers are the same for all the bonds, their
activation times are not. At the free ends of the chain the first
passage times are substantially lower compared to bonds in
the middle of the chain �for a free chain� or at its grafted end
�for a grafted one�. Thus, the thermally activated fragmenta-
tion is expected to happen with higher probability at the
chain ends. A similar behavior was found experimentally
�21,22�, though the underlying mechanism of chain-end
scission differs. Moreover, our findings differ from observa-
tions in experiments on polymer solutions in elongational
flows, where fragmentation happens mostly at the center of
the chain where the tensile force has a maximum �23,24�,
and they differ from analytical predictions based on multidi-
mensional Kramers escape theory �25� which does not ac-
count for the non-Markovian nature of the problem. Further-
more, it was shown that the forced rupture of adhesive
contacts is strongly influenced by chain dynamics for under-
critical forcing �26�.

The paper is structured as follows: in the next section we
introduce our model and discuss its breakdown properties
within the simple one-dimensional setup. We recall the dy-
namics of the underlying polymer model and in Sec. II an
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approach to calculate first passage times in diffusion-
controlled reactions based on Wilemski-Fixman approxima-
tion. In Sec. III we study the impact of the location of the
bond on its activation time for various chain lengths and
activation energies. In Sec. IV we generalize our approach to
the experimentally relevant three-dimensional chain. Finally
we summarize our results.

I. MODEL

We first consider a one-dimensional chain of N+1 mono-
mers with coordinates q��q0 , . . . ,qN�. The interaction po-
tential is given by

U�q0, . . . ,qN� =
1

2
��

i,j
R̂i,jqiqj , �1�

with the Rouse matrix R̂. The overdamped dynamics of the
beads follow the Langevin equations

�q̇i = −
�U

�qi
+ �2�kBT�i, �2�

with �i being independent delta correlated Gaussian white
noise, damping coefficient �, and thermal energy kBT. We
consider the cases of a free chain as well as of a grafted
chain with q0�t��0. The Rouse matrix reads

R̂ =�
�2 − �� − 1 0

− 1 2 �

� �

2 − 1

0 − 1 1
	 , �3�

with �=1 for the free chain and �=0 for the grafted one. We
pass to a dimensionless time, t̃= t� /�, and neglect in the
following the tilde in our notation. As long as the chain is
intact, it is described by the standard Rouse model of poly-
mer dynamics whose corresponding interaction strength
reads �=3kBT /b2 �b2 being the mean squared length of a
single bond in a three-dimensional chain� �7,8�.

The system of coupled monomers is sketched in Fig. 1 for
a free chain. Superimposed is the equilibrium distribution of
ei,

�eq�ei� =
1

�2��0

exp
−
ei

2

2�0
�, with �0 = �ei

2
 =
kBT

�
,

�4�

which is the same for all i. �0 is the mean squared bond
length in the one-dimensional chain �in arbitrary units�.

The problem of thermally activated breakdown can be
cast into a first passage problem of a reaction coordinate ei
=qi−qi−1 over a barrier of height 	E=U�eb�−U�0� situated
at eb. In our harmonic model the reaction is assumed to be
irreversible and to take place once the reaction coordinate
reaches eb in the harmonic potential well. Thus the absorbing
boundary at eb introduces a cutoff of the harmonic potential.

In order to study the thermolysis of the chain, all N bonds
are assumed to have a cutoff at eb and the chain is broken as

soon as the first ei reaches the barrier. For the systematic
study of the mean first passage times �the inverse activation
rates� 
mfp�i� of individual bonds only one of them is break-
able �the one under study, with a cutoff at eb�, the remaining
N−1 bonds are described by perfect harmonic springs.

The set of coupled Eq. �2� was integrated by use of a
Heun integration scheme �27�. The time step was chosen as
follows: for bond elongations away from eb it was set to
	t=5�10−4 and reduced to 	t=10−6 for eb−ei�0.1. A fur-
ther decrease in the time step did not cause a noticeable
change of the numerical results. Furthermore, for N=1, the
obtained first passage times �both for the free and the grafted
chain� agreed with the available exact analytical results. The
location of the absorbing boundary was given by eb

=�2�0	E /kBT and we fixed �0=0.02 without loss of gener-
ality. Averages were performed over an ensemble of at least
10 000 trajectories. Initial configurations were generated us-
ing the equilibrium distribution of the ei. We confined our-
selves to chains consisting of N
40 bonds to ensure reliable
statistics.

