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The p-state clock model is studied, for general values of p, from simulations using a heat-bath single spin
flipping Monte Carlo method, and a mapping of the corresponding spinlike configurations to a solid-on-solid
growth model. The growth exponents are calculated. From the dynamics generated by this far from equilibrium
kinetic roughening of the surface one is able to characterize the corresponding equilibrium magnetic properties
of the original model, such as the high temperature Berezinskii-Koserlitz-Thouless (BKT) transitions, the
low-temperature long-range ordered phase transitions, as well as the conventional second-order phase transi-
tions. The present method suggests that for p=5 the high-temperature phase transition is indeed a BKT one,
whose value is the same as that for p—o (XY model), while the low-temperature phase transition has a

first-order character.
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I. INTRODUCTION

Much attention has been recently given to the study of the
p-state clock model (see, for instance [1-3], and references
therein). For p=2, 4, and 3 one has the Ising and three-state
Potts model, respectively, and in the limit as the number of
states goes to infinity it corresponds to the XY (planar rota-
tor) model. While the Ising and three-state Potts models
present a conventional continuous critical behavior, the latter
one exhibits the peculiar and exotic Berezinskii-Kosterlitz-
Thouless (BKT) transition [4]. Thus, the p-state clock system
is interesting not only because it is an interpolation between
the Ising and Potts universality classes on one side and, on
the other side, the BKT transition [4,5], but because it also
presents the called extended universality at some
p-dependent temperature region the thermodynamic vari-
ables (such as energy, magnetization, susceptibility, etc.) are
still identical [1].

Elitzur et al. [5], using a renormalization group proce-
dure, have shown that there is a critical value p., above
which an intermediate XY-like phase appears. This is in con-
trast of what one would expect, namely an Ising like continu-
ous transition for finite p, with the BKT transition only in the
limit p—o0. More specifically, for p=2 and 4 the system is
equivalent to the Ising model, and for p=3 it is equivalent to
the three-states Potts model. In these cases, one has a low-
temperature ordered phase and a high-temperature disordered
phase with a conventional continuous phase transition line
separating them. The same holds for 4 <p <o, however, in
this range there is a quasiliquid (XY-like) intermediate phase
with two transition temperatures 7,>T;, where T, is the
transition from the ordered phase to the quasiliquid phase
and T, the transition from the latter one to the disordered
phase.

Recently, Lapilli er al. [1], using Monte Carlo simula-
tions, have shown that the model also presents extended uni-
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versality. This means that for some temperature 7>T,,(p),
not only the critical exponents are the same, but indeed all
thermodynamic variables are identical.

Although what has been said above is quite general and in
agreement with several approximate techniques, there are
still controversies regarding some details of the global phase
diagram when one looks at the transition temperature as a
function of the number of states p. (i) the first question con-
cerns the value of p., at which for p<p, there is only one
conventional transition temperature. Elitzur et al. [5] esti-
mated p.=4 and Roomany and Wyld [6], by using finite-
lattice method, obtained p.=5. Monte Carlo renormalization
group procedure of Tobochnik [7] have shown that p.=4. (ii)
previous works show that for p>p,. both transitions 7, and
T, are of BKT type. On the other hand, recent Monte Carlo
results by Lapilli et al. [1] indicate that only for p=8 the
transition at 7, is of BKT type, while T, for all finite p,
differs from BKT; (iii) the behavior at p=5 is still inconclu-
sive.

In one of the main goals in this work we address to the
question of the phase diagram, in the temperature versus
number of states plane, of the clock model (for general val-
ues of p) by using Monte Carlo simulations. We have ana-
lyzed the two-dimensional surface generated by its spinlike
configurations according to a procedure recently proposed by
Brito et al. [8], which consists of generating a surface from
the corresponding spinlike configurations obtained from
usual Monte Carlo simulations. The configurations are
mapped onto a solid-on-solid growth model. The dynamic
growth of the surface, at a given temperature, is then studied
and from the respective roughness and the corresponding
rough exponents one is able to get insight of the first order
and continuous phase transition lines, as well as multicritical
points. In particular, one is interested here in obtaining the
roughness @, and the growth B, exponents [9-11]. The
method has been successfully applied to the Ising, Blume-
Capel, and Potts models [8]. Not only good results have been
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achieved regarding the order of the transition, but also
growth exponents have been obtained from such surface dy-
namics. This dynamic surface generating method in treating
critical properties of magnetic models is completely different
from standard Monte Carlo simulations. In the present case,
one does not compute the equilibrium magnetic thermody-
namic variables to get the properties of system, but the cor-
responding scaling behavior of the mapped solid-on-solid far
from equilibrium rough surface instead.

Moreover, the present work is in fact twofold. First, treat-
ing the general properties of the clock model, where there are
still some open questions regarding its phase diagram. Sec-
ond, applying for the first time the solid-on-solid generating
surface approach to a continuous spin system, namely the
two-dimensional XY model (planar rotator model). In this
sense, we will also be interested in obtaining the dynamic
critical behavior of their growth surfaces and determining
their corresponding universality classes. From a theoretical
point of view this is, by itself, important in what concerns the
dependence of the critical exponents on the dimensionality.

