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A class of probabilistic models for cascading failure propagation in interconnected systems is proposed. The
models are able to represent important physical characteristics of realistic load-redistribution mechanisms, e.g.,
that the load increments after a failure depend on the load of the failing element and that they may be
distributed nonuniformly among the remaining elements. In the limit of large system sizes, the models are
solved analytically in terms of generalized branching processes, and the failure propagation properties of a
prototype example are analyzed in detail.
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I. INTRODUCTION

The increasing complexity of today’s infrastructure net-
works, e.g., electrical power grids, road systems, or commu-
nication networks, makes them very sensitive to local fail-
ures �1–5�. When an element in such a network fails, its
“load” �e.g., power, traffic, or information flow� is redistrib-
uted to the other elements of the network. Some of the in-
creased loads may then exceed the capacity of their respec-
tive element, leading to further failures and eventually to a
cascading breakdown of the entire network. Cascading fail-
ure propagation is not only observed in physical infrastruc-
ture networks but also in social and economic systems �1,2�
or in the fracture of heterogeneous materials �6,7�.

As a breakdown of critical infrastructure networks can
have serious economic consequences, it is crucial to gain a
deeper understanding of the mechanisms that lead to such
cascading failures. This problem has, in particular, attracted
the interest of the statistical physics community, and various
models have been developed to study the vulnerability of
complex networks with respect to cascading failure propaga-
tion �1–4,8�. A description of the load redistribution on dif-
ferent levels of detail has been considered, e.g., more physi-
cal approaches based on resistor networks �8� or complex-
network models focusing on purely topological measures
such as the betweenness centrality �1,9,10�. The dynamics of
most of these models, however, can only be analyzed via
large-scale numerical simulations. In order to obtain an ana-
lytically solvable model, Dobson et al. �3,11� consider the
simplifying assumption that the load increments after a fail-
ure are the same for all remaining elements and independent
of the failing load. Similarly, fiber bundle models for the
problem of fracture propagation �6,7,12,13� can only be
solved analytically if the load of the failing fiber is equally
redistributed to all remaining fibers.

In this paper, we introduce and analyze a new class of
probabilistic models for cascading failure propagation that
can represent, in a stochastic sense, important characteristics
of realistic load-redistribution mechanisms: the load redistri-
bution after a failure is no longer assumed to be uniform and
the induced load increments may depend on the load of the
failing element. With such models, we can thus expect to
obtain a better understanding of the breakdown processes in
real networks. We show that in the limit of large system

sizes, our models can be solved analytically by using a Mar-
kov approximation and the theory of generalized branching
processes �14�. We then apply our general approach to an
illustrative prototype system that roughly imitates failure
propagation in a power transmission network and analyze its
vulnerability with respect to cascading breakdown.

II. CASCADING-FAILURE MODEL

We consider a system consisting of N elements, each with
a random load L�0. The loads are assumed to be indepen-
dent of each other and identically distributed. Furthermore,
every element possesses a random critical load Lmax above
which it will fail. Whereas we assume that the critical loads
of the various elements are independent of each other, we
allow for possible correlations between the initial and critical
loads of a particular element. Specifically, we require that
initially none of the elements is overloaded, i.e., the prob-
ability P�L�Lmax� vanishes.

We now consider a situation where, due to some external
influence, one of the elements, say with load Lf, fails. Our
central model assumption is that this load is redistributed to
the remaining elements according to the stochastic load-
redistribution rule

L → L� = L + Lf� . �1�

Here, L �L�� is the load of one of the remaining elements
before �after� failure of the element with load Lf and the
load-redistribution factor � is a random number drawn inde-
pendently from the same distribution for each of the remain-
ing elements. In other words: The load increments are pro-
portional to the failed load Lf but with random
proportionality factors �.

The form of rule �1� is based on the observation that in
many systems, the load-redistribution factors primarily de-
pend on structural properties, such as interactions between
the various elements, and not on the load of the failing ele-
ment. In a more “microscopic” approach, the failure dynam-
ics of such systems would be described by a model of form
�1� but with the factor � being determined by the specific
interactions of the failing element with the one affected by
the failure. Corresponding examples range from the power-
flow redistribution after a line failure in power grids �15� to
the distance-dependent stress redistribution in fiber bundles
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�13�. The main features of a load redistribution of form �1�
can already be understood by considering the extreme cases
of a uniform global load redistribution and a purely local
one. In the former case, each element is affected in the same
way and thus �=1 / �N−1�. The latter situation is described
by �=1 /Z for the Z nearest neighbors of the failing element
and zero otherwise. The stochastic load redistribution rule
�Eq. �1�� models the microscopic �-dependence in terms of a
noisy dynamics that neglects any spatial correlations. While
its specific form thus depends on the system at hand—we
will consider an example in Sec. IV below—we expect two
properties to be generally fulfilled: �i� On average, the failed
load will be redistributed to the remaining N−1 elements.
This implies that the mean ��� behaves as 1 /N for large N.
�ii� The �-distribution typically will be bounded. For in-
stance, if—in the worst case—one single element has to take
over the load of the failing element, one has ����1.

