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Zero Pearson coefficient for strongly correlated growing trees
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We obtained Pearson’s coefficient of strongly correlated recursive networks growing by preferential attach-
ment of every new vertex by m edges. We found that the Pearson coefficient is exactly zero in the infinite
network limit for the recursive trees (m=1). If the number of connections of new vertices exceeds one (m
>1), then the Pearson coefficient in the infinite networks equals zero only when the degree distribution
exponent y does not exceed 4. We calculated the Pearson coefficient for finite networks and observed a slow
power-law-like approach to an infinite network limit. Our findings indicate that Pearson’s coefficient strongly
depends on size and details of networks, which makes this characteristic virtually useless for quantitative

comparison of different networks.
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I. INTRODUCTION

The Pearson coefficient r is used as an integral character-
istic of structural correlations in a network. Pearson’s coeffi-
cient characterizes pairwise correlations between degrees of
the nearest-neighboring vertices in networks. Some observ-
able quantities in correlated networks (e.g., the size of a giant
connected component near the point of its emergence) are
directly expressed in terms of this coefficient [1,2]. The Pear-
son coefficient is the normalized correlation function of the
degrees of the nearest-neighbor vertices [3-5]. The coeffi-
cient is the ratio,
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where (jk). is the average product of the degrees j and k of
the end vertices of an edge, (k).=(k*)/(k) is the average
degree of an end vertex of an edge, (k*).=(k>)/(k) is the
average square of the degree of an end vertex of an edge, and

(k) (&)
=——-3 (2)
k) (k)
is for normalization. (Note that the equality (k").

=({k"*"y/{k} is valid for an arbitrary network.) Here (- --) and
(-++). denote averaging over vertices and edges, respectively
[see Egs. (16), (18), and (20) below]. Pearson’s coefficient
can be positive (in average, assortative mixing of the nearest
neighbors’ degrees) or negative (disassortative mixing) and
takes values in the range from —1 to 1. The Pearson coeffi-
cient r is a convolution of the joint distribution of nearest-
neighbor degrees, P(j,k)=ej. This joint distribution is the
probability that the ends of a randomly chosen edge have
degrees j and k, 2 ;e =1. Being an integral characteristic of
degree-degree correlations, the Pearson coefficient misses
details of these correlations, compared to e [6—8]. Despite
this fact, Pearson’s coefficient is widely used for character-
ization and comparison of real-world networks [4]. Note that
the compared real networks have different sizes. In this paper
we show that since r is a markedly size-dependent quantity,
Pearson’s coefficient may be used for comparison of net-
works only with a very critical attitude. We calculate Pear-
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son’s coefficient for the simplest growing complex networks,
namely, recursive random networks with preferential attach-
ment of new vertices. We describe the size dependence of r
in these networks (Fig. 1).

Remarkably, for all infinite recursive trees of this kind, we
find that the Pearson coefficient is exactly zero at any value
of the degree distribution exponent 7, although all these net-
works are strongly correlated. The statement that Pearson’s
coefficient is zero in the range y>4 is essentially nontrivial.
The point is that the zero value of the Pearson coefficient in
the range y=4 where the third moment of the degree distri-
bution diverges is clear. Indeed, in this region, the denomi-
nator in definition (1) diverges in the infinite network limit.
[If y=3, the numerator in definition (1) also diverges. This
divergence, however, is slower than that of the denominator,
see Eq. (33), which leads to zero Pearson’s coefficient in this
range.] In contrast, the denominator approaches a finite value
if y>4 and, for zero r, the numerator in Eq. (1) must be
zero. In this range, the zero value of Pearson’s coefficient

-0.3

FIG. 1. Pearson’s coefficient r vs degree distribution exponent
in the recursive networks with m=1 and 2 for the networks of 10°
(x), 10* (%), 10° (O), and 10° (+) vertices. The thick lines show
the Pearson coefficient for the infinite networks.
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means a surprising exact mutual compensation of different
degree-degree correlations in these trees. There are two op-
posing kinds of degree-degree correlations in complex net-
works: assortative and disassortative. Here, assortativity is a
tendency of high degree vertices to have high degree neigh-
bors and low degree vertices to have low degree neighbors.
In contrast, disassortative mixing means neighborhood of
vertices with contrasting (low and high) degrees. These ten-
dencies may be opposing in different ranges of degrees; see
discussion in Sec. IV (Fig. 4). That is, assortative and disas-
sortative mixing may coexist. In particular, this is the case
for random recursive trees. Our results show that, in these
growing networks, the different kinds of correlations com-
pletely compensate each other in the infinite network limit.

