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Dissipative quantum systems and the heat capacity
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We present a detailed study of the quantum dissipative dynamics of a charged particle in a magnetic field.
Our focus of attention is the effect of dissipation on the low- and high-temperature behaviors of the specific
heat at constant volume. After providing a brief overview of two distinct approaches to the statistical mechan-
ics of dissipative quantum systems, viz., the ensemble approach of Gibbs and the quantum Brownian motion
approach due to Einstein, we present exact analyses of the specific heat. While the low-temperature expressions
for the specific heat, based on the two approaches, are in conformity with power-law temperature dependence,
predicted by the third law of thermodynamics, and the high-temperature expressions are in agreement with the
classical equipartition theorem, there are surprising differences between the dependencies of the specific heat
on different parameters in the theory, when calculations are done from these two distinct methods. In particular,
we find puzzling influences of boundary confinement and the bath-induced spectral cutoff frequency. Further,
when it comes to the issue of approach to equilibrium, based on the Einstein method, the way the asymptotic

limit (z—°) is taken seems to assume significance.
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I. INTRODUCTION

Recent years have seen great strides in the statistical me-
chanics of dissipative quantum systems [1]. Dissipation
arises when the quantum degrees of freedom of a heat bath,
which is coupled to a subsystem of interest, are projected (or
integrated) out of the Hilbert space of the total system. Two
different approaches, detailed below in Sec. II, have been
used in this context: (i) the usual Gibbs approach that fo-
cuses on the partition function [2] and (ii) the Einstein ap-
proach that hinges on a quantum Langevin equation for the
subsystem [3]. Lately it has been argued that the presence of
quantum dissipation yields a satisfactory behavior of the fun-
damental thermodynamic attribute, viz., the heat capacity, as
far as the low-temperature properties are concerned [4-7].
Here we will point out that there are some puzzling issues
even for the high-temperature limit of the heat capacity, apart
from the intriguing low-temperature attributes. Before we
address this question, it is important to review the kind of
subsystem we have in mind and the foundational basis of
statistical mechanics, which we do below. While our present
discussion as well as that in Sec. II are set within the domain
of classical statistical mechanics, extension to quantum me-
chanics can be easily carried out, as indicated in Sec. III. But
we want to first concentrate on some preliminaries about the
subject of statistical mechanics itself.

Statistical mechanics provides the microscopic basis of
the macroscopic properties of a system described by the sub-
ject of thermodynamics. Though the power of statistical me-
chanics comes to the fore in its full glory for an interacting
many-body system, such as in the exact formulation of
second-order phase transitions by means of the two-
dimensional Ising model [8], many of the intricacies can be
elucidated for just a single entity, albeit in contact with a heat
bath comprising an infinitely large number of (invisible) de-
grees of freedom. It is this simplified approach to statistical
mechanics in the context of a single particle embedded in a
heat bath that we shall adopt in this paper.
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The dynamics of a particle of mass m is described by the
system Hamiltonian defined by

=2

)4 .o
Hg= om ¥ V(q.p), (1)
m

where p is the canonical momentum vector of the particle
moving under an arbitrary potential V(§,p) which in general
is a function of the generalized coordinate vector ¢ and the
generalized momentum p. We shall discuss three distinct
cases in the sequel:

(a) free particle,

V(§.p)=0, 2)

(b) Harmonic oscillator,
1
V(g.p) = ymeid, 3)

with w, being the frequency of the oscillator, and
(¢) charged oscillator in a magnetic field, that is described
by a momentum and coordinate-dependent potential,

62 A’2(—>) 1 2 =2
+ —mwyg°,

2 q 2’" 04
(4)

with A(§) being the vector potential, the curl of which yields
the magnetic field B,

e - R
V(G.p)=———(p.A(G) +A(G) .p) +
2mce 2m

B=V X A(j). (5)

It is evident that for zero vector potential, case (c) reduces to
(b). If additionally, w is also zero, case (a) is obtained. In
what way are these limiting situations arrived at, for a quan-
tum dissipative system, will indeed be the focus of our dis-
cussion below.

It should be mentioned here that the problem of a charged
oscillator in a magnetic field is relevant in the context of
Landau diamagnetism [9] which has had a deep impact on
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modern condensed-matter physics through phenomena such
as the quantum Hall effect [10]. Landau diamagnetism,
which is purely quantum in origin, is characterized by strong
boundary effects that can be mimicked by the oscillator po-
tential [11]. The presence of a quantum bath, comprising say,
bosonic excitations like phonons, lends additional richness to
the problem as it allows us to study the effect of dissipation
on Landau diamagnetism [12]. In this paper however our
focus of attention is mainly on the thermodynamic property
of the heat capacity, but we also make some remarks on
diamagnetism.

While in classical mechanics the trajectory of a particle in
the phase space is determined, once the initial values of §
and p are given, the point of statistical mechanics is that the
phase trajectory randomly changes from one “realization” of
the system to another. It is this multitude of trajectories cor-
responding to multiple realizations of the system that yields
the concept of “ensemble” in statistical mechanics. An en-
semble means a collection of possible realizations of the sys-
tem. Thermal equilibrium is said to be reached when experi-
ments are repeated so many times that all possible
trajectories (realizations) in the phase space are explored and
this yields the notion of “mixing” [13]. Evidently, the state
of thermal equilibrium is the one in which transients have
died out and hence ensemble averages become time indepen-
dent.