The plan of the paper is as follow. In Sec. II we present
the model and the simulation details. In Sec. III we discuss
the corresponding generating surface approach. The transi-
tion temperatures and the global phase diagram as a function
of the number of states p are presented in Sec. IV, while in
Sec. V we present the surface exponents and the finite-size
scaling relation for the roughness. Section VI is devoted to
the concluding remarks.

II. MODEL AND SIMULATIONS
A. Model

The p-state clock model can be defined by the following
Hamiltonian

H=-J2, cos(6;— 0)), (1)
()

where 6,=(27/p)o; is the angle that the spinlike variable of
unitary length S; makes with an arbitrary axis and each spin
variable S; assumes p different orientation states given by
0;=0,1,2,...,p—1. J is the exchange interaction, assumed
to be ferromagnetic J>0, and the sum is over nearest-
neighbor pairs of sites on a two-dimensional square lattice.

For p=2, the spins are either parallel (;=0 and spin S;
=1) or antiparallel (;=1 and spin S;=—1) to the arbitrary
axis. This makes the Hamiltonian (1) exactly the same as the
spin-1/2 Ising model H=-J%; 1S,S;, with the critical tem-
perature kzT7=2/J=p/In(\p+1), Where kg is the Boltzmann
constant. On the other hand, as cos(27/3)=cos(4m/3) we
get, for p=3, H=-J[1- cos(277/3)]2<,]>5m,, where 6{,(, i
the Kronecker delta. This Hamiltonian is equlvalent to the
three-state Potts model with kz70- 3/J=1.5/In(\p+1). More-
over, due to the fact that cos(7/2)=cos(37/2)=0 one gets
for p=4 two independent spin-1/2 Ising models and
kgT?=*1J=kzT?=?/2J. For p>4 no exact solution is available
and two transitions take place for values of p greater than a
critical value p.,.
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B. Simulations

The Monte Carlo (MC) simulations of the model given by
Eq. (1) have been performed on square lattices with N=L
X L sites submitted to periodic boundary conditions. For up-
dating the spin configurations {o;(r)}, where {o(?)}
={o(t),05(t), ..., o0}, we used a single spin-flip Monte
Carlo heat-bath algorithm, with the update being performed
sequentially through the whole lattice.

The corresponding surface growth process, which is the
same as that described by Brito et al. in Ref. [8], consists in
accumulating, i.e., summing up all the values assumed by the
spin variables o(¢) over the first + Monte Carlo time steps.
Specifically, to an unique sequence of spin variable states
{o;(0)},{o (1)}, ... ,{o(r)}) corresponds a surface {h,(r)}
with the height £;(¢) at site i and time ¢ given by

h() = 2 pi(t"). (2)

t'=0

In the above expression we have: (i) p,(t')=+1 or —1 when
o(t')=0 or 1, as for the p=2 model; (ii) p;(')=+1, 0, or -1
when o,(¢')=0, 1, or 2, as for the p=3 model; (iii) and so on
for higher values of p; (iv) p;(#')=cos(8;) for the planar ro-
tator model when p — o (in this case, due to the symmetry in
the plane interactions, p;(z')=sin(#,) could also be consid-
ered).

The model (2) defines a process of the solid-on-solid-like
type, resulting in an aggregate which is compact (no vacan-
cies) and free of surface overhangs. It can be seen that the
interface so generated advances in time by deposition (p;
>0) and evaporation (p;<<0) of atoms on the initial sub-
strate. In the low-temperature phases of the spin models we
expect that the deposition processes dominate and the inter-
face average height increases with time. At high tempera-
tures, the two processes, deposition and evaporation, take
place with equal probability and the velocity of the interface
growing goes to zero. Thus, the surface {4;(r)} can be thought
of as a driven interface whose dynamics, as we will see
below, reflects the critical, BKT or first-order properties of
the models.

Our simulations have been performed with initial configu-
rations in which all the spins were ordered in the larger spin
value ({0;(0)=p—1}) and the initial deposit substrate was flat
({h,(0)=0}). Although the final results are independent of
this initial condition, it is closer to the flat substrate condition
employed in most surface growth simulations. The linear
system size in the simulations was changed between L=32
and L=160. The maximum Monte Carlo time ranged from
about =10 (where only short times were needed) to ¢
=10°. To obtain good statistics we took averages over 100—
2000 independent runs, depending on the p-state model, the
temperature, the system size, and the time regime of the mea-
surements.

III. SURFACE FORMALISM

In order to get the basic scaling analysis of the growing
surface, one can characterize the development of the fluctua-
tions of the two-dimensional interface, with heights A;(r) for
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the site i at time ¢, over a window of linear size € by the
root-mean-square displacement function, or local roughness,

W(e,t) given by
Wien) = N> = 1P, (3)

where the brackets (...); denote an average over the window

position i=1,2,... ,L*. The averages 7 and h? are defined

through
-1 R
=;§ﬂm 4)

with the sum over the positions 7 inside a two-dimensional
window of linear size € centered at site 7;.