II. MAIN RESULTS

We study recursive networks in which each new vertex is
attached to m existing ones chosen with probability propor-
tional to a linear function of vertex degree, k+A=k+am.
This rule generates scale-free correlated networks with a de-
gree distribution exponent y=3+A/m=3+a. In our simula-
tions, we used a complete graph of m vertices as an initial
configuration. We studied sufficiently large networks of
103—10° vertices, and our observations did not depend on
initial conditions. Note that at m> 1, the generated recursive
networks contain multiple connections. These multiple edges
are essential if y<<3. In this range of exponent 7, the exclu-
sion of multiple connections would change degree-degree
correlations in a network. Nonetheless, one can show that the
removal of the multiple edges will not change Pearson’s co-
efficient for the infinite networks (see the Appendix).

In the infinite network limit, Pearson’s coefficient r.(y
=4)=0 since the third moment of the degree distribution
[see the denominator of Pearson’s coefficient definition (1)]
diverges. Here, we define r,,=r(t— ), where ¢ is the num-
ber of vertices in a network. For y>4, we find

B (m-1)(a-1D[2(1 +m)+a(l+3m)]
T (1+m)[2(1+m) +a(5+7Tm) +a>(1 +Tm)]’

3)

©

which shows that for m=1 (i.e., for random recursive trees),
Pearson’s coefficient r,,=0 for any value of . One can also
see that r,,(y=4)=0 for any m. In particular, for uniformly
random attachment, i.e., y— %, we have

_(m— 1)(1 +3m)

T (1+m)(1+7m)’ @

ro(y — )

Figure 1, obtained by simulations of the networks of 10,
10%, 10°, and 10° vertices (the number of runs for each point
was between 50 and 500 for y<3 and between 5% 10° and
10* for y>3), demonstrates the size dependence of Pear-
son’s coefficient in these networks. This figure shows that,
even for large networks, the deviations from the limiting
infinite network values are significant. We find the following
asymptotic size dependences Or(1)=r(t)—r.:
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FIG. 2. Variation of exponent z[ or(r)=r(t) —r, %] with y ex-
ponent of a degree distribution.

(0200 any m, y<3
— VoD, me1
Sr(t) o< § + 4Dy > 3<y<4 .
- t_(’y—3)/('y—1), me1
\+t‘(7‘4)/(7—1)’ m>1 v>4.

Here we show the signs of the asymptotes but ignore their
factors. The positive sign of the asymptotes at m>1, 3<vy
<4, and y>4 means that r(r) approaches the infinite-size
limit r,, from above. In this situation (m>1,y>3), Pear-
son’s coefficient varies with size nonmonotonously: first in-
creases and then diminishes to r,, (see the second panel in
Fig. 1). Introducing the exponent z, &r(¢) o1~ for large net-
work sizes ¢, we arrive at the dependences z(y) shown in Fig.
2. Note that z<<1, so the infinite network limit is approached
slowly. The relaxation to the infinite network values, r., is
especially slow if the exponent 1y is close to 2 (at any m) or
to 4 (only if m>1). In the specific case of m>1, y=4, we
obtain the logarithmic relaxation,

Or(t) o %t (6)

We measured the dependence of the exponent z on 7 in the
simulated networks. The result, shown in Fig. 3, demon-
strates an agreement with above analytical predictions.
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FIG. 3. The measured dependences of exponent z on 7y for re-
cursive trees (m=1). The solid curve is the theoretical dependence
z(7y,m=1). The data points are obtained by power-law fitting of the
Pearson coefficient of simulated trees with sizes close to the largest
simulated size (10° vertices).
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III. PEARSON COEFFICIENT OF INFINITE NETWORKS

Let us derive the Pearson coefficient (5) of the infinite
recursive networks. The derivation is based on rate equations
for the average number Ny (¢) of vertices of degree k in a
recursive network at time ¢ and the average number Ej (1) of
edges connecting vertices of degrees j and k. We have

> N =t (7)
k=m

for vertices, and so

Ni(t) = tp(1), (8)

where p,(t)=P(k,1) is a degree distribution of the network
of size t.
For edges, we have

