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Starting from a continuous-time random-walk �CTRW� model of particles that may evanesce as they walk,
our goal is to arrive at macroscopic integrodifferential equations for the probability density for a particle to be
found at point r at time t given that it started its walk from r0 at time t=0. The passage from the CTRW to an
integrodifferential equation is well understood when the particles are not evanescent. Depending on the distri-
bution of stepping times and distances, one arrives at standard macroscopic equations that may be “normal”
�diffusion� or “anomalous” �subdiffusion and/or superdiffusion�. The macroscopic description becomes con-
siderably more complicated and not particularly intuitive if the particles can die during their walk. While such
equations have been derived for specific cases, e.g., for location-independent exponential evanescence, we
present a more general derivation valid under less stringent constraints than those found in the current
literature.
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I. INTRODUCTION

Continuous time random walks �CTRWs� offer a sweep-
ing framework to describe the dynamics of particles whose
motion may be “anomalous.” That is, in addition to provid-
ing a way to study the motion of diffusive particles at a more
microscopic level than, say, the more macroscopic diffusion
equation, CTRWs can also be used to describe particles
whose motion is subdiffusive or superdiffusive. The connec-
tion between CTRWs and the associated “more macro-
scopic” description, which is in general an integrodifferential
equation rather than a �partial� differential equation as in the
case of ordinary diffusion, has been firmly established. The
description in terms of integrodifferential equations is often
attractive because all the machinery developed to solve the
equations subject to a number of different boundary condi-
tions can be brought to bear. It should be noted that the
starting point for problems that involve subdiffusive or su-
perdiffusive particles is often simply the integrodifferential
equation itself. However, one must exercise caution in sim-
ply starting with such a macroscopic description. It should
also be noted that these integrodifferential equations can
arise from microscopic models other than a CTRW, with the
latter not always being the appropriate framework. An ex-
ample is the motion of particles in random landscapes of
various sorts such as, for instance, one in which each site is
associated with a potential well whose depth is chosen from
a random distribution. The walk in a landscape of potential
wells of random depths may be normal in the sense that the
escape from each well follows a Kramers law, but the irregu-
larity of the landscape may give rise to trapping events that
may slow down the progress of the particles to the point of
giving rise to subdiffusion.

The situation becomes much more complicated when the
moving particles also undergo reactions �1,2�. This applies to
situations such as reversible or irreversible conversion to a
different species �e.g., A→B �3–5� or A�B �5,6��, reactions

giving rise to propagating fronts �say, A+B→C �7� and A
+B→2A �8��, binary reactions �e.g., A+A→0�, or even
spontaneous evanescence �A→0�. Focusing on the latter
case, the description of the evolution of such evanescent par-
ticles at the macroscopic level of a subdiffusion or superdif-
fusion equation, and the investigation of the proper way to
include the evanescence or reaction in such equations, is a
matter of continuing study and is usually carried out in the
context of rather specific models �3,9�.

In this paper we pursue this goal somewhat more generi-
cally: we consider the deduction of subdiffusion or superdif-
fusion equations when the moving particles are evanescent.
The death rate of the particles may in general depend on
location, time, how long a particle has spent at a particular
location, or the death sentence may even be imposed by an
external agent—one can think of a large variety of death
scenarios. Our presentation is based on a CTRW formulation
generalized to include particle evanescence. One step of the
discussion concerns the way in which evanescence can be
built into a CTRW model, a choice which is not unique. The
second step is then to go from a CTRW model to a subdif-
fusion or superdiffusion equation as appropriate.

In Sec. II we start with some basic CTRW quantities and
relations, which we then use in Sec. III to construct an inte-
gral equation for the probability density of finding a particle
at a certain position at time t given that it began its motion at
a different position at time t=0. This integral equation in-
cludes the possibility that the particle evanesces along the
way, and is the starting point for the further derivation of
subdiffusive and superdiffusive equations. In Sec. IV we ex-
plicitly construct our fractional equations for the case of sub-
diffusion, superdiffusion, and a mixture of the two. We con-
clude with a summary and some thoughts for the future in
Sec. V.