It is known that at long times this local roughness behaves
as [9-11] W(e,t>1t.)~ €, where t, is a crossover time and
H is the Hurst exponent. In this regime, the roughness
W(e, 1) can distinguish two possible types of profiles: (i) if it
is random, or even exhibits a finite correlation length extend-
ing up to a characteristic range (such as in a Markov chain),
then W~ €'? with H=1/2, as in a normal random walk; (ii)
in contrast, if the self-affine profile has infinitely long-range
correlations (no characteristic length), then we expect H
#F1/2.

On the other hand, the scaling ansatz for the global rough-
ness, i.e., W(L,1)=W(e=L,1), with respect to time 7 and the
size L, is given by the Family-Vicsek relation [10,12]

W(L,t) ~ Laf<$> , (5)

where f(u) is a universal scaling function, « is the roughness
exponent, z,,=«/ B, is the dynamic exponent, and B, is the
growth exponent. Two distinct behaviors are expected for
Sf(w): (i) f(u)=c, where ¢ is a constant, at long times (¢
>t.,u>1) and; (i) f(u) ~ uPv at short times (t<t,,u<<1). In
this way, at short times, we expect W(z) ~ tA». At long times,
when the lateral (spatial) correlation length of the growth
process equals the lattice length L, the roughness saturates
and behaves as W(L,®)~ L®. The crossover time 7, between
these two regimes grows as f.~ L. The particular case in
which W does not saturate, growing instead as W(L, ) ~¢'/2,
corresponds to uncorrelated growth. Thus, the exponent « is
not defined for this case and B,,=1/2. Typically, the expo-
nents H=,,=1/2 are characteristic of the random deposition
(RD) growth model, in which a column is randomly chosen
along the substrate and a particle is launched vertically until
it is deposited at the top of the selected column. In general, H
and « are often most the same thing, in particular when the
simple Family-Vicsek scaling applies [10,12].

For models presenting a continuous transition, away from
criticality, the correlation length & and the correlation time 7
of the spin models are finite, and the corresponding noise in
the deposition process is correlated only over short ranges.
We expect that in this case, for times greater than 7, the noise
appears uncorrelated, and that the RD growth exponents, H
=pB,=1/2, are verified from the first steps in the growth
process.
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FIG. 1. (Color online) Typical interfaces obtained from equilib-
rium spin configurations of the p=2 clock model (Ising model) on
the square lattice with L=64 at the temperatures above, below and
near T, (figure from Ref. [8]).

In contrast, at a continuous phase transition, and also at a
BKT transition, £ and 7 diverge and the correlations are long
ranged, giving a power-law decay of the noise autocorrela-
tion. In this case, the exponents H and B, should deviate
from 1/2.

At a first-order phase transition there is no long-range
correlations and we expect again H=0,,=1/2 even at the
transition temperature. However, in cases where the order of
the transition is difficult to be distinguished in finite systems,
these RD values cannot be attained in the simulations. In the
five-states Potts model, for example, there is an apparent
divergence of the correlation length in the critical region and
pseudocritical exponents can be defined [13].

IV. TRANSITION TEMPERATURES AND GLOBAL PHASE
DIAGRAM

For convenience, in what follows, the temperature 7" will
be measured in units of J/kp.

A. Ising p=2,4 and Potts p=3 models

For p=2,4, and for p=3, we get the previous results from
Ref. [8] for the spin-1/2 Ising and the three-state Potts mod-
els, respectively. As a matter of completeness, we reproduce
in Fig. 1 earlier typical snapshots obtained in reference [8]
for the surfaces generated by equilibrium spin configurations
of the spin-1/2 Ising model (or p=2 clock model). We can
note that for T+# T, the surfaces appear rough down to short
length scales, whereas for T=T, the surface presents large
fluctuations. So, the roughness W as a function of tempera-
ture presents a maximum around the continuous transition.

From this maximum observed in the roughness W for ar-
bitrary long times and different lattice sizes, we can show
that there is an ordered phase at low temperatures and a
disordered phase at high temperatures, with a continuous
conventional transition at 7. We obtained 77~2=2.266(3),
T773=1.489(7), and T°=*=1.133(3), which should be com-
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FIG. 2. (Color online) Typical interfaces obtained from equilib-
rium spin configurations of the planar rotator model on the square
lattice with L=64 at the temperatures above and near Tpx7. For all
temperatures 7<<Tggr the surface is similar to that near Tggr-

pared to the exact results T’C’=2=2.269, T’C’=3 =1.492, and
Tf=4: 1.134, respectively [note that for p=3 and p=4 these
critical temperatures have been suitably normalized accord-
ing to what have been discussed above regarding the equiva-
lence of the model given by Eq. (1) and the Ising and Potts
ones]. We do not reproduce here these finite size scaling
results since they have been already discussed in Ref. [8].
The corresponding surface exponents (,, and H, as well as
the dynamic exponent z,,, are also given in [8].