First, we consider numerically the thermolysis of the
whole chain. The survival probability of a single bond in the
chain is given by

Wi�t� = exp�− ��i�t� , �5�

with the breakdown rate �i equal to the activation rate of the
bond i over the barrier, which on its turn is proportional to
the inverse mean first passage time to eb, i.e., ��i�
=1 /
mfp�i�. The survival probability of the whole chain is
thus

WN�t� = �
i=1

N

Wi�t� = exp�− �Nt� , �6�

with the fragmentation rate of the chain

FIG. 1. �Color online� One-dimensional chain of N+1 mono-
mers connected by harmonic springs. Superimposed is the interac-
tion potential with a barrier of height 	E at eb=qi−qi−1. The acti-
vation rate is assumed to depend on the barrier height, the position
of the bond in the chain and the system size.
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�N = �
i=1

N

��i� . �7�

For a set of N bonds with equal activation rates ��i�=�e we
have �N /�e=N. Due to the coupled dynamics this scaling
with N is shown not to hold true. In Fig. 2 we depict the
numerically obtained activation rates for free chains of dif-
ferent length. The scaling differs drastically from the linear
one for small chains and approaches asymptotically a slope
of almost one in the limit of long chains. The rate is always
below its value for the case of identically activated bonds
�dashed line�. We conclude, that in longer chains especially
the inner bonds have lower activation rates, or—in turn—
larger mean first passage times �or mean lifetimes�. Hence a
chain is expected to be activated with higher probability
close to its ends. This is shown in panel �b� of Fig. 2 where
we present the probability density distribution of activation
as a function of the location of the bond in the chain. Note
that our findings differ from observations in experiments on
polymer solutions in elongational flows, see, e.g., Fig. 7 in
�28�, where the tensile force exhibits a maximum at the
chain’s center and hence fragmentation happens mostly
there.

The advantage of this simple model is that as long as the
chain is intact, it is described by the standard Rouse model of
polymer dynamics, and therefore represents sufficiently well
what happens in melts and concentrated solutions.

A. Normal modes of the free chain

The set of Eq. �2� can be decoupled by transformation to
normal coordinates �8�. For the free chain the normalized
eigenvectors �normal modes� of Eq. �3� are

x̂k�i� =� 2

N + 1
cos
�i +

1

2
� k�

N + 1
� , �8�

and the corresponding eigenvalues can be found as

�k
f = 4 sin��

2

k

N + 1
�2

. �9�

They are inverse proportional to the relaxation times of
single modes. The decoupled equations of motions describe
independent Ornstein-Uhlenbeck processes with relaxation
times


k
f =

1

�k
f , �10�

for k=1, . . . ,N.
Representing the monomer’s motion with respect to the

normal modes, the monomer’s coordinate is given by

qi�t� = x0 + 2�
k=1

N

xk�t�cos
�i +
1

2
� k�

N + 1
� , �11�

with �xk�t�� being the coordinates

xk�t� =
1

N + 1�
i=0

N

qi�t�cos
�i +
1

2
� k�

N + 1
� . �12�

Due to the choice of normalization the dynamics of x0 rep-
resent the time evolution of the chain’s center of mass.

B. Normal modes of the grafted chain

For the grafted chain the normalized eigenvectors of Eq.
�3� are

x̂k�i� =
2

�2N + 1
sin�i�

2k − 1

2N + 1
� , �13�

and the corresponding eigenvalues can be found as

�k
g = 4 sin��

2

2k − 1

2N + 1
�2

. �14�

Representing the monomers motion with respect to the nor-
mal modes, the monomers coordinate is given by
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FIG. 2. Panel �a�: The fragmentation rate of the chain as a function of its length. Shown is �N /�e. For bonds with equal activation rates
the fragmentation rate of the chain follows �N /�e=N �dashed line�. Panel �b�: Probability distribution of the broken bond position for a chain
with N=21 bonds. The barrier height is 	E /kBT=5.
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qi�t� =
2

�2N + 1
�
k=1

N

xk�t�sin�i�
2k − 1

2N + 1
� . �15�

The relaxation times of single modes are


k
g =

1

�k
g , �16�

for k=1, . . . ,N. Note that longest relaxation time of the
grafted chain, 
1

g, is approximately four times larger than 
1
f .