II. STARTING WITH A CTRW

Our goal is to arrive at integrodifferential equations for
the probability density w�r , t �r0 ,0� for a particle that started
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its journey at point r0 at time t=0 to be at r at time t. No
matter how we arrive at such an equation, the description of
the motion of the particles as a CTRW requires the introduc-
tion of the probability density ��r−r� , t− t�� that a random
walker jumps in a single step from r� to r after waiting a
time interval t− t� at the position r�. The dependence on only
the difference of the two position vectors reflects an assump-
tion of spatial homogeneity for the jumping mechanism. As-
sociated with this probability density is the usual waiting
time probability density,

��t� =� dr���r�,t� , �1�

and also the probability density for a single-step displace-
ment,

��r� = �
0

�

dt���r,t�� . �2�

The “normal” or “anomalous” �subdiffusive or superdiffu-
sive� character of the process depends on the forms of the
probability densities, which we will specify later.

Since we deal with evanescent particles, we also intro-
duce the probability ��r ,r� ; t , t�� that the particle has not
died spontaneously during the stepping process described by
��r−r� , t− t��. Also, finding the particle at r at time t does
not mean that it jumped onto that location exactly at that
time. In fact, it might have jumped there at an earlier time
and then just waited there without dying, or it might have
jumped there at an earlier time, returned any number of times
before t, and then waited there. As a starting point in our
route to an integral equation for w�r , t �r0 ,0�, it is thus ap-
propriate to introduce qn�r , t �r0 ,0�, the probability density
that a particle arrive at the position r at time t exactly after
making its nth jump, given that it started its walk at time t
=0 at position r0 �9�. This initial condition is described by
the equation

q0�r,t�r0,0� = ��r − r0���t� . �3�

From this follows the definition

q�r,t�r0,0� � �
n=0

�

qn�r,t�r0,0� , �4�

which is the probability density that the particle steps onto
position r exactly at time t �regardless of how many times
the particle has stepped anywhere, including on r, before this
time�.

It is straightforward to write integral equations for the
probability densities q and qn. For qn no further discussion
beyond the definitions is necessary to write the integral re-
currence equation �10�

qn+1�r,t�r0,0� =� dr��
0

t

dt���r − r�,t − t��

	qn�r�,t��r0,0���r,r�;t,t�� . �5�

In words, this equation states that the probability density for
the particle to arrive at location r at time t on the �n+1�st

step is equal to the probability that the particle arrived at any
point r� �hence the integral over r�� at any earlier time t�
�hence the integral over t�� on the nth step and then steps
from r� to r at time t, provided that the particle does not die
in the interval between these two steps. The usual integral
equation without evanescence is immediately recovered
upon setting � equal to unity. Summing this equation over
step number n, the integral equation

q�r,t�r0,0� =� dr��
0

t

dt���r − r�,t − t��

	q�r�,t��r0,0���r,r�;t,t�� + q0�r,t�r0,0�
�6�

immediately follows.
The more complex question is now how to go from these

integral equations to one for the desired probability density
w�r , t �r0 ,0� and thence to a fractional diffusion equation.
This is our pursuit in Sec. III.

III. INTEGRAL EQUATION WITH EVANESCENCE

Before obtaining an integral equation from the CTRW
setup of the last section, we note that one could choose to
write such an equation directly, for example,