With these preliminaries, the outline of the paper is as
follows. In Sec. II, we review the Gibbs and Einstein ap-
proaches to statistical mechanics. Although our treatments
are couched in classical terms similar results hold for quan-
tum phenomena as well. With these approaches in the back-
ground we summarize in Sec. III, the newly developed sub-
ject of dissipative quantum systems. In Sec. IV we analyze
the results for the heat capacity for the three problems (a—c)
and point out certain surprises when we consider the various
limits of case (c). In Sec. V, we summarize the results.

II. GIBBS AND EINSTEIN APPROACHES TO
STATISTICAL MECHANICS

The remarkable thesis of Gibbs is that for a system in
thermal equilibrium the observed properties of the system
can be computed from a weighted average of the values of
the relevant observable at all possible phase points that lie on
a constant time slice. The ensemble average of an observable
X(g,p) in equilibrium (indicated by the subscript “eq” be-
low) is defined by

(X(q.P))eq =Tt p(q.p)X(q.P)], (6)

where “Tr” (trace) implies an integration over the entire
phase space in classical statistical mechanics, whereas it is a
sum over possible eigenstates of the full Hg in Eq. (1) in
quantum statistical mechanics. The Gibbs-Boltzmann weight
function p(g,p) is what is called a density matrix, given by

exp[- BH;(4.p)]

Z. (7)

p(g.p) =
where B(=(kzT)™') is the inverse temperature, k being the
Boltzmann constant. The normalization factor Zj, referred to
as the partition function:
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Zg=Tr{exp[- BHs(q.P)]}, (8)

provides the critical link between statistical mechanics and
thermodynamics as it leads to the Helmholtz free energy F
through the relation

1
]:S=—Eh'l ZS' (9)

From Fj all thermodynamic properties can be derived.

It is of course outside the realm of Gibbsian statistical
mechanics to address the issue of how equilibrium is
reached. That question has to be posed in terms of models of
nonequilibrium statistical mechanics, which are however not
as robust and time tested as the formulation of equilibrium
statistical mechanics encapsulated by Egs. (7)—(9). One
model that stands out in this regard is based on the idea of
Brownian motion [14]. In the latter one imagines the particle
(much like the pollen particle of Brown [15]), the Hamil-
tonian of which is given by Eq. (1), is in contact with a heat
bath that drives stochastic (noisy) fluctuations into the sys-
tem. The idea of Brownian motion is very physical in that if
one tags the particle by taking camera snapshots at different
times, its dynamics would indeed appear to be random, when
the particle is out of equilibrium, and even when it is in
equilibrium. The stochastic dynamics is captured by the
time-dependent distribution function P(g,p,f) in phase
space that obeys the Fokker-Planck-Smoluchowski-Kramers
equation [16],

9 ia s P e 6 (6 i on
EP(qJ)’t) =) - ; . Vq + Vp . (VqV(Q) + yp)

+m7kBWZ}P(qsﬁ9t)3 (10)

where vy is the friction constant. The quantity P plays the
same role in nonequilibrium as p does in equilibrium. Thus
the averaged time evolution of the dynamical variable
X(g,p) is given by

X(1) = f dqdpX(q.p)P(q.p.1). (11)

With the temperature-dependent prefactor in front of V2, it is
ensured that the stationary state is indeed the thermal equi-
librium state, described by p in Eq. (7). This is consistent
with the fluctuation-dissipation theorem.

It is pertinent to mention here that the time-dependent
approach, as formulated through Eq. (10), is based on what is
called the “Schrodinger picture.” An equivalent description
obtains through the “Heisenberg picture” in which one di-
rectly considers the dynamical equations of motion,

9q_p

a m’
ap - . -
5=—mwoq—;(q><B)—7p(t)+f(t). (12)

The set of Eq. (12) is called the Langevin equation in which
the force f() is a stochastic noise, with
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(f0y=0

Fuf 1) =2mykpgT &t —1')5,,,,

The Brownian motion model, as formulated through Egs.
(12) and (13), is appropriately dubbed the “Einstein approach
to statistical mechanics™ [17].

m,v=x,y,z. (13)

II1. DISSIPATIVE QUANTUM SYSTEMS

In this section we move from the classical to the quantal
domain and consider the case in which the quantum sub-
system is put into contact with a heat bath that is also quan-
tum mechanical. Before we indicate the steps necessary for
Brownian motion in terms of what is referred to as the quan-
tum Langevin equation [3], it is useful to backtrack and in-
dicate how classical Langevin Eq. (12) itself is derived from
a system-plus-bath method. Here we start from a treatment of
Zwanzig [18] in which the Hamiltonian in Eq. (1) is ex-
tended as

) - \2

H=HS+E{£L+lmjwj(qj qu) } (14)
7 L2m; 2 m;w;

Upon expanding the square over the round brackets it is evi-

dent that the Hamiltonian contains a linear coupling between

the coordinate g of the subsystem and the coordinate §; of

the harmonic bath with C; being a coupling constant.