II. THERMOLYSIS AS DIFFUSION-CONTROLLED
REACTION

In order to calculate the mean first passage times we
briefly recall an approach put forward by de Gennes �19�,
based on the pioneering work of Wilemski and Fixman
�17,18�. The probability distribution function of the mono-
mer coordinates q is ��q , t�. Its dynamics follow the gener-
alized reaction-diffusion equation:

L� = − Q� , �17�

with L being the diffusion operator in the absence of reac-
tion, i.e., the Fokker-Planck operator �29�

L� =
��

�t
− �0	� − ���R̂q� . �18�

Q is the sink operator describing the reaction. Choosing the
delta function sink �the Smoluchowski sink�, i.e., Q�ei�
=K��ei−eb�, we have in the limit of infinite sink strength,
i.e., K→�, an absorbing boundary at eb. The aim is now to
derive an expression for the mean first passage time over a
barrier corresponding to the energy growth towards eb into
this infinitely deep and steep “adhesion well.”

Equation �17� can be formally solved using the Green’s
function method. Introducing the probability density of the ei
���ei , t�=�dq��q , t���ei− �qi−qi−1��� and assuming that the
presence of reaction does not affect the distribution of all
other variables ej, j� i, the formal solution of Eq. �17� for
the probability density ��ei , t� reads �10,17�

��ei,t� = �eq�ei� − �
0

t

dt0� dei
0G�ei,ei

0;t − t0�Q�ei
0���ei

0,t0� .

�19�

The propagator G is the conditional probability of finding the
bond i with elongation ei at time t provided that it was at ei

0

at t0. The fraction of bonds that have not crossed the barrier
at eb is given by ��t� and obeys the following relation

−
d��t�

dt
=� deiQ�ei���ei,t� = K��eb,t�

= K�eq�eb� − K2�
0

t

dt0G�eb,eb;t − t0���eb,t0� .

�20�

The single point propagator G�t�=G�eb ,eb ; t� is called the

memory function. Taking the Laplace transform of Eq. �20�
together with ��0�=1, we have

1 − s�̃�s� =
K�e�eb�

s�1 + KG̃�s��
, �21�

what reduces in the limit of K→� to

1 − s�̃�s� =
�eq�eb�

sG̃�s�
. �22�

For times exceeding the longest relaxation time the memory
function approaches the equilibrium distribution �e�eb�.
Thus, one usually introduces a function which vanishes when
t→�

h�t� =
G�t�

�eq�eb�
− 1. �23�

Equation �22� then reads

�̃�s� =
h̃�s�

1 + sh̃�s�
. �24�

It was shown �9,13�, that the long-time rate constant s� can
be obtained by finding the pole of the previous equation.
Furthermore in the limit of large characteristic timescales
�potential barrier height much larger than kBT�, s� is close to
zero and the mean first passage time 
mfp is approximately
given by


mfp = h̃�0� �
1

�s��
. �25�

Since the propagator is related to the two-point joint prob-
ability distribution of ei via G�ei ,ei

0 ; t�=�i�ei ,ei
0 ; t� /�eq�ei

0�,
the mean first passage time becomes


mfp�i� = �
0

� ��i�eb,eb;t�
�eq

2 �eb�
− 1�dt . �26�

Following �9� it is shown in Appendix that for any one-
dimensional harmonic chain the two-point joint probability
distribution is given by

�i�ei,ei
0;t� =

1

2��0
�1 − ci�t�2

exp
−
ei

2 + �ei
0�2 − 2ci�t�eiei

0

2�0�1 − ci�t�2� � ,

�27�

with the normalized autocorrelation function ci�t�
= �ei�t�ei�0�
 / �ei

2
 which depends on the location in the chain
and which we will specify in the next section for the case of
either free or grafted chains. Inserting Eqs. �4� and �27� into
Eq. �26� we finally derive


mfp�i� = �
0

� � exp
 	E

kBT

2ci�t�
1 + ci�t�

�
�1 − ci�t�2

− 1	dt . �28�

S. FUGMANN AND I. M. SOKOLOV PHYSICAL REVIEW E 81, 031804 �2010�

031804-4



III. RESULTS

A. Free chain

In the free chain the time-correlation function of ei=qi
−qi−1 is

�ei�t�ei�0�
 =
2

N + 1

kBT

�
�
k=1

N

e−t/
k
f

sin
 k�i

N + 1
�2

, �29�

where we have used the fact that different modes are or-
thogonal. The normalized correlation function ci�t� is