1
52 Ey(H) = mt, 9)
Jsk
and so
Ej (1) = 2mtey(t), (10)

where e, is the degree-degree distribution for edges. Using
the standard rate or master-equation approaches [9-11] to
this kind of networks (specifically, to the recursive networks
growing due the preferential attachment mechanism), we
write the following rate equations for Ny(¢) and E(2):

+
N+ 1) =N (1) + 1 = m——"N (1),
m(2 +a)t
k—=1+ma k+ma
N t+1)=N,(¢t ——N,_((t) —-m——N, (¢t
om(t+1) k()+mm(2+a)t j-1(1) mm(2+a)t (1)
(11)

(note that the mean vertex degree in these networks is (k)
=2m) and

k—1+ma

Elt+1)=E, . (t) +m 2t a) Ny (1)
Eponlt+ 1) = E(0) + m{ ()
0| |
+ %Eﬂm} . (12)

We separately write out equations for the case of k=m. Here,
we used the fact that the probability to attach a new vertex to
a vertex i of degree k; in this model is
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ki+ma —  ki+a  ki+a
E(ki_,_ma) (kY +ma)t m2+a)t

i

(13)

Assuming a stationary regime at the limit r— oo [N,(r) =1p,,
E;(t)=2mte jk], we reduce these equations to

m+ ma

Pm= Pm>

N mm(2 +a)

k+ma
m—
m(2 +a)

k—1+ma

m2ta) Pis (14)

Pi>m= Pik-1—

2m(k +m+2+2ma+a)e,,; = (k—1+ma)p,_,,

m(j+k+2+2ma+a)eys,,=mk—1+ma)e;;_,

- m(/ -1+ ma)ej_l,k.
(15)

To obtain the Pearson coefficient [see definition (1)], we
must find (k?), (k*), and {jk)., where

(jkde= 2 jkejs. (16)
Jk
Multiplying both sides of the second equation of system (14)
by k? and k* and summing over k, and taking into account
that

2+a

Pm (17)

" 2+a+m+ma’

which follows from the first equation of system (14), we
obtain

Ky=" Kp,= %(2+5ma+a+2m), (18)
k
Ky = ——[6(1 +m) +a(5 +21m + 8m?)
ala-1)
+a*(1 4+ 9m + 16m?)]. (19)

respectively.

To get (jk)., we multiply both sides of the second equa-
tion of system (15) by jk and sum them over j and k. We also
take into account the following general equality:

(k)

(K)o =2 kej="—, (20)
jk k)
which gives
1
(k)e=2—(2+5ma+a+2m). (21)
a

As a result we find
(K)o = 2[2+2m+a(5 +Tm) +a*2+Tm)],  (22)
a

and so at a>0, i.e., y>3, the numerator of definition (1) is
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1[4(1 +m)+4a(l +2m) +a*(1 +3m)].

(- (02="

4q°

(23)

Importantly, this numerator is zero if m=1. So we see that
ro(m=1)=0 at least if y>3. On the other hand, if m> 1, the
numerator is finite in the range y>3. This shows that r.(m
>1) must be zero at 3<y=4 since the denominator di-
verges if y=4. Finally, at y=3, r..=0 at any m [see the next
section; Eq. (33)]. Substituting relations (18), (19), and (23)
into definitions (1) and (2) readily gives the resulting expres-
sion (3) for the stationary value r., of Pearson’s coefficient.

IV. SIZE DEPENDENCE

Equations (11) and (12) allow one to derive the full size
dependence of the Pearson coefficient. Instead of these cum-
bersome straightforward calculations, we obtain the
asymptotic behavior of r(¢) in an easier way, using known
results for the asymptotics of degree-degree correlations in
these networks [9,12—14]. The derivation is based on the
following expression of the Pearson coefficient in terms of

the average vertex degree k,,(k) of the nearest neighbors of
the vertices of degree k:

(k) 2 (k= 1)l kon(k) = (K2 (k)]
k
(XY = (k2)?