From Eq. (14) it is easy to write down Hamilton’s equa-
tions of motion, solve for the bath coordinates and momenta,
put the solutions back in the equations of motion for the
subsystem variables and derive for the momentum the gen-

eralized Langevin equation [18],

cj:—mwoq——(qXB) mf dr' (e )yt —1') + f(2),

(15)

where the “friction” y(r), that appears as a memory function,
depends quadratically on C; and the noise f(t) depends ex-
plicitly on initial coordinates and the momenta of the bath
oscillators,

OEDD 2cos(wt (16)
j mjw;
7 = 2{ {qu —@]0 (o) + ”()smw)}
m;jw; m;w;
(17)

Suffice it to note that Eq. (15) is exact and devoid of any
assumption except that we have decided to integrate the
equation of motion in the forward direction of time, thereby
giving a sense to the “arrow of time.” The next step however
is a crucial one of introducing irreversibility by considering
an initial ensemble of states, a’ la Gibbs, in which the bath
variables are drawn at random from a conditional equilib-
rium distribution in which the initial values of the coordi-
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nates and the momenta of the Brownian particle are fixed. In
particular, if the initial distribution is taken to be the canoni-
cal one given by Eq. (7), we have

Fuldfi (1)) =

The final step is to go to the limit of an infinitely large
system in order to endow the harmonic-oscillator system the
attribute of a heat bath. Thus

8, 2mkgTy(t—1"). (18)

1 2
Nij....—> dog(w), m;j=m, C;=—=,
j

(19)

where g(w) is the “spectral density.” Eq. (16) then yields

2 o
Y(t) = QJ dwg(—(;))cos(wt) . (20)
mJg I

A commonly assumed form of g(w) is the one which
yields what is called Ohmic dissipation and is given by

2

glw=—, w<a

=0, w>a, (21)

® being a high-frequency cutoff. Employing Eq. (21) we
derive Eq. (12), implying that Ohmic dissipation corresponds
to constant friction vy because the generalized friction coef-
ficient reduces to yd8(t—t'), wherein y equals 37C?/2mi’
[16].

The discussion in the quantum case proceeds along simi-
lar lines in which one has to however keep track of the fact
that ¢ and p are noncommuting operators, and consequently,
the noise f in Eq. (17) is also a quantum operator [3]. Addi-
tionally, because the bath oscillators are to be treated quan-
tum mechanically, the noise correlations are not “white,” as
in Eq. (13) but are characterized by both a symmetric com-
bination and a commutator structure, respectively, given by

[16]

) A = 8> f R f(w+ i0)]
mJo

X coth('g2 )cos[w(t -t)]. (22)

fu@).f,)]) = 5,W%Jw doR[f(w+i0")]w sin[w(r—1)].
0

(23)

IV. HEAT CAPACITY

The heat capacity or the specific heat at constant volume
is the most basic thermodynamic property. In equilibrium
thermodynamics, it is defined by [19]
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o aU)
ksp <c9,3 (24)

where the internal energy U is calculated within the Gibbs
approach from the reduced partition function (Zy), by em-
ploying the relation

U=- Eln Zz (25)
where [1,6]
- [Trsus(e ™) 26)
[Trg(e#75)]
‘H being the full Hamiltonian as in Eq. (14), Trg,p(...) rep-

resents a trace over the system and bath, Hp is the Hamil-
tonian of the bath, Trg(...) represents a trace over the bath
only and S defines the temperature of the bath in which the
composite many-body system, described by the full Hamil-
tonian H, is embedded. It is customary to rewrite Z as a
functional integral [20],

o |
Zp= fﬁ D[q,p,q_,«,pj]eXp<— %Ae[q,p,qj,p,-]) (27)

where 7 is the Planck constant and A, is the so-called Eu-
clidean action, defined by

hp
.Ae=f dTtL(7), (28)

0

L(7) being the Lagrangian written in terms of the “imaginary
time” (=i B).

On the other hand, in the Einstein approach, we evaluate
U directly from the long time limit of (H?’tf(t)), where the
superscript “eff” denotes “effective,” in the sense described
below in Sec. IV C, the latter being calculable from the
quantum Langevin equation. The specific heat is then calcu-
lated using Eq. (24). This leads to unambiguous results for
the specific heat as shown below. We illustrate in Sec. IV
below the application of Gibbs and Einstein approaches to
the calculation of the heat capacity for the charged oscillator
in a magnetic field.

A. Gibbs approach (wy#0)

Before we discuss the calculation of CY®" for the dissi-
pative charged oscillator in a magnetic field it is useful to
indicate the steps for the simpler problem without dissipative
coupling, viz, that described by Hg alone [Egs. (1) and (4)]
[7]. The corresponding Lagrangian for the two-dimensional
motion in the plane normal to the field is given by

1 1
L= Jm(E +)?) = Smaf+y?) - C(xA,+¥A,). (29)
C

It is customary to work in the so-called
in which

“symmetric gauge”

1 1
A =- EyB, A= ExB. (30)

The Euclidean action can be written as
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hB
Alx.yl= % f A ((7)? + (D)%) + wp(x(D)* + y(7))

0
= iw (x(1)y(7) = y(1)x(7)], (31)

w, being the “cyclotron frequency’ given by
w,=—. (32)
Introducing

x(7) = 2 X(v)exp(- iv;7), (33)
J

where v’s are the so-called Matsubara frequencies, defined
by

2

V.= ——

i=0,%x1,%£2,... ., 34

we find

Alzz]= —mﬁﬂE [(V} + 0 + i 1) 75 ()7, (v)

]_—JD
+ (V] + wf — i, v)Z (1)Z(v)], (35)
where
1
Z:(Vj) = ?(}C‘(V]‘) x iy(Vj))~ (36)
V2