w�r,t�r0,0� =� dr��
0

t

dt�
�r,r�;t,t��w�r�,t��r0,0�

	Ξ�r,r�;t,t�� + ��t�Ξ�r,r;t,0���r − r0� ,

�7�

where we have introduced,

��t� = 1 − �
0

t

dt���t�� = �
t

�

dt���t�� , �8�

the probability that the particle does not take a step in the
entire time interval up to time t. Note that we have made a
point of using Ξ rather than � for the function indicating that
no death occurs, because in general there is no reason to
expect these two to be the same. The function � that appears
in the integral equations obtained in the previous section is
the probability that the particle does not die in a time interval
exactly delineated by two steps �and none in between�, one
taking it to location r� and the other to location r. On the
other hand, Ξ is the probability that the particle does not die
in a time interval t− t� as it moves from r� to r, with no
reference to steps. There is no a priori reason for these two
probabilities to be equal. If particles die at a constant rate
independent of position and of when steps take place, then
these two probabilities would be equal. However, for ex-
ample if particles die only when they take a step, or, con-
versely, if particles are more likely to die if they remain at
one location, then these probabilities would not be equal.
Also, we have denoted the kernel of the integral equation by
the new symbol 
 because a priori we do not know its
connection to �. One might attempt reasonable guesses, but
that is all so far and in fact somewhat risky.

ABAD, YUSTE, AND LINDENBERG PHYSICAL REVIEW E 81, 031115 �2010�

031115-2



Our goal is to obtain an equation such as Eq. �7� starting
from a CTRW �rather than just writing it down�. We there-
fore begin with Eq. �6� together with the exact relation

w�r,t�r0,0� = �
0

t

dt���t − t��q�r,t��r0,0�Ξ�r,r;t,t�� . �9�

This exact relation simply says that the probability density
for the particle to be at r at time t is the probability that it
stepped onto that location at time t�� t and then neither
moved nor died until time t. Earlier arrivals and returns are
implicitly included in this relation.

In order to proceed toward an integral equation of form
�7� with known kernel we find ourselves having to make two
admittedly debatable assumptions. One is that the functions
� and Ξ are equal. The other is that this function can be
written as a ratio of the form

��r,r�;t,t�� =
�r,t�

�r�,t��
. �10�

The special case of location-independent exponential decay
�r , t�=exp�−kt� �that is, the case of evanescence at a con-
stant rate, mentioned earlier�, is that of Sokolov et al. �3�,
and in this case ��r ,r� ; t , t��=exp�−k�t− t���. This is the
only choice for which � depends on time only through the
difference of its time arguments. While Eq. �10� is limiting, it
is more general than the specific cases that have been treated
in the literature. We defer a discussion of some examples that
fit this constraint and the associated physical implications to
the next section.

To make use of special form �10� we start by making the
replacements t→ t� and t�→ t� in Eq. �6�. We then multiply
by ��t− t����r ,r ; t , t��, integrate over t�, and use relation �9�
to write

w�r,t�r0,0� = �
0

t

dt���t − t����r,r;t,t��	� dr��
0

t�
dt���r − r�,t� − t��q�r�,t��r0,0���r,r�;t�,t��


+ �
0

t

dt���t − t����r,r;t,t��q0�r,t��r0,0� . �11�

This equation can be manipulated through a number of simple steps. First, we insert the special form �Eq. �10�� on the right
side and divide both sides of the equation by �r , t�. This leaves us with the equation

w�r,t�r0,0�
�r,t�

=� dr��
0

t

dt���t − t��	�
0

t�
dt���r − r�,t� − t��

q�r�,t��r0,0�
�r�,t�� 
 + �

0

t

dt���t − t��
q0�r,t��r0,0�

�r,t��
. �12�

Next, we recognize that the first term on the right is a double convolution with respect to time. The memory kernels can then
be exchanged, as can be verified by taking Laplace transforms. Multiplying the rearranged equation by �r , t� it is then easy
to see that

w�r,t�r0,0� =� dr��
0

t

dt���r − r�,t − t��
�r,t�

�r�,t��	�0

t�
dt���t� − t��q�r�,t��r0,0�

�r�,t��
�r�,t��


+ �
0

t

dt���t − t��q0�r,t��r0,0�
�r,t�
�r,t��

. �13�

Finally, using Eq. �9� and initial condition �3�, and again recalling special form �10�, we arrive at the desired integral equation