B. Planar rotator model p — «

Figure 2 shows some snapshots of the surface generated
by the equilibrium spin configurations for the planar rotator
model on the square lattice with L=64. It is very similar to
Fig. 1, except from the fact that for all temperatures 7
< T'gkr the corresponding surfaces present large fluctuations,
reflecting the fact that one has a BKT-like phase.

The roughness as a function of temperature for different
lattice sizes are depicted in Fig. 3. One can see that the
roughness increases as the temperature decreases, reaching a
peak at Tpgr(L), which is size dependent, and for T
<Tpggr(L) it stays quite large down to low temperatures, in-
dicating the presence of the BKT phase.

As the planar rotator model is in the same universality
class of the XY model, the correlation length ¢ is expected to
behave as [14]

g=e ( b ) (6)
=exp| ——.
P VTpxr(L) — Tggr

Thus, for a finite lattice of linear size L one has, close to the
BKT transition, £~ L, from where we get

Tpir(L) = Tggr+ . (7)

BKT\S) = BT (T2
with Tyrr(L) being the estimated transition temperature for
the finite lattice L, Tgy being the transition temperature in
the thermodynamic limit, and B e C nonuniversal constants.
The finite-size scaling of the data obtained from Fig. 3 is
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FIG. 3. (Color online) Roughness W as a function of the reduced
temperature 7 for the planar rotator model and several values of
linear lattice sizes L. The simulation time is =2 X 10* MCS and the
averages were taken over 1000 independent runs. The full lines are
just guide to the eyes and the error bars are smaller than the symbol
sizes.

shown in Fig. 4, from which we obtain Tx;=0.89(1), which
is comparable to the values from the literature [1,15]. Notice
that in this case we have to consider the bigger lattices in
order to get a reasonable finite-size behavior.

In the previous work [8] only the roughness has been used
to get the transition temperature of the system. However, we
can still exploit the behavior of the growth exponent §,,. In
this case, since it is obtained from the short-time behavior of
the growing surface, we can resort to a better statistics. Fig-
ure 5 shows the growth exponent as a function of the tem-
perature for different lattice sizes. For high-temperatures S,
approaches the value 1/2, as expected for random deposition
since in this case there is no correlation in the magnetic
system. As temperature decreases, however, the magnetic

T T T T T T T
1.15F o W
L = B
1.1
- L
= 1.05F
2 05
S
1 Tpr=0.902)
0.95 —
planar rotator
0.9 Tp=0-89(1) i
\ 1 \ 1 \ I \

0 0.025 0.05
2
[In(L)]

0.075 0.1

FIG. 4. (Color online) Finite size scaling of the temperature
peak for the planar rotator model for several values of linear lattice
sizes. From the roughness W one has L=64,80,96,128,160, with
the simulation time of r=2 X 10* MCS and the averages taken over
1000 independent runs. From the (3, exponent one has t=200 MCS
and averages over 10* samples with L=32,48,64,96,128. The full
lines are the best fits according to Eq. (7).
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FIG. 5. (Color online) Growth exponent 3,, as a function of the
reduced temperature 7 for the planar rotator model and several val-
ues of linear lattice sizes L. The simulation time is t=200 MCS and
the averages were taken over 10* independent runs. The full lines

are just guide to the eyes and the error bars are smaller than the
symbol sizes.

system becomes highly correlated and the growth exponent
becomes different from 1/2 at the BKT transition. The fact
that this exponent stays almost constant for even lower tem-
peratures indicates a highly correlated state in this region,
which reflects the presence of the BKT phase for T<<Tggr. It
is also apparent from Fig. 5 that the peak of the growth
exponent is size dependent. The corresponding finite size
scaling of Tygr(L) obtained from B,, is also depicted in Fig.
4, where one gets Trr=0.90(2), which is, within the error
bars, comparable to that obtained from the roughness W and
from other values in the literature [1,15]. In addition, one can
note that the present approach, based on the analysis of the
nonequilibrium properties of growing surfaces, is also able to
get the BKT transition for continuous spin models. We also
expect that the present method should still be useful in study-
ing classical continuous spin models undergoing conven-
tional second-order transitions.

C.5<p<w

For these models one has two distinct transition tempera-
tures, namely, a high temperature 7, from the disordered
phase to the BKT-like phase (also called spin wave phase)
and a lower temperature from the spin wave phase to the
ordered phase.

1. Temperature T,

Figure 6 shows the roughness as a function of temperature
for the p=10 clock model and different lattice sizes. There is
a kind of plateau, where the roughness increases with the
system size, analogously as it occurs in the critical points of
the p =4 models and in the low-temperature phase of the XY
model. One can also note that out of the plateau region the
roughness is small and independent of the system size. This
is an indication that the magnetic system should be highly
correlated for temperatures 7} <7 <T»,, as is expected in the
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FIG. 6. (Color online) Roughness W as a function of the reduced
temperature 7 for the p=10 clock model and several values of
linear lattice sizes L. The simulation time is r=2 X 10* MCS and the
averages were taken over 2000 independent runs. The vertical
dashed lines locate the transition temperature 7, for different lattice
sizes and the vertical dot-dashed line locates the transition tempera-
ture 7. The full lines are just guide to the eyes.

spin-wave phase. Such behavior will also be noticed in the
growth exponent discussed below. Thus, in what follows,
this phase will be associated with this range of temperatures.
We observe that the higher transition temperature T,(L) is
lattice size dependent, whereas the lower one 7 is almost
independent on L, mainly for the larger lattices.