As shown in Ref. [7] the partition function Z in Eq. (8) can
be written as [cf., also Eq. (27)]

)

zs=112}z;, (37)
j=1

where,
Zi=—— 277%2 J dz+(0)exp{

f f dRez,dImz,
o 77/(m,8v2)

iw.v)(Re 22 +1Im 2],

2
mpBw

|Z+(O)|2:|

X exp[— mB(Vj + wo

(38)
and
=z (39)
Carrying out the Gaussian integrals we find
1 2
i . (40)

77 Bhay (vj2 + wy— i)

Hence,
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o
Zg= L . 41
U\ Bhwy) o (v + 0p) + Wl 0
Turning now to the dissipative system described by the full
many-body Hamiltonian in Eq. (14) we can similarly derive

[7]

o

I i

2 2. 2 = 2 2>
(A Bwy) n (Vj + oy + Vj'y(vj))2 + v

ZR((UO) =

(42)

where ¥(v)) is the frequency-dependent (i.e., v;) friction co-
efficient. The Ohmic dissipation model, discussed earlier in
Eq. (21) that yields constant friction, is not suitable for cal-
culating Z as it leads to a singularity. In order to regularize
the latter it is convenient to introduce a “Drude cutoff” by
writing the spectral density as [cf., Eq. (21)]

2

2my

glw) = PR (43)

1+—

@p

Correspondingly,
2mj

— : . 44
7()(V+D) Y= hB (44)

All our results in the sequel are restricted to Ohmic-Drude
spectral density [Eq. (43)], though it is known that other
forms of frequency dependence of the spectral density yield
diverse forms of power-law dependence of the specific heat
at low temperatures [21].

Inserting this form of the friction coefficient in Eq. (42)
the internal energy U can be calculated as

St ) 2

. %@lﬁ(@), )

14

Ulawy) =

where ¢/(z) is the digamma function and the arguments are

)\1+)\2+)\3=wD+iwC,

MAs + Mohs + M3\ = @) + yop + i0.0p,

)\1)\2)\3 = (()(ZJQ)D. (46)

The corresponding primed \’s are obtained from the com-
plex conjugate of Eq. (46). Finally, it is easy to derive for the
heat capacity, the expression [cf., Eq. (24)] [7]

s {2 (5 )
_2k3(w—:)2¢'<w_:>- 7

We are now ready to discuss the low and high-temperature
limits of the heat capacity.

Gibbs
Clog£0) =
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(a) Low-T limit,

; 27 y kiT
=T XL P o
where
G_ ﬁlk_é

“a= 15 (O0) (ﬁ(,()o)3

{3(wg+wé) (7)2 3a)0< y wo)}
RS T e [ I
W ) wp \ Wy wp

Curiously, to leading order, the presence of the magnetic
field through the cyclotron frequency disappears from

C((Z‘,b':fo the expression of which matches with that of a two-

dnnenswnal quantum oscillator (Einstein oscillator). The re-
sult in Eq. (48) has been much in discussion in recent times,
in the context of the third law of thermodynamics as it pro-
vides a satisfactory power-law behavior in temperature [4].

(b) High-T limit

At high temperatures (fiw,,hwy,hy,hop<kgT) our
quantum system is expected to be described by classical sta-
tistical mechanics. We find

G
i a
Clont) = 2k — = (49)
where
o_ M, 2
ay = 12k3(wc + 2wy + 2ywp)

In the limit of infinite temperature, therefore, we recover
the expected “equipartition” result,

Clony) = 2k, (50)

where the factor of 2 comes from two dimensions, each of
which contributes kj to the specific heat, %kB arising from the
kinetic energy while the other half from the potential energy.

B. Gibbs approach (without confinement)

While studying dissipative Landau diamagnetism we have
learnt that taking wy=0 at the outset yields a puzzlingly dif-
ferent result from keeping w, fixed, evaluating the partition
function, calculating its derivatives and then setting wy=0
[12]. It is already evident from the low-temperature specific
heat [Eq. (48)] that it is not meaningful to take the limit of
wo=0 without “fixing” the coupling with the heat bath char-
acterized by the friction coefficient 7. It is therefore of inter-
est to take a relook at the heat-capacity calculation by inves-
tigating afresh the partition function for a charge in a
magnetic field (without the oscillator potential). In this case
only two roots A; and \, [cf., Eq. (46)] matter [7] and we
find
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Zp(F) =

where Zz(F) is the reduced partition function of the uncon-
fined system. The heat capacity of the unconfined system

CGP®s s then given by
: A A NV LN
e 2315
v v v v
wp\? [
-2’<B(7”) o[2) g

We now discuss the low and high-temperature limits of Eq.
(52).

(a) Low-T limit.

Using asymptotic expansions as before, we find

(e

ibbs Y
Cfpg’%?%(f )sz (af - a9)T> + O(T).

(53)

where

o 87 & {w-swb(l_s_y)

s =
S P+ 0 VP4 )

+<w2—3wcf><(&>3+3 &>
VP + o)) \op Top) |

o 8T K
Y715 (hop)?

wWp

While Eq. (53) is in conformity with the third law of ther-
modynamics with identical linear temperature dependence as
in the case of wy# 0, it is free from the singularity issue in
Eq. (48) (for wy=0). It leads, in the limit of wp=00 (infinite
Drude cutoff) to the result

21
CGlbbq kz Y _ (54)

y2+w

Further, for very strong magnetic fields (y<w,),

2w ka

Gibbs _
C 2 Pt

(55)

a harmonic-oscillator-like result with the cyclotron frequency
w, replacing wy. On the other hand, for weak magnetic fields

(v>w,),

o 2mkAT
CGlbbsz_L_’ 56
(F) 3 4y (56)

the free particle result in which the friction coefficient 7y
appears in the denominator, in agreement to the correspond-
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ing result given in [6], after a proper counting of the degree
of freedom.