(24)

r=

(k) 2% K2 pikon(k) — (k2)?
k

TR -w? )

This expression directly follows from definition (1). The

leading asymptotics of k,,(k) can be obtained by using the
known exact asymptotics of ny, for these recursive networks
[9]. Here, ny, is the probability that a descendant vertex of
degree k is connected to an ascendant vertex of degree /. This
quantity satisfies the following relations:

E Ny = Pk
l

> (g +ny) = kpy,
/

E Ungy +ny) = kpklznn(k)- (26)
I

At m=1, according to Ref. [9],

ny~ k70 1 <<k,

g~ 1% 1<k <. (27)

For y>3 and any m, k,,(k,t) approaches a stationary limit as
the network grows. Figure 4 demonstrates this relaxation for
two values of the degree distribution exponent 7y, namely, for
v=3.1 and 4 in the case of m=1. We can approximate the
deviation from the infinite network limit by
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FIG. 4. (Color online) Average degree of the nearest neighbors
of a vertex versus the degree of this vertex for the scale-free recur-
sive networks of various sizes with the degree distribution exponent
values of 3.1 and 4, and m=1. The solid lines show the stationary

dependences k,,(k) in the infinite networks. These curves were find
by numerical solving the stationary limits of the rate equations.
Both these dependences, substituted into expression (24) or (25)

give exactly zero Pearson coefficient. The positive slope of kyy,(k)
means assortative mixing, while the negative slope means disassor-
tative mixing. The nonmonotonous dependencies indicate the com-
bination of this kind of degree-degree correlations, which—in this
case—exactly compensate each other. The points show the results
of simulation of the recursive networks of 10% (X), 10* (*), 10°
(O), and 10° (+) vertices. Note a very slow convergence of the
results for finite networks to the infinite network limit at 7y close to
3.

[lznn(k) - ];nn(k’t)]kpk -~ f
k,

dl I(ng +ny), (28)

cut

where k. =k.,(?) is the time-dependent cutoff of the degree
distribution. In these networks, k(1) ~¢"(*"D. Substituting
Eq. (27) into Eq. (28) results in

];nn(k) _ Enn(k,f) —_ C1k7—3t(3—y)/(7—1) + Czk27—3t—(27—3)/(7—1)
(29)

at large degrees k <k, for the networks with y>3. Here, c,
and ¢, are constants depending on 7y, which we do not cal-
culate.

Similarly, for 2 <y<3, where ko (k,1) diverges as t—
at any m, we can write an asymptotic estimate,

_ keut
kon(k,0)kpy ~ f dl l(ny +ny). (30)

Substituting Eq. (27) into Eq. (30) we obtain
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Enn(k,f) _ C3k7—3t(3—y)/(y—l) + c4k27_3t(3_27)/(7_1) (31)

at large degrees k<k,, for the networks with 2<<y<3.
Here, ¢; and ¢4 are some constants. Note that there is some
difference between asymptotics (31) and the corresponding
result in Ref. [13]. The difference is apparently due to the
fact that we derived these expressions by using the exact
asymptotics taken from Ref. [9], while the result of Ref. [13]
was obtained by using the continuous approximation for the
rate equations. Nonetheless, one can easily check that, for

2 < y<3, the expression for k,,(k,?) from Ref. [13] leads to
the same asymptotic behavior of the Pearson coefficient as in
the present paper.

We substitute asymptotics (29) and (31) into expression
(25) for the Pearson coefficient and take into account the
leading terms in the numerator and the denominator. The
combinations of these leading terms are different in different
areas of 7y and m since the quantities k,,(k,7), (k%), and (k)
in expression (25) change their asymptotic behavior at two
special points, namely, y=3 and 4. In particular, at these
points (y=3 and 4) the second and, respectively, the third
moments of the degree distribution become divergent. For
example, if 2<<y<3 at any m, relation (25) with substituted
asymptotics (29) takes the form

1/(y-1)
(1) ~ [(c;z“-ww-” J B

RUCS)
+ ey 2V J dk k2k27‘3k‘7)

/O=1) 2 M-
- c;< f dk k2‘7> <2m f dk k3‘7) ,

(32)
where ¢}, ¢ and cj are constants. This leads to the result
[¢]In¢ [B=nily-1) 4 C’Z't(3—7)/(7—1)] — "26-9Iy-1)

3
r(0) ~ [4=0/(1)

~ = OO, (33)

where ¢, ¢}, and ¢} are constants. In a similar way, we

derive the other asymptotics listed in Egs. (5) and (6).
Interestingly, both the terms in Egs. (29) and (31) give

contributions of the same order of magnitude to r(z); see the

numerator of Eq. (33). Note that we suppose that for m> 1

the form of the asymptotics of k,,(k,?) is the same as in Eqgs.
(29) and (31). To verify our assumption, we inspected the
corresponding results for k,,(k,7) in Ref. [13] and found that
the asymptotic behavior should be similar at different m
(apart of numerical coefficients) if the exponent 7 is fixed. In
addition, we checked that results (5) also can be derived by
using the asymptotics of k,,(k,7) from Ref. [13]. This con-
firms our conclusions about the asymptotics of r(z).