In Fig. 7, we show the roughness as a function of tem-
perature for the lattice size L=32 and several values of the
clock states p. For 4<p<10 we clearly see two tempera-
tures, where in this case T, varies with p and T, is almost
independent of p, even for this small lattice. Just as a matter
of comparison, it is also shown the temperature 7, obtained

T T T T T T T

| -0 p=4
=Ep=5
A-Ap=6 |
& p=8
v—v p=10

2000

1000

s s | s
0 0.5 1 1.5

FIG. 7. (Color online) Roughness W as a function of the reduced
temperature 7 for the p-state clock model and several values of p
and linear lattice size L=32. The simulation time is r=2 X 10* MCS
and the averages were taken over 2000 independent runs. The ver-
tical dashed line locates the transition temperature 7,, and the dot-
dashed lines locate the transition temperature 7', for different val-
ues of p, according to Ref. [1]. The full lines are just guide to the
eyes.
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@ planar rotator
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|
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FIG. 8. (Color online) Finite-size scaling of the temperature
T,(L) obtained from the roughness W for the p=8 clock model. The
lattice sizes are L=20,32,64,80,96,128,160. For comparison, we
also have the previous results for the planar rotator model and L
=64,80,96,128,160. The lines are the best fits according to Eq.
(7).

in reference [1], from which one sees a good agreement even
for small lattice L=32. For p=5 one can note two distinct
temperatures, however, as we will see below, a finite-size
scaling of T, leads to just one transition for this model. For
p=4, as expected, only one peak is observed, characterizing
the continuous order-disorder phase transition.

As an example, a finite-size scaling of 7,(L), coming
from the behavior of the roughness as a function of the tem-
perature, is shown in Fig. 8 for the case p=8. We get, in this
case, T’2’=8:O.898(7) and should be compared to Tggr
=0.89(1) for the planar rotator model which is also shown in
Fig. 8 for comparison. Similarly, we can obtain 75, in the
thermodynamic limit, for other values of p. In this case,
within the error bars, the transition temperatures are compa-
rable to the Ty, obtained in the limit p — .

We can also resort to the behavior of the growth exponent
as a function of temperature. Some results are depicted in
Fig. 9 for several values of the model states and lattice size
L=32. Except for p=4, where we have only an order-
disorder continuous transition, one can note that for 7, <T
< T, (where the lower temperature T} is clearly p dependent)
the growth exponent is different from 1/2, indicating the
presence of a spin-wave phase, while for temperatures out of
this interval the exponent is 1/2, typical of uncorrelated sys-
tems. Despite T being well defined for this lattice size, the
higher transition temperature 7, is not so well defined as the
corresponding behavior of the roughness shown in Fig. 7.
However, even in this case, a coarse finite-size scaling of 7,
leads, within the error bars, to the same results as those from
the roughness W shown in Fig. 8.

2. Temperature T,

Figure 6 shows that for a fixed value of p the temperature
T, is almost lattice independent. The same behavior we get
from the growth exponent S3,, (not shown). Figure 10 depicts
the estimates of 7, as a function of the lattice size from two
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FIG. 9. (Color online) Growth exponent 3,, as a function of the
reduced temperature 7 for the clock model with L=32 and several
values of p. The simulation time is =200 MCS and the averages
were taken over 10* independent runs. The error bars are smaller
than the symbol sizes.

different clock states from where we see that 7' is almost
constant. Similar results are obtained for other values of p. It
is also interesting to plot 7 as a function of 1/p? as is shown
in Fig. 11. From these plots one gets T75=0.03(2)
+25(1)/p*> from the pB, exponent and Ty=0.02(2)
+24(1)/p? from the roughness behavior, which are compa-
rable to T,=23.4/p? reported in Ref. [1]. One can note that
there is a difference in 7 coming from W and f3,, for small
values of p (in what follows the estimate of T is the average
from both measurements).

3. p=5 clock model

Let us analyze now the particular case p=5 where there is
no convincing result yet in the literature. As discussed above,
it is more convenient to consider the roughness as a function
of the temperature since with this quantity the resolution of

i —eo—90o—9o—0 —— 00—
0.30
I clock model
0.25F
%) oep=10
) I Ep=16
0.20
0.15F
0.10 ! ! ! !
70 32 64 96 128

L

FIG. 10. (Color online) Finite-size dependence of the tempera-
ture T'(L) obtained from the growth exponent B,, for the p=10 and
16 clock models. From the B, exponent one has =200 MCS and
averages over 10* samples. The error bars are smaller than the
symbol sizes.
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0.60— 6
~ ) 7
0.40—
8
) T] from W

0 m T, fromf

0.20—
16

\ \ \

0'000 0.01 0.02 0.03
w

FIG. 11. (Color online) Temperature T, as a function of 1/p?
obtained from the growth exponent S, and from the roughness W
for different clock state models (indicated in the figure). For the 8,
exponent one has r=200 MCS and averages over 10* samples,
while for W one has r=2 X 10* MCS and the averages were taken
over 2000 independent runs. The error bars are smaller than the
symbol sizes.