ci�t� =
2

N + 1�
k=1

N

e−t/
k
f

sin
 k�i

N + 1
�2

, �30�

with 
k
f taken from Eq. �10�. For N� i the sum can be re-

placed by an integral, furthermore N+1�N. Substituting k
by l=k� /N we have

ci�t� �
2

�
�

0

�

dl e−tl2 sin�li�2. �31�

Thus for N /2� i �and N� i�N /2 for reasons of symmetry�,
i.e., for bonds close to the chain’s end, the correlation func-
tion ci�t� is independent of the system size. The integral in
Eq. �31� can be solved in terms of error functions.

Since the mean first passage time is a functional of the
correlation function, which by itself depends on the location
of the bond in the chain, strong differences in the scaling of
the correlation function might cause drastic differences of the
activation rates �times� for bonds with different localization.
Thus we first present in Fig. 3, panel �a�, the normalized
autocorrelation function of a free chain of 99 bonds. De-
picted are the temporal correlation functions for a bond at
one of the terminals of the chain �i=1, dashed line� and for a
bond at the center of the chain �i=50, dashed-dotted line�.
Superimposed is the correlation function of a single bond,
i.e., in a dimer �solid line�. At short times �t�
1

f � all curves
coincide, while for longer times the correlations decrease

much slower at the chain’s center compared to the terminal
where the correlation time �defined in the sense that the cor-
relation function is markedly different from zero� is also
larger than for the dimer. Thus the correlation time is in-
creased by orders of magnitude for bonds at the chain’s cen-
ter and the typical timescale of relaxation can reach and even
overcome the mean activation timescale. Hence the dynam-
ics become strongly non-Markovian.

Since the analytical expression of the mean first passage
time given by Eq. �26� is exact only in the Markovian limit,
the theory is expected to work more accurate in predicting
the times close to the chain’s ends. However, as shown in
Fig. 4, it offers a qualitative picture that can explain obser-
vations in numerical simulations �i.e., it works qualitatively
well in the whole range of i, which is typical for the
Wilemski-Fixman approximation�. In panel �a� we present
the first passage times derived from Eq. �26� for three chain
lengths and a barrier height of 	E=5kBT. In panel �b�, we
show the outcome of Brownian dynamics simulations for the
same set of parameter values. Qualitatively the outcome of
the numerical simulations agrees very well with the theoret-
ical prediction. For bonds at the ends of the chain the first
passage times are smaller compared to the activation times of
the inner bonds. For these bonds the theory is also quantita-
tively in good agreement with the numerical simulations. As
expected the agreement becomes worse with enlarging dis-
tance from the terminals of the chain. However, both theory
and simulations predict an increase in the activation time
with increasing system size, even for the bonds located at i
=1 and i=N. The observed effect is large already in rela-
tively small systems �see panel �b� for N=21:
mfp�10� is
about 40% larger than 
mfp�1�� and becomes even larger in
longer chains. Thus our study of the mean first passage times
of individual bonds reveals that the activation times are
smaller towards the chain ends what in turn cause there a
higher probability of fragmentation.

Furthermore, the kernel depends on the barrier height
which defines the intrinsic timescale of activation. In Fig. 5
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FIG. 3. Normalized autocorrelation function ci�t�. Panel �a�: Free chain with 99 bonds. The correlation function is shown for i=1 �dashed
line, terminal of the chain� and i=50 �dashed-dotted line, center of the chain�. Superimposed is the correlation function of a dimer, i.e., a
chain consisting of only one bond. Panel �b�: Grafted chain with 100 bonds. The correlation function is shown for i=1 �dashed-dotted line,
grafted terminal of the chain� and i=100 �dashed line, free end of the chain�. Superimposed is c1�t� for a single grafted monomer.
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we depict the numerically obtained mean first passage times
over barriers of different heights and a fixed chain length.
The higher is the potential barrier the weaker is the increase
in the times for the bonds at the center of the chain. This
illustrates that the observed effect of the dependence of the
dissociation time on the bond location is of highly non-
Markovian nature. For lower barriers the activation times are
comparable with the timescale of correlations in the chain
and the dynamics is non-Markovian. We can conclude that
the growth of activation times with enlarging distance from
the chain’s ends is the larger, the longer the chain and the
lower the activation barrier is.