(b) High-T limit.

We find

2

: f
ibbs 2
=kg— +2 . 57
(F) B 12kBT2(w‘ Yp) (57)

Again, equipartition theorem for a free particle (in two di-
mensions) prevails at T=co,

Thus the classical limit of the Landau problem, as far as
the heat capacity is concerned, is that of free particle whereas
an additional (parabolic) constraining potential yields
harmonic-oscillator behavior.

C. Einstein approach (w,# 0)

We will now focus on the Einstein approach based on the
Langevin Eq. (15) which can be recast into the following
convenient form [12]:

! F(t
+ f dr' Yt —1")i(t") + wiz = ﬁ (58)
0 m
where
z=x+iy, F=f.+if,, and (1) =y1)+iow. (59)

In order to find the time-dependent specific heat we need
the internal energy which is the statistical average of some
system Hamiltonian and the question is: which one? Note
that the quantum Langevin Eq. (58) is derived, a’ la Zwan-
zig [18] and Ford et al. [3], from a “first-principles” Hamil-
tonian given in Eq. (14). The concomitant equations of mo-
tion for the quantum operators §,p of the system, after
projecting (or integrating) out the operators ¢; and j; of the
environment, yield Eq. (58). To that end, the first term in Eq.
(14) given by Hg gets “dressed” by the environment, aided
by the friction vy and the quantum noise F(r). What ensues
therefore is an effective stochastic Hamiltonian that can be
constructed as follows:

Heff—lmzz ]ﬁw + mwozzT (60)
2 2
Note that while right-hand side of Eq. (60) is a rewritten
version of Eq. (1) [in conjunction with Eq. (4)], it is now
endowed with not only an explicit time dependence but also
a dependence on bath parameters [cf. Eq. (58)]. The strata-
gem is to first find the average of Eq. (60) over the quantum
noise and identify the internal energy E as Lim, ..(H$/(1)),
as we do in Eq. (69) below. Our claim, borne out by the
results below, is that E is equivalent to the internal energy U
obtained in the Gibbs approach from the reduced partition
function [cf., Eq. (25)]. We need the equal-time-correlation
functions

40 =G0 0), (61a)

5(1) =0 (1). (61b)
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The correlation functions in Eq. (61) can be found from
the analytic continuation to ¢'=t of the unequal-time-
correlation functions, e.g.,

L(61") = (02" ("), (62)

where z(¢) can be further expressed in terms of the response
function x(r) as

z(n) = f drx(t - T)ﬁ (63)

The latter is the inverse Fourier transform of y(w) that can be
easily written from Eq. (58) as

1
M= (64)
with
7(0)) = iwc + 7(0)) = i(l)c +y “p (65)
wp—
From Eq. (62),
DFE(F
LH(tt') = def dr' x(t = Dx*(t' - M

(66)

where the force-force correlation function is given by [12,16]
+00 ‘
(F(DF'(7)) = f daf(@)e ), (67)
with

_m_ e hés
fl@) = (wD w)ﬁ {coth(Zk ) 1] (68)

Our strategy is to first calculate £;(z,¢") and {y(z,1") (for
details, see Appendix A), then set r=¢' and finally, in order to
extract the thermal equilibrium internal energy E, take the
limit r=0o. We find

1 1
E=lim(H{y=- —ﬁw +—maj lim (1) + S lim &(7)

1— 2 t—00 t—00

3
h
=2kgT + —2 { (1 + J)[2w0qj+pj]
27

AI
N
where
q;= —L,\. — o) , (70a)
IT'y=n0)
jr
)\j['}’wD_ iwc()\j_ wp)]
pi= p . (70b)
! IT'0y -2

-

J
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In the denominators of Eq. (70), the notation IT’ ;» implies
that the ] J' terms are excluded from the product. The quan-
tities qj and p] are obtained by priming the \’s, the latter
having been already defined in Eq. (46).

Finally, the equilibrium specific heat is given by

Einstein

3
f N[N\
Clwgr0) = ——ZkB—kB,Bzﬂ_E {jl//(j)[Zwﬁqﬁpﬂ

j=1
NN
+-1ft// ( )[Zwoq, +p,]} (71)

where ¢/ (z) are the trigamma functions.

We may now discuss the low and the high-temperature
limits of Eq. (71).

(a) Low-T limit.

Employing the asymptotic expansion of the digamma
function,

1 1 1
o VRSN R S 72
V(@ =4t s 0 (72)
we find
27 y ki
Clj)lis(;em — I%L alliT3 + O(TS) (73)
3 (1)0 ﬁ
where

8 K
af:—l B

15 ) (fl(l)o)3

{¥<_>_(___)}
@ \ao) oplyen w0 wp

As required by the third law of thermodynamics the specific
heat does vanish as a power law as T—0, exactly in the
same manner as in the corresponding Gibbs expression (cf.,
Eq. (48)), but interestingly, the coefficient of the next higher
order term (<7?) differs from the Gibbs result.