T, is better (although the required MC time is longer). In Fig.
12 we have the roughness W as a function of T for p=5 and
different lattice sizes. As for the other models, T, is almost
independent of the lattice sizes whereas 7, has a strong de-
pendence on L. The lower transition is estimated to be T}
=0.91(2). The finite size scaling of T»(L) is shown in Fig. 13.
From a fit with Eq. (7) one gets T§=5=0.90(2) which is com-
parable, within the error bars, to 7y and Tygz. Thus, in this
case, from the present method one gets, within the error bars,
the same BKT transition temperature for the p=5 model.

2000

1500

= 1000

500

FIG. 12. (Color online) Roughness W as a function of the re-
duced temperature 7 for the p=5 clock model and several values of
lattice size L. The simulation time is £=2 X 10* MCS and the aver-
ages were taken over 2000 independent runs. The vertical dashed
lines locate the transition temperature 75, and the dot-dashed line
locates the transition temperature 7';. The full lines are just guide to
the eyes.
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(L)

~"'1.00

0.95
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0.00 0.02 0.04 0.06 0.08 0.10
in(Ly]>

FIG. 13. Finite-size scaling of the temperature 7T,(L) obtained
from the roughness W for the p=5 clock model. The line is the best
fit according to Eq. (7).

4. Global phase diagram

Figure 14 shows the global phase diagram obtained from
the above results in the reduced temperature versus number
os states p plane. The transition temperature 7, is of BKT
type. However, the transition 7'} seems to have a different
character than what happens from the disordered state to the
spin-wave phase. As this transition has only a slightly size
dependence we should argue that it can be first-order like.
The surface exponent discussed below will give an extra in-
dication of this behavior. In Fig. 14 the data for T, are the
average of the results from the exponent (,, and from the
roughness W.

V. GROWTH EXPONENT AND FAMILY-VICSEK
SCALING

So far we were concerned only with the phase diagram of
the model for general values of p. However, from a theoret-
ical point of view, it is also important to determine the non-

2.50
L<— Ising S=1/2
T,
2.00F Potts g=3 o T,
1 T
Disordered Phase A%
* TBKT
1.50 |
~
W <—2 Ising S=1/2 Planar Rotator
1.00 \ N
\Q AAA A A A 0 ¥
0.50
0.00

FIG. 14. (Color online) Phase diagram of the p-state clock
model. The squares locate the critical temperatures 7., the triangles
the BKT transition temperatures 7>="7 g7, and the circles the lower
temperature transitions 7';. The errors are smaller than the symbol
sizes. The full line is the best fit to a 1/p? behavior and the dashed
line is the corresponding 7 transition line from Ref. [1].
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FIG. 15. (Color online) Growth exponent 3,, as a function of the
lattice size L for the p=16 clock model and several values of tem-
perature. The simulation time is =200 MCS and the averages were
taken over 10* independent runs. The error bars are smaller than the
symbol sizes.

equilibrium surface grow exponents in order to characterize
the corresponding universality classes for the present mod-
els.

Growth exponent

An inspection of Fig. 5 for the planar rotator model shows
that the growth exponent B,, has a lattice size dependence.
The same also happens for finite values of p (not shown).
One can then compute this exponent for different values of
the temperature. As a typical example we have in Fig. 15 the
growth exponent as function of L for the p=16 states model
and different temperatures. For temperatures below T, (T
=0.04) and above T, (T=1.6) the exponent is close to 1/2, as
expected because in these regions there is no correlation in
the magnetic system. On the other side, for temperatures be-
tween T, and T, (T=0.4 and 0.8) the exponent is different
from 1/2. Due to the lack of a finite size scaling for this
exponent, we depict in Fig. 16 the best power law fits of this
exponent for different temperatures for the p=10 model
(with ¢p=1.1). In this case we have 8/~'%(T=0.4)=0.954(7),
Br=1(T=0.6)=0.945(9), and B7~"%(Tpx1)=0.931(6). For the
planar rotator, a similar fit (with ¢=0.8) gives BL*(Tpy)
=0.935(5).