So far, we have only discussed the load redistribution af-
ter an initial failure. Obviously, it can happen that the post-
failure loads of a number Nf

�1��1 of elements are above their
respective critical loads. In such a situation, a failure cascade
develops. For its description, we assume that the overloaded
elements fail simultaneously and that each failing load is
redistributed to the remaining elements according to rule �1�
�16�. If this redistribution results in further overloading, the
cascade continues to a new cascade stage. This process con-
tinues until the system either reaches a stable state, i.e., the
remaining elements operate within their bounds, or all N el-
ements have failed and the system has broken down com-
pletely.

Denoting the number of failures at each cascade stage s
=1,2 , . . . by Nf

�s� and counting the initial failure as Nf
�0�=1,

the total number of failed elements Nf=�s=0Nf
�s� provides a

measure for the damage to the system. The distribution of
this random variable characterizes the system stability.
Coarsely, two regimes can be distinguished: �i� The probabil-
ity of large Nf decays quickly, i.e., at least exponentially, and
thus system-wide cascades with Nf�N constitute very rare
events. �ii� System-wide failures occur with finite probability
even for N→�. At the separation between these two re-
gimes, the system exhibits a “critical” behavior �3�, where
large-scale events are still suppressed but their probability
only decays according to a power law: P�Nf��Nf

−	 for N
→�.

To determine the stability of a given system with respect
to cascading failures, the detailed form of the probability
distribution P�Nf� is not required and will not be evaluated in
the present paper. Instead, it suffices to have an indicator for
the two regimes just outlined. An obvious choice is the prob-
ability for a system-wide breakdown: Pb= P�Nf=N�. Another
quantity of interest is the probability that an initial failure
does not induce any further failures, in other words, the
probability that no cascade develops at all: Pnc= P�Nf=1�.

III. GENERALIZED-BRANCHING-PROCESS
APPROXIMATION

In the limit of large systems, N→�, when finite-size ef-
fects do not play a role, an approximate description of the

cascade dynamics can be obtained by making two observa-
tions: First, during a failure cascade, the distribution of the
not yet failed loads can be approximated by their initial dis-
tribution. Thus, a Markovian description in terms of the
loads which fail at every cascade step becomes possible. The
corresponding states form a point process on the non-
negative real axis �17�. Second, as the number of remaining
elements always stays infinitely large, the number of induced
failures can be described by a Poisson distribution. This
yields an approximation of our model in terms of a general-
ized branching process �14�, which is fully defined by its
characteristic functional

G�u;Lf� = exp	
f�Lf�
� dLf�p�Lf��Lf��Lmax;Lf�

� e−u�Lf�� − 1�
 , �2�

where u denotes an arbitrary non-negative test function on
the interval �0,�� and p�Lf��Lf��Lmax;Lf� is the conditional
probability density that a failure induced by a failing load Lf
occurs with a load Lf�. Given the joint distribution of initial
and critical loads, as well as the distribution of the load-
redistribution factors, this quantity can be readily calculated.
The mean number of induced failures is given by 
f�Lf�
= �N−1�P�Lf��Lmax �Lf�. Note that in order for a meaningful
limit N→� to exist this implies that the conditional failure
probability of a single element P�Lf��Lmax �Lf� has to be of
order O�1 /N� �cf. the discussion above on the mean of the
load-redistribution factors�.