V. DISCUSSION AND CONCLUSIONS

Our result, namely, a zero Pearson coefficient of random
recursive trees at any y>2, naturally leads to the following
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questions. What is the class of trees that have zero Pearson
coefficient? Is Pearson’s coefficient zero for any infinite re-
cursive tree? At present, we cannot answer the first question.
As for the second question, the answer is negative. Indeed, as
a counterexample, we present the simplest infinite recursive
tree with a nonzero Pearson coefficient. This is a star, which
is a tree of >2 vertices, including 7—1 leafs and the hub of
degree r—1. For star of any size, clearly, r=—1.

Thus, we have studied the Pearson coefficient in strongly
correlated growing networks. They form a representative
class of networks with strong structural correlations includ-
ing pairwise correlations between degrees of the nearest-
neighbor vertices. Despite these correlations, we have found
that in a wide range of infinite correlated networks the Pear-
son coefficient approaches zero. For any infinite random re-
cursive tree whose growth is driven by arbitrary linear pref-
erential attachment of new vertices, we observed a zero
Pearson coefficient. These networks include random recur-
sive trees with rapidly decaying and even exponential degree
distribution, where the third moment of the degree distribu-
tion is finite. So here the zero value of Pearson’s coefficient
demands zero correlation function in the numerator of defi-
nition (1). This surprising equality to zero indicates an exact
mutual compensation of assortative and disassortative
degree-degree correlations. In this respect, the recursive trees
is a very special case of random recursive networks. Note
that in equilibrium networks, dead ends (vertices of degree
1), abundant in random trees, also play a special role for
degree-degree correlations (see Ref. [15]).

We have investigated the size dependence of Pearson’s
coefficient in the growing networks. We have found that the
size effect is significant even for very large networks. We
have shown that a growing network during its evolution may
demonstrate an essential and even nonmonotonous variation
of Pearson’s coefficient. Due to this marked size dependence,
it is hardly feasible to use this integral characteristic of cor-
relations for quantitative comparison of different real-world
networks. Instead, for this purpose, one has to use more in-

formative characteristics, for example, k,,(k). Of course, this
quantity is also size dependent [16,17], but at least it pro-
vides a more comprehensive view of degree-degree correla-
tions in networks.
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APPENDIX: EXCLUSION OF MULTIPLE CONNECTIONS

Let us explain that the exclusion of multiple connections
will not change Pearson’s coefficient in the infinite network
limit. For brevity, let m be 2. First, we estimate the total
number of multiple (double) edges in the recursive net of ¢
vertices. The probability that a new vertex attaches two times
to the same vertex i is
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[ ki+A ]ZNk_iz Al
1(4+A) 2 (Aal)

Therefore, the full probability that this new vertex has two
connections is on the order of

Mo=1) [ R U]
tJ dk k7= ~ ——.
t t

(A2)

(Here, we used the cutoff k., ~¢"(*"").) Integrating this num-
ber over ¢, we obtain the total number of multiple connec-
tions in the network, ~73=?/ ("D which shows that multiple
edges are noticeable only if y<<3. We also estimate the av-
erage number of double connections {(d)(k) of a vertex of
degree k. For a vertex born at time i, we can write
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2
‘?<di> . @ . i—2/('y—1),2/(y—1)—2' (A3)

ot t

(In a recursive network of ¢ vertices, the average degree of a
vertex born at time i is (k)(r)~(i/1)""D; see Refs.
[10,14].) Consequently, on average, a vertex born at time i
has

<di> — l-—2/(y—1)t2/(y—1)—1 (A4)
double connections, and so
k2
(d)(k) ~ e (A5)

Setting the cutoff at ~¢!> will ensure the absence of multiple
connections in the range y<3. Repeating calculations in
Sec. IV with this cutoff, we arrive at the asymptotics r~
22 for m>1 and y<3, and so r(r—°)=0 as with
multiple edges.
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