(b) High-T limit.

At high temperatures,

CEInSein — Dy — (74)
where

2
E_

2 0,

(wi + 2w(2) + yop).

At infinite temperatures the classical equipartition result is
restored. But again, in the next higher order term (in 1/ Tz),
the Einstein result differs from the Gibbs result by a cutoff-
dependent term:

2 yw
Einstein Glbbs D
Cw#(; Cin 12kBT2' (75)

D. Einstein approach (wy—0)

We now return to discuss the Einstein result for the spe-
cific heat due to the presence of the magnetic field alone, i.e.,
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TABLE I. Comparison of specific heat in the Gibbs approach and the Einstein approach in different limits. * The expressions for the
unconfined system in the Gibbs approach was obtained by starting with the oscillator potential absent in the Hamiltonian, whereas the
expression for the Einstein approach was obtained by taking the limit of the confinement frequency w, approaching zero before taking the

t— o limit.
w.#0, wgF0 . # 0, unconfined system * =0, unconfined system *
Low High Low High Low High
temperature temperature temperature temperature temperature temperature
Gibbs . \ o _— l) lono 2ty Sl o0
approach T-}%T—al T3+ 0(T°) 2kp—77 57 y2+(u kp——p (1 ) kp——p——
~(af-af)PP+0(T) (o 0= ) T*+O(T%)
Einstein oF 5 BT 5l(@0=0, y=0)
A7 | wy=0 a5|(w =0, w;=
approach TW;,Z ~dTP+O(T°) 2k FF yziwz -0 ky-—  F Ty =@ u 0P +O(T) k==
in the absence of the parabolic well. The relevant Hamil- . 87 ks ()} 3yw?) ( 2y (wc)z)
tonian is a3z = =\
15 43y (¥ + w2)? V( (¥ + o?)? wp \wp

., 1 1 .
HY = - Eﬁwc +omiz’ (76)
and hence
1 1
E= ﬁ(z) + 21”1 11m[§2(t)]w0~>0 (77)
t—0

As discussed in Ref. [7], one of the three roots, viz. \; van-
ishes as w(z) for wy— 0. Consequently, one obtains the inter-
nal energy by taking the limits carefully, (see Appendix B,
for details),

) A, A3
E(wy—0)=kgT+ —\pathl 1+ — | +p3pl 1 + —
2T v v

+p£1//(1+&) +p§z/x<1+&>}. (78)
14 14

As before, the derivative of E with respect to temperature
yields an expression for the specific heat in terms of the
digamma functions, which can be further analyzed in the
low- and high-temperature limits.

(a) Low-T limit.

Again, using the asymptotic expansion of the digamma
function (cf., Eq. (72)), we find

CEinstein 27T 7

oo = hyz kBT AT +0(T°).  (79)

where

o\ WP+ o)
+10(“’D> V(P + )}

While the expression in Eq. (79) is in conformity with the
third law of thermodynamics, as expected, it differs from the
corresponding Gibbsian result of Eq. (53) in terms of differ-
ent dependencies on the Drude cutoff wj. Apart from this
issue the strong and weak magnetic field cases follow the
behavior discussed earlier, below Eq. (53).

(b) High-T limit

2

CEMEn = oy = — (0 + yop). (50)

12kpT?
Finally, in the high-temperature limit, equipartition result ob-
tains, but once again, there is a correction term over and
above the Gibbs result that is cutoff dependent, as we found
earlier in the w,# 0 case in Eq. (75),

2
Gibbs h hywp

CEmstem CF 12kBT2 , (8 1)

where CS;Z%S is given by the high-T expression in Eq. (57).

V. SUMMARY

Summarizing, we study the various limiting behavior of
the specific heat of a dissipative charged harmonic oscillator
in a uniform magnetic field, obtained from the partition func-

TABLE II. Specific heat and magnetization in the limit of vanishing confinement frequency in two sequences.

Specific heat Magnetization
Low temperature High temperature (y—0)
2y 1 g2 3 afw=0 Lelh o,
(1)0—>0, — > R +a)3k T- a3T +0(T5) kB_ ;r _2mCCOth(2kBT)
. . gm0 eli - 2ksT fo,
1=, 0y—0 Singularity 2y e —coth(55)]
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tion approach (Gibbs’ method) and from the steady state of
corresponding quantum Langevin equation (Einstein’s ap-
proach). The specific heat obtained from both these methods
shows linear 7 dependence at low temperatures, which is in
agreement with the third law of thermodynamics. At high
temperatures the specific heat approaches a constant value
depending on the number of degrees of freedom of the sys-
tem. Although, both the Gibbs and Einstein approaches are in
conformity with the third law of thermodynamics and the
equipartition theorem, at low and high temperatures respec-
tively, they differ from each other in detail, beyond the lead-
ing order. In the limit of vanishing confinement frequency
(wy—0), the specific heat of the oscillator becomes singular
at low temperatures and manifests extra degrees of freedom
counting at high temperatures. The specific heat of the free
particle cannot be obtained from the equilibrium value
(r— ) of the specific heat of the oscillator just by taking the
wo— 0 limit. It is evident that the order in which one takes
the r=o and wy=0 limits yield qualitatively different an-
swers for the specific heat. While in the Einstein approach,
the free particlelike specific heat emerges by taking the w
=0 limit first before considering the t=% limit, the Gibbs
approach is plagued by a singularity issue, for wy=0, in the
low-temperature limit [cf., Eq. (48)]. The same issues have
been pointed out in Ref. [4] earlier.