For the calculation of the breakdown and no-cascade
probabilities, we condition these quantities on the load Lf of
the failing element. From the Poissonian distribution of the
failures induced directly by this initial failure, one then
obtains the conditional no-cascade probability Pnc�Lf�
=exp�−
f�Lf��. The conditional breakdown probability
Pb�Lf� can be obtained as solution of the integral equation
�14�,

1 − Pb�Lf� = exp	− 
f�Lf�� dLf�p�Lf��Lf��Lmax;Lf�

� Pb�Lf��
 . �3�

This relation can be interpreted in the sense that the prob-
ability that no complete breakdown develops after a failure
with load Lf equals the probability that—in the limit
N→�—none of the induced failures with load Lf� leads to a
breakdown. Starting from an initial guess for Pb�Lf�, Eq. �3�
can be efficiently solved by means of an iterative procedure
�14�. This either yields the vanishing solution Pb�Lf��0 if
the system is immune against cascading failures or the
unique nontrivial solution with finite breakdown probability.
Note that the range of possible Lf in Eq. �3� might be larger
than that of the initial loads L �see the example in Sec. IV
below�. We finally remark that an integral relation similar to
Eq. �3� can be derived for the generating function of the total
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number of failures Nf�Lf�, where Lf is the initially failing
load.

IV. EXAMPLE: SIMPLE BIMODAL LOAD
REDISTRIBUTION

As a simple, yet prototypical example, we now consider a
bimodal load redistribution:

� = 	�0 with probability p0

0 with probability 1 − p0.

 �4�

Thus, a failure affects a specific other element with probabil-
ity p0, in which case this element receives a portion �0 of the
failed load. In line with the above arguments, we require
���= p0�0=1 / �N−1� and consequently 1 / �N−1���0�1.
On average, the failing load is redistributed to �N−1�p0
=1 /�0 other elements. In this sense, the model allows one to
study the transition between the above-mentioned two ex-
treme cases of a global load redistribution for �0=1 / �N−1�
and a load transfer to a single other element, typically the
nearest neighbor, for �0=1.

For the initial loads L, we consider a uniform distribution,
which can be scaled without loss of generality to the interval
�0,1�. Motivated by applications to infrastructure networks
with cost-limited capacity, e.g., power transmission net-
works, we assume that the maximal load of each element is
higher than its initial load by a constant tolerance ��0 �1�:

Lmax = �1 + ��L . �5�

In the limit N→�, the model is thus fully characterized by
the two parameters �0 and � and in the following, we shall
study the stability of the system as a function of these pa-
rameters.

As shown above, the no-cascade probability Pnc follows
directly from the mean number of failures induced by a fail-
ure with load Lf. From P�Lf��Lmax �Lf�= p0P�L
Lf�0 /��,
where L is the initial load of an arbitrary element, we obtain

f�Lf�=min�1 /�0 ,Lf /��. The integral equation, Eq. �3�, for
the conditional breakdown probability Pb�Lf� assumes the
form

1 − Pb�Lf� = exp	−
1

�0
�

Lf�0

Lf�0+min�1,Lf�0/��

dLf�Pb�Lf��
 .

�6�

It has to be solved on the interval �0,Lf,max� with Lf,max
=1 / �1−�0� for �
�0 / �1−�0� and Lf,max=1 otherwise.

If we assume that the initially failing element is chosen at
random with equal probability, we obtain the total no-
cascade and breakdown probabilities, Pnc and Pb, respec-
tively, by integrating the corresponding conditioned prob-
abilities over the range �0,1� of possible initially failing
loads. Whereas for the breakdown probability, the integral
has to be performed numerically from the iterative solution
of Eq. �6�, the no-cascade probability can be obtained explic-
itly:

Pnc = 	� + �1 − � − �/�0�e−1/�0 for � 
 �0

� − �e−1/� for � � �0.

 �7�

Figure 1 shows the probabilities Pnc and Pb as a function
of the tolerance � for various values of the redistribution
factor �0. We observe �see upper panel� that the no-cascade
probability Pnc gradually increases from its minimal value
exp�−1 /�0� for �=0 but remains considerably below one
over the considered �-range. This is in stark contrast to the
behavior of the breakdown probability �see lower panel�,
which decreases with increasing tolerance � to vanish com-
pletely above a certain critical �-value. In this latter regime,
the system becomes stable in the sense that cascading fail-
ures affecting it as a whole do not occur with finite probabil-
ity. With increasing load-redistribution factor �0, the transi-
tion to this regime happens at higher �-values and also
becomes less sharp. Comparing with the no-cascade prob-
abilities Pnc, we find that those cannot serve as a reliable
indicator for the system stability: Consider, for example, the
case �=0.5, where the breakdown probability varies strongly
with �0, as opposed to the no-cascade probability, which is
even independent of �0 for �0��.