Since the growth exponent S, is calculated for short
times, at the beginning of our simulations, we could expect a
relation between this exponent and those obtained with the
short time dynamics scaling (for a brief review see, for ex-
ample [16]). In fact, for a second-order transition we ob-
tained at 7, [8]

Bo=1-L (1=, ®)

vz
where B, v, and z are, respectively, the order parameter
(m(T)~|T-T,P), correlation length (&T)~|T-T,|™") and
dynamic critical (7(L)~L?) exponents of the spin model.
Here, starting from Eq. (2) and the scaling m(7) ~ 7% at the
BKT phase [17,18], we obtain
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clock p=10
0.9 e T=040 B =0.954(7)
= T=0.60 B =0.945(9)
08k A Topr B,=0.931(6)
s
Q.
0.7
0.6
05 . I . I . I . I .
0 0.01 0.02 0.03 0.04 0.05

FIG. 16. (Color online) Growth exponent 3,, as a function of the
lattice size L for the p=10 clock model and several values of tem-
perature. In this case one has ¢=1.1. The simulation time is #
=200 MCS and the averages were taken over 10* independent runs.
The error bars are smaller than the symbol sizes.

7
=]1-—
IBW 2z

(L — o), )
where 7 is the exponent of the correlation function spatial
decay. For the planar rotator, for example, 7=0.238(4) and
z=1.96(3) [17] which gives BLR(Tpxr)=0.939, in good
agreement with the numeric result from our fit [,85R(TBKT)
=0.935(5)]. From Fig. 5 (for the planar rotator) and Eq. (9)
(for the clock model) we can note also a slow decay of 3,
with the temperature 7 at the BKT phase, which is in agree-
ment with the increase in the value of the ratio 7/2z in this
phase as we approach Tyggp [18,19]. In the next section, we
will show that the dynamic critical exponent z can be ob-
tained directly from the Family-Vicsek relation (z=a*/f3],).
Thus, the exponents z and 7 can be obtained independently
through this technique of mapping the spin configurations in
a growth model.

Family-Vicsek scaling

It is well-known that the roughness W grows indefinitely
as time increases, even at the second-order critical tempera-
tures. As has been discussed in Ref. [8], this is related to the
intrinsic noise in the Monte Carlo algorithms, where after the
transients, the system follows a random walk in the phase
space, adding a Gaussian noise to the temporal behavior of
the mapped surface roughness W. This noise gives a diffu-
sive factor in the thermal averages, resulting in the
asymptotic ¢/? behavior. This means that a— o and that the
Family-Vicsek scaling z,,=a/ ,, is no longer valid. A way to
extract the effect of the intrinsic noise from W, and to study
the evolution of the roughness without this trivial growing,
can be done by defining a roughness

W(e, 1) =W (e,1). (10)

So, the noise-reduced roughness W*(e, ) should have a be-
havior similar to regular surface growing processes, scaling

as W*(e,t>tc)~eH*, at short times as W*(r) ~Pv, and at
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FIG. 17. (Color online) Log-log plot of the noise-reduced
roughness W* as a function of time 7 for the p=10 clock model at
T=0.4 and several values of the lattice size L. The averages were
taken over 10% independent runs to a maximum of 10° MCS. The
error bars are smaller than the symbol sizes.

long times as W*(L,) ~ L%, where also tC~LZ:-. We expect
that H*=H, z, =z,,, 8,,=,—0.5, and & can now be obtained
through the behavior of W*(L,®) versus L.

Figures 17 and 18 show the noise-reduced roughness W*
as function of time for the clock model (p=10) and the pla-
nar rotator model (p — ), respectively, at some temperature
in the spin-wave phase and several linear lattice sizes L. One
can see that the for the planar rotator model the roughness
reaches its saturation in a steady way while for the clock
model one has not only a maximum before the saturation, but
also this saturation is achieved for one order of magnitude
longer times than in the planar rotator case.

Figure 19 depicts the log-log plot of the saturation value
of the noise-reduced roughness W* where the slope gives us
the exponent a*. One has in this case a**(Tyx)=0.875(4),
a*PR(T=0.6)=0.89(1), and oP='%(T=0.40)=0.88(1). From
this we can show that the Family-Vicsek scaling (z,,

planar rotator
1 yvV“v
10 A
L [ ] L=16 vVvIO’ A
F " =32 vYo# AAAAAAAAAAA
i A L=48 geRiassns R
* L=64 —
L v L9 lig...llll
* L ||
- i
L |
o®
Eoe*®
0 l‘.
10°F “ i T =0.60
10° 10' 10° 10° 10° 10°

t

FIG. 18. (Color online) The same as Fig. 17 for the planar
rotator model at 7=0.6. The averages were taken over 103 indepen-
dent runs to a maximum of 2 X 103 MCS. The error bars are smaller
than the symbol sizes.
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10°F
b % PR(T=T,.,) —>0875(4)
[ @ PR(T=0.60) —> 0.89(1)
L A p=10(T=0.40) — .88(1)
m-m p=10 (T,=0.24)
10'F
L
10" 10°

L

FIG. 19. (Color online) Log-log plot of the saturation values of
the noise-reduced roughness W* as a function of lattice size L for
the PR and the p=10 clock model and several values of the tem-
perature. The numbers give the slope of the curves which corre-
spond to the exponent a*. The averages were taken over 10-2000
independent runs to a maximum of 10°~107 MCS. The error bars
are smaller than the symbol sizes.