In Table I, we summarize our results for the Specific Heat
in different limits. In the limit of wp,— %, both the Gibbs and
Einstein approaches give the same thermodynamic results.
However, for a finite cutoff frequency wp, the results differ
in next to the leading order at both high and low tempera-
tures. The results summarized in Table I lead to the following
conclusions:

(1) at low temperatures the specific heat is linear in tem-
perature and hence the dissipative environment restores the
third law of thermodynamics;

(2) in the presence of the oscillator potential, the low-
temperature behavior of the specific heat goes as l/w% and is
therefore singular in the limit of wy— 0. Thus the results of
the unconfined particle cannot be recovered in this limit.

PHYSICAL REVIEW E 81, 031136 (2010)

(3) The high-temperature specific heat approaches a con-
stant value independent of the confinement potential and de-
pends only on the number of degrees of freedom in agree-
ment with the equipartition law. Again, the results of the
unconfined system cannot be recovered in the limit of van-
ishing confinement frequency w,.

While the issue of recovering the results of the unconfined
particle, starting from the confined system and taking the
limit of vanishing confinement frequency w, cannot be re-
solved at the equilibrium level, the Einstein approach has the
intrinsic advantage of obtaining the results in the process of
equilibration. The equilibrium results can be arrived at by
taking the limit of r— . Hence, one could in principle ask
the question, what would happen if the confinement fre-
quency wy is taken to zero, before the limit — o is taken. A
similar result was obtained for the case of a particle in a
harmonic-oscillator potential [22]. The results for the two
different sequences of taking the limits are summarized in
Table II. It is clear from the table that, if the limit of w
—0 is taken before the limit of t— o0, one can actually re-
cover the results of the unconfined system for the specific
heat and magnetization. It is curious to note that the result
for magnetization obtained from this sequence of taking the
limits is inconsistent with the Landau result, whereas when
the limits are taken in the other way round, the Landau result
is recovered. This is, however, due to the fact that the Landau
result for magnetization can only be recovered in the pres-
ence of a confinement potential.
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APPENDIX A: EINSTEIN APPROACH (w,#0)

With the help of the Drude cutoff frequency we can write
x(w) as

(wp —iw)
w) = Al
x(©) [iw® — w*(wp + iw,) — io(yop + io.wp + 0)) + wgwp] (aD
I
Alternatively, L) =20z (1"))
~ 1 +00 o +00 (e—icT)t _ e—iwt)
4mm? Lo dwf(w)f_w dox(e) i(w- @)
x(w) =~ (o + i) (A2) +o0 et _ o't
(@+iN)(@+iN)(w+ik3)’ Xf der*(wr)(e_—e) (A3)
o —i(w' — @)

where ;s and Nis are given by the Vieta equations [Eq.
(46)]. We can write Eq. (66) as

The two integrals, defined by
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+0 (e—iat _ e—iwz)
L= dox(o)———, (A4)
o i(w— @)
+00 iat" _ io't’
L= f da)’X*(w’)(e'—j, (A5)
o —i(w' - ®)
can be expressed as
7= 2 (N1 = wp) Ay = N\3)(e7 = ™M)
A (@+i\,)
, Qo= p) (s =A™ = ™)
(@+iN,)
s — N — N —iwt _ ,—N\3t
+( 3= wp)( 1~ .2)(6 e™3) ’ (A6)
((1)+ l)\3)
_27) (A= o)A =A™ - M)
oA (@—i\])
(3 = wp) O =A™ = )
+
(@~ i\3)
N — N = N (e — oM
+ ( 3 a)D)( 1~ 2)([6 e ) (A7)
(@—-iNy)
where
A=\ =) =)\ = N3), (AB)
=(N = NN =N = N)). (A9)

Eq. (A3) then yields

1 e
4i(nt') = Wf_w dof(@) 1,

! f+°°d~m Yob - th<h~>11
=— ————-hd co
4], ww(wf,+w) @ SO k)1
1 o m yop,
-— d~——ﬁ wl 1 A10
477'2"12[_@ ww(wD ) wlyly. ( )

The second integral in Eq. (A10) vanishes for symmetry rea-
sons, so that only the integral containing cotangent hyper-
bolic contributes. In order to find out the equal-time-
correlation function (), we set r=¢" in Egs. (A6) and (A7).
Also in the limit of r—, we can ignore the exponentials
containing A\;,\,,\3 and also the corresponding primed
roots, and we are left with the terms whose exponentials
contains iwt and —iwt only. The product /;/, in the above
integral now become a time independent one. Finally,

he )II
2kgT) "

(A11)

2
47_[3 f_m ((UD )wcoth(

where
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2 (wp—i@)

L=, (A12)
i (@+iN)(@+iNy)(@+ IN3)
2 +i@
L=- ,(“1’3 .”f’)~ —. (A13)
i (@—iN)(@—iNy)(@—iNS)
We can write
6=01-0,. (A14)
where
h +0o0 hN _.~
O1=—— dwcoth( w) (wp = i@)
2am J _ 2kT ) (& + iN) (@ + i) (B + iN5)

(wp +i@)
(@G- N@— i)
(A15)

0 —ifwcr th(@)
2% 2mm ), 0O uer) (-

After simplifications

3
2kT h \; N
=t —> {quﬁ(l +—1> +qu¢/;(1 +—L)}.
mwy MW v v

(A16)

where ¢(1+zj) is a digamma function, V—T, and the g;
and the g; are defined in Eq. (70). We can observe from Eq.
(A16) (since {(#*)=(zz")) that the equipartition theorem is sat-
isfied for this two-dimensional problem.