B. Grafted chain

In the free chain we observed an increase in the activation
times towards the central bond of the system. In the grafted

chain there is also one free end, but another end is fixed. It
was mentioned in the beginning that the longest relaxation
time in the grafted chain �corresponding to the first normal
mode� is four times longer compared to this time in the free
chain. Thus we may expect that the non-Markovian aspect
�induced by long correlation times� plays an even more im-
portant role in the barrier crossing dynamics.

In the grafted chain the normalized correlation function of
the ith bond elongation is

ci�t� =
4

�2N + 1��k=1

N


k
ge−t/
k

g
sin�i�
2k − 1

2N + 1
�

− sin��i − 1��
2k − 1

2N + 1
��2

, �32�

with 
k
g taken from Eq. �16�.

In Fig. 3, panel �b�, we show the normalized autocorrela-
tion function as given in Eq. �32� of a grafted chain of 100
bonds. We depict the temporal evolution of ci�t� for i=1, i.e.,
the bond at the grafted end �dashed-dotted line� and for i
=100, i.e., the bond at the free terminal �dashed line�. Super-
imposed is the correlation function for a single grafted bond.
At short times the correlations drop down earlier compared
to the single bond situation and the bond at the grafted end.
Note that the dashed line of panel �b� coincides with the solid
line in panel �a�. Thus we conclude that for short times the
dynamics of the bond at the free end resembles the dynamics
of a dimer. We can infer, that for short times the dynamics of
a bond at the chain’s free terminal is the same, no matter
whether the chain is fixed or not.

In Fig. 6, panel �a�, we present the first passage times
derived from Eq. �26� for three chain lengths and a barrier
height of 	E=5kBT. In panel �b� we show the outcome of
Brownian dynamics simulations for the same set of param-
eter values. As in the free chain, for bonds at the loose ter-
minal the first passage times are smaller compared to the
activation times of the inner bonds. For these bonds the
theory is also quantitatively in good agreement with the nu-
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FIG. 4. Mean first passage time as a function of the bond position in the free chain. Panel �a�: Mean first passage times obtained from
Eq. �28� with the correlation function given in Eq. �30�. Panel �b�: Numerically obtained first passage times. The barrier height is 	E
=5kBT.
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merical simulations. The first passage times gradually in-
crease with growing distance from the free end of the chain
and grow substantially at the grafted terminal. The effect is
overestimated by the theory. However, theory and numerical
simulation are in good qualitative agreement.

As for the free chain we present in Fig. 7 the numerically
obtained mean first passage times over barriers of different
height and a fixed chain length. The lower is the potential
barrier, the stronger is the increase in the dissociation time
along the chain. In the limit 	E�kBT 
mfp�1�→
mfp

s while

mfp�i�1�→
mfp

s /2 �the value expected for a free dimer�.

IV. FREE THREE-DIMENSIONAL ROUSE CHAIN

Let us complete our study and turn to the three-
dimensional harmonic chain. N+1 beads are connected by N
harmonic springs. The ends are free and the chain’s center of

mass diffuses with an effective friction �N. In the three-
dimensional chain system the two-point joint probability dis-
tribution of is given by

�i�ei,ei
0;t� = � 1

2��0
�3 1

�1 − ci�t�2�3/2

�exp
−
1

2�0

ei
2 + �ei

0�2 − 2ci�t�ei · ei
0

1 − ci�t�2 � .

�33�

The derivation follows the same steps as shown in Appendix
and is given for example in �9,20�. After averaging over
angles the distribution reads