In Fig. 1, we also compare the results from the
generalized-branching-process approximation with those ob-
tained from a Monte Carlo simulation of the full stochastic
dynamics �Eq. �1�� for a system consisting of N=2000 ele-
ments �see symbols in Fig. 1�. Within the statistical error, we
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FIG. 1. �Color online� No-cascade �upper panel� and breakdown
�lower panel� probabilities, Pnc and Pb, respectively, as a function
of the tolerance � for different values of the load-redistribution
parameter �0. Lines: Eq. �7� �upper panel� and results from an
iterative solution of Eq. �6� �lower panel�. Symbols: Monte Carlo
results from a simulation of the stochastic dynamics �1� for N
=2000 elements and 104 realizations. The statistical error is below
the size of the symbols. Inset of lower panel: Monte Carlo results
�from 105 realizations� as a function of the system size N for �0

=0.1 and �=0.15 as indicated by the arrow in the lower panel. The
line serves as a guide to the eye.
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find a very good agreement, except near the transition to a
stable system in the case of small load-redistribution factors
�0. In this regime, the failing load is distributed to a large
number of elements, but not all of them fail immediately.
Their increased load, however, will eventually lead to a
higher breakdown probability than predicted by the
branching-process approximation, where this effect is ne-
glected. As the number of such elements is independent of
the system size, this finite-size effect will vanish in the limit
of very large systems. As shown exemplarily for the case
�0=0.1 and �=0.15 in the inset of Fig. 1, the breakdown
probability obtained from Monte Carlo simulations indeed
approaches zero with increasing system size N, in agreement
with the solution obtained from Eq. �6�.

It is also interesting to look at the behavior of the break-
down probability as a function of the load-redistribution fac-
tor �0 �see Fig. 2�. For a fixed tolerance �, we find a van-
ishing breakdown probability Pb for small �0, which
corresponds to “well-connected” systems where the failing
load is redistributed to a large number of other elements.
Above a critical �0-value, the breakdown probability in-
creases abruptly, in particular for small tolerances �. It
reaches a maximum and then gradually decreases again to-
ward zero in the limit of �0 going to unity, where the failing
load is transferred to a single other element. It follows that
the network is robust against cascading breakdown if �0 is
smaller than its �-dependent critical value.

Finally, we compare our results with those of a simple
branching process model, e.g., Refs. �3,11�, where the in-
duced load increments are independent of the load of the
failing element. In these models, the no-cascade probability
Pnc as well as the breakdown probability Pb are completely
determined by a single quantity, the mean number 
f of fail-
ures that are induced by a failing element. In particular, Pb is
zero if 
f
1 and finite if 
f�1. When such a model is

applied to our prototype example, the load increments after a
failure are equal to a constant Q0 with probability p0 and
zero otherwise. It follows that 
f=min�1 /2� ,1 /2Q0�, and
we note that for a consistent comparison with our model, Q0
has to be identified with �0 /2. As a function of �, the break-
down probability Pb then becomes zero at the critical value
�c=1 /2, which is independent of the value of �0. In contrast
to our results of Fig. 2, we thus find that such a model does
not exhibit a critical behavior with respect to the parameter
�0, i.e., the breakdown probability stays finite for arbitrarily
small values of �0 if �
1 /2. For ��1 /2, Pb is zero for all
values of �0 �0��0�1�.

V. CONCLUSIONS

We have introduced and analyzed a class of stochastic
failure-propagation models which, compared to previous ap-
proaches, enable a more realistic description of real systems,
while still being amenable to an analytical treatment. The
approach is applied to a prototype example that is motivated
by the propagation of line failures in power transmission
networks. The initial loads �power flows� have random val-
ues and the maximum load an element can carry is assumed
to be equal to �1+�� times its initial load �Eq. �5��. With this
example, we have demonstrated that our model not only ex-
hibits a critical behavior as a function of the failure tolerance
� but also with respect to a parameter �0 that characterizes
the variance of the load-redistribution factors and thus de-
pends on physical as well as on topological properties of the
load or flow dynamics.

While our assumption of stochastic load redistribution ne-
glects any spatial correlations, we are still able to gain inter-
esting insights into the vulnerability of complex networks. If
we use a more realistic distribution of redistribution factors
�, our results on the critical behavior of the breakdown prob-
ability with respect to failure tolerance and connectivity, e.g.,
may give valuable information for the design of more robust
infrastructure systems.

Finally, we note that our models cannot only be applied to
critical infrastructure networks but also to other breakdown
phenomena, e.g., to failure propagation in elastic fiber
bundles �6,7�. Within our approach, a corresponding model
�with stochastic load redistribution� is obtained if we assume
that the initial loads are all identical and that the critical
loads of the individual elements are randomly distributed. A
detailed study of such models will be presented in a separate
publication �18�.
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