The equal-time-correlation function {,(r), given in Eq.
(61b), can also be calculated in a similar manner and in the
limit of r— e, we get,

23 ’
§2=&T+@E{q,¢(1+x )+q,¢(1+ﬁ)}
m mar 14

ile < h
W,
T o L.
j=1 n=1n+_[ j=1 n1n+_L
14 14
(A17)

where ¢; and the g; are defined in Eq. (70a), and p; and p;
are given by Eq. (70b) We now use a transformation P;

=p;+iw./3, such that E% P;j=0, since Z] \Pj=—iw,.
Therefore
o0 3 ©

S, zp,zf-zz—z—

”1n+§i J= ”'n+—i +—L
14 14 14
=—2Pw(1+ ) E“’”E—
35N
14

(A18)

In a similar fashion we can use a transformation P pj
—iw./3, in such a way that 23 P’ 0 since Ej lpj—lwc,
hence
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E E—-E E +Ez—2—
j=1 nll’l+_‘L j=1 ”1}’l+—‘L n= +_.L
14 14 14

=—2P ¢(1+—L)+EZ—E—_L

(A19)

Substituting Egs. (A18) and (A19) in Eq. (A17) and using
three important properties of the digamma functions [23]

Uix) - ) = “y” E[J—— 1]

n+y n+x

Wl +2z7)=i(2)+—

(A21)

From Eq. (A21), we can calculate the mean squared average
of the kinematic momentum of the particle in a magnetic
field, given by

2
<(f> - SK) > = m¥(z:") - mho,

2
mhw

=2mkT +
T

3 ’
X {qj¢<1+ﬁ> +q;z/;<1+ﬁ>}
j=1 v v
3 ’
+m—h2 {pjl//(l +)—\1) +p;¢<l+ﬁ>}.
T iy v : v

(A22)

In the limit of a vanishing magnetic field, the two average
values which we calculate are similar to the result obtained
for a damped harmonic oscillator, as given by Weiss [1], of
course in two dimensions.

The internal energy can be obtained as
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E(wp) =(HS") = —m<zzf)——ﬁw + ;mw()(zzT)

(A23)
Taking the derivative with respect to temperature, we find

N N
Cimitgm =2kp - kB,B_OE { _lllf,(l + J)
v v

N A
+qf—,fw'(1+—;)}

3
A A
~ kb 2{m4w0+4)

] 1

A A
b1

where ' (z) are the trigamma functions and kg is the Boltz-
mann constant. Finally employing the recurrence formula for
trigamma functions leads to

(A24)

1
Pp(l+2)=4¢'(2)- 2

and also

3 !
E{’fﬂﬁ} 0,

J=1 A
3

1
2 { } -5
j=1 LN “’%

from which we obtain Eq. (71).
APPENDIX B: EINSTEIN APPROACH (wy—0)

> I
.

+ (A25)

>

’
J

In this part we provide details of the calculations for the
case of wy— 0. From the Vieta equations given in Eq. (46),
we can write the new equations for this particular case as
M+ N3=wp+io, MA\s=wp(y+iw,) and \; vanishes as w(2).
We started from Eq. (A3), keeping all the exponentials of
Egs. (A6) and (A7), set r=¢', in order to obtain the equal-
time-correlation functions ¢;(z) and {,(z) in the vanishing
oscillator frequency limit. Since N, and A5 are of the order of
v, and in the limit y#> 1, we can still ignore the exponential
containing N\, and A3 and the corresponding primed roots.
But as w;—0, \; and \| ~w0, and hence the exponentials
containing \; and \| have to be treated carefully. The extra
contribution due to these terms exactly cancels the singular-
ity present in Eq. (A16) (as wy,— 0). In the limit of vanishing
harmonic-oscillator frequency, the energy is obtained as Eq.
(77),

1
E=— —ﬁw + 2m llm[§2(t)]w —0-

11—

(B1)

We obtain

031136-11



DATTAGUPTA et al.

) 2kpT  ho, h A
lim[£5(8)],, 0= —— {leﬂ(l + _2>
t—ow m 14

+—
m mr

)\3 ’ )\é
+ p3i 1+7 + o 1+7

( x;)}
+p3pl L+ — (.
14

(B2)
where
_[yop—io 0y - op)]
P2 N2 =1N3)
 Dyop-iodhs - wp)] ©3)

p =
’ (A2 =13)

The primed roots are calculated from complex conjugates.
Hence, the internal energy is
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% A s
E(wo—>0)=kBT+ pz(// 1+ +p3w 1+
2m v 4

o))}
+pp\ 1+ — | +pspl 1+— (.
14 14

Correspondingly, the specific heat becomes

(B4)

. Al on o) a0
nglzsf)em=—k3—k3/32_{l?z_¢ (_) L it
| v v

v
A5 [N N[N
+P2_2¢ <_2>+P3_3W(_3> .
v v v v

This form of the specific heat has been used in the text as the
basis of our discussions of the low and high-temperature lim-
its, via Egs. (79) and (80).
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