��ei,ei
0;t� =

2eiei
0

��0
2ci�t��1 − ci�t�2

sinh
 ci�t�eiei
0

�0�1 − ci�t�2��
�exp
−

ei
2 + �ei

0�2

2�0�1 − ci�t�2�� . �34�

Together with Eq. �26� the mean first passage time reads


mfp�i� = �
0

� � �0

eb
2ci�t��1 − ci�t�2

sinh� ci�t�eb
2

�0�1 − ci�t�2��
�exp
−

eb
2ci�t�2

�0�1 − ci�t�2�� − 1�dt . �35�

with ci�t� given in Eq. �30�.
In Fig. 8, we compare the mean first passage times of �ei�

derived from Eq. �35� and from Brownian dynamics simula-
tions for a barrier height of 	E /kBT=10. As in the one-
dimensional system, there is a qualitative agreement between
theory and numerical simulations. Even for a relatively short
chain consisting of N=9 bonds, there is an increase in the
activation time of about 8%, which will be even larger for
longer chains and/or lower activation barriers which are of
relevance in biological systems.
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FIG. 6. Mean first passage time as a function of the bond position in the grafted chain. Panel �a�: Mean first passage times obtained from
Eq. �28� with the correlation function given in Eq. �32�. Panel �b�: Numerically obtained first passage times. The barrier height is 	E
=5kBT.
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We also tested the scaling of the observed activation rates
�the inverse first passage times� towards the chain ends and
found neither a power law nor an exponential scaling. The
same result was obtained when we studied the inverse acti-
vation times derived from Eq. �28� in the limit of large N.
Thus we cannot map the obtained fragmentation kernel on an
existing standard class of kernels �3–5� and therewith no im-
mediate analytical prediction of the distribution of fragments
at a given instant in time is available. However, in principle
the corresponding kinetic equation can be solved numerically
�3�. This was done exemplarily for a solution of polymers
consisting initially �t=0� of chains with N=19 bonds. The
mass distribution is shown in Fig. 9 for three different values
of the time. In the beginning the distribution is sharply
peaked at the initial chain length �not shown�. Within time
the larger polymers split into smaller ones and eventually
only monomers remain �again not shown�.

V. SUMMARY

Let us summarize our findings. We studied the thermally
activated fragmentation of a homopolymer chain. It was
shown that the fragmentation rate of the chain follows a non-
linear scaling as a function of the number of breakable bonds
in the system. Bond breakage happens with higher probabil-
ity at free chain ends. Studying the activation times of indi-
vidual bonds we focused on the impact of their location in
the chain and the length of the latter. It was found that to-
wards the center of the free chain as well as towards the
grafted terminal of the fixed chain the activation times in-
crease substantially. The theoretically predicted effect is
qualitatively confirmed by Brownian dynamics simulations
both in one- and three-dimensional systems. The obtained
fragmentation kernel, whose scaling as a function of the frag-
ment size crucially depends on the height of the activation
barrier, can serve to predict the distribution of fragment sizes
at a given instant in time by solving the corresponding ki-
netic equations. The observed effects are large and therefore
the framework presented in this article may help to interpret
real experimental data.
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APPENDIX: TWO-POINT JOINT PROBABILITY
DISTRIBUTION

The two-point joint probability distribution is given by

�i�ei,ei
0;t − t0� =� ¯� dqdq0�„ei − �qi − qi−1�…

��„ei
0 − �qi

0 − qi−1
0 �…�0�q,q0;t − t0� .

�A1�

Since �0—the joint probability distribution of all of the
chains coordinates—is a multivariate Gaussian, the integral
in Eq. �A1� yields a multivariate Gaussian �30�. The general
representation is

�i�ei,ei
0;t� = N exp
−

1

2
m1�t�ei

2 −
1

2
m2�t��ei

0�2 −
1

2
m3�t�eiei

0� ,

�A2�

with N being a normalization prefactor. From

� dei�i�ei,ei
0;t� = �eq�ei

0� , �A3�

� dei
0�i�ei,ei

0;t� = �eq�ei� , �A4�
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and the normalization restraint of the probability density dis-
tribution we obtain m1=m2=m and N=�m2−m3

2 /4 / �2��. We
derive

�eq�ei� =

�m −
m3

2

4m
�2�

exp
− �m −
m3

2

4m
� ei

2

2
� . �A5�

Furthermore we derive �ei
2
=�0=1 / �m−m3

2 / �4m��. From

ci�t� =
�t

�0
=

1

�0
� � deidei

0��ei,ei
0;t�eiei

0, �A6�

it follows that ci�t�=−m3 / �2m� and subsequently 1 /m
=�0�1−ci�t�2�. Finally we have

�i�ei,ei
0;t� =

1

2��0
�1 − ci�t�2

exp
−
ei

2 + �ei
0�2 − 2ci�t�eiei

0

2�0�1 − ci�t�2� � .

�A7�
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