=a/f,) holds for these cases: in fact, z,=z,=a"/@,. For
instance, for the planar rotator at Tgxr we have £ =0.935
—0.5=0.435 and o*=0.875, which gives z,,=2.01. For the
p=10 clock model at Tpgp, B;,=0.431, &=0.86, and z,,
=1.99(1). These results are comparable to the measured val-
ues of the dynamic critical exponent z for these models (we
expect that z=z,,=2).

For the temperature T'j, on the other hand, we can see that
the noise-reduced W* saturates as a function of L, leading to
an «*=0, which according to reference [8] is typical of a
first-order character.

Finally, Figs. 20(a) and 20(b) show the data collapse of
the results of Figs. 17 and 18, respectively. The values of the
exponents a” and z,, used in these collapses are fully consis-
tent with the Family-Vicsek relation and the Eq. (9). The
collapse for the p=10 clock model fails for short times be-
cause the system is still uncorrelated.

E clock p=10 E
s [ 1
= ok T=0.4 _
z F AA1=32 B
[ B L=64 ]
3 [ & JE B
[ [ L | v
0.01 0.0001 0.01 1 100 10000
Lgrrm T T 3
F planar rotator ]
v§ [ 7
R T=0.6
= b AAL=48 1
r Bl =64 N
0.0l @ L-9
B | L | L

_
= Lol
S

0.01 1
L

FIG. 20. (Color online) Log-log plot of the data collapse of the
noise-reduced roughness W*/ L% as a function of ¢/L for (a) the
p=10 state clock model and (b) the planar rotator model.
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FIG. 21. (Color online) Finite size scaling of the temperature
T,(L) for the planar rotator and p=10 clock model. The line is the
best fit according to Eq. (11).

VI. CONCLUDING REMARKS

We have defined a growth model based on the dynamics
of the discrete p-state clock model and also the continuous
XY model (planar rotator). The phase transitions in these
magnetic systems have been studied through the roughness
technique. We were able to obtain the transition temperatures
of the systems, static and dynamic exponents of the cor-
responding growing surfaces, as well as the characterization
of the transitions. This dynamic approach for studying sur-
face growth has shown to be adequate to treat not only dis-
crete spinlike variables, but also continuous spin models,
presenting the topological Berezinskii-Kosterlitz-Thouless
transition. We argue that the present procedure would also be
suitable to study continuous spin models presenting conven-
tional second-order phase transitions, as well as multicritical
phenomena.

The results for discrete finite values of p are also of the
same quality as those for the Blume-Capel and Potts models
previously studied. We should stress that in all the above
analysis we assumed, from the beginning, that the scaling
law for the XY universality class given by Eq. (7) is valid
even for finite p. However, by considering a power law be-
havior

!

C
Tyxr(L) = Tggr+ E > (11)

where o is an additional exponent and C’ a nonuniversal
constant, our results for the high-temperature phase transi-
tion are qualitatively analogous to those presented above,
with the only difference being the values of the 7,. As a
matter of example, we show in Fig. 21 the transition tem-
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TABLE 1. High and low transition temperatures 7, and 7, for
the p=6 clock model obtained from the present procedure and com-
pared with the results coming from different approaches. BKT
stands for the XY-like behavior of Eq. (7) and power for the power
law behavior Eq. (11). From Ref. [2] there are two measurements,
one from the Fisher zero and other from the specific heat. 7 from
the present approach does not depend on BKT or power law
behavior.

T, T,
Ref. [7] 0.6 13
Ref. [20] 0.68(2) 0.92(1)
Ref. [21] 0.68 0.90
Ref. [22] 0.7014(11) 0.9008(6)
Ref. [2] BKT—zero 0.74 0.88
Ref. [2] BKT—specific heat 0.79 0.86
Ref. [2] power—zero 0.632(2) 0.9997(2)
Ref. [2] power—specific heat 0.6068(1) 1.017(1)
Present work BKT 0.68(1) 0.90(1)
Present work power 0.68(1) 0.98(1)

perature so obtained for the planar rotator model and p=10
clock model.

In this case we have T,=0.975(2) and ¢=0.96 for the
planar rotator model and 7,=0.970(4) and o=1.05 for the
p=10 clock model. It is interesting to notice that despite 7,
being different we get the same values (within the error bars)
for all values of p. This situation has also been recently re-
ported for the p=6 model where the Wang-Landau sampling
has been used [2]. For comparison, we updated the table
from Ref. [2] by including the present results (see Table I).

In addition, in treating the p-state clock model, we could
get some insight regarding some unclear points on the global
phase diagram. Apart from obtaining the extended universal-
ity in which not only the exponents, but also the critical
temperature, are universal for p>p. we could show that
within the surface approach the critical value for the number
of states is p.=5, since for this model one gets only one
transition temperature. Moreover, the lower transition tem-
perature 7, seems to have a different character than the BKT
transition occurring at a higher temperature 75. In this case,
at T; we find a strong indication of a first-order-like charac-
ter.
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