w�r,t�r0,0� =� dr��
0

t

dt���r − r�,t − t��w�r�,t��r0,0�
�r,t�

�r�,t��
+ ��t�

�r,t�
�r,0�

��r − r0� . �14�

Equation �14� is the starting point for the derivation of
various fractional diffusion equations for different forms
of the single-step probability density ��r−r� , t− t�� of the
underlying CTRW. It is therefore a centerpiece of this
work. Note that special form �10� has led to a kernel in
the integral equation that is precisely this single-step
probability density even though the times t and t� are not
necessarily associated with jumping times. Equation �14�
has a clear physical interpretation: it considers all possible

ways for a particle to be at point r at time t by looking at the
positions r� at prior times t� and then tracking their sub-
sequent arrival at the desired point. If the point under con-
sideration is the initial position, the equation also tracks
the possibility that the particle has not moved by time t.
In the language of Hughes �14� �Sec. 3.2.8�, Eq. �14� corre-
sponds to a “partition over the last step.” The equation
counts only those particles that do not evanesce in the pro-
cess.
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Finally, we shall implement one additional simplifying
assumption widely adopted in the literature, namely, that the
waiting time and jump displacement distributions are mutu-
ally independent, so we can write

��r,t� = ��t���r� . �15�

Different fractional diffusion equations then arise depending
on the behaviors of the tails of these distributions. We pro-
ceed to present various cases in the next section. Our deriva-
tions closely follow known results presented in a number of
helpful review sources such as the reports of Metzler and
Klafter �11,12� and a recent multiauthored compendium on
anomalous processes �13�. Our main purpose here is to add
evanescence to the mix and to determine how the evanes-
cence “reaction” enters these equations. In particular, when
��t� has long tails and ��r� does not, we will arrive at a
fractional subdiffusion equation. When, on the other hand,
��r� has long tails but ��t� does not, we arrive at a superdif-
fusive equation. The most “anomalous” case occurs when
both have long tails, which leads to a bifractional equation.

We end this section with a practical consideration. Instead
of working with the probability density of interest,
w�r , t �r0 ,0�, it turns out to be more convenient to work with
a ratio introduced earlier,

��r,t�r0,0� =
w�r,t�r0,0�

�r,t�
. �16�

Dividing Eq. �14� by �r , t� and taking the Fourier �for
space�-Laplace �for time� transform, we find

�̂̃�q,u� = �̂�q��̃�u��̂̃�q,u� + �̃�u�
eiq·r0

�r0,0�
. �17�

Together with the relation

�̃�u� =
1

u
−

�̃�u�
u

�18�

and the convolution theorems for both Fourier and Laplace
transforms, we arrive at the Fourier-Laplace transformed
reaction-diffusion equation with evanescence, equivalent to
Eq. �14� when the memory kernel can be factorized as in Eq.
�15�,

u�̂̃�q,u� = u�̂�q��̃�u��̂̃�q,u� + �1 − �̃�u��
eiq·r0

�r0,0�
. �19�

IV. FRACTIONAL DIFFUSION EQUATIONS
WITH EVANESCENCE

In this section we proceed to deduce the fractional diffu-
sion equations appropriate for long-tailed waiting time dis-
tributions, for long-tailed jump distance distributions, and for
both simultaneously.

A. Fractional subdiffusive equation with evanescence

Subdiffusion is characterized by a waiting time distribu-
tion with a tail so long that it lacks integer moments, that is,

��t� �
�

�D
	 t

�D

−�−1

, �20�

with 0���1. Here � is a dimensionless constant and �D is
a characteristic mesoscopic time �but not a first moment�.
The small-u behavior of the Laplace transform of the waiting
time distribution reads as

�̃�u� � 1 − Au�, �21�

with A=�−1���1−���D
� .

We take the jump distance distribution to be “normal”;
that is, it has finite moments. In this case, we are interested in
small values of q= �q�, for which one can expand the Fourier
transform of the jump displacement distribution and retain
only the first two terms,

�̂�q� � 1 −
�2q2

2
+ O�q4� , �22�

where the second moment,

�2 =� drr2��r� , �23�

is assumed to be finite.
Substitution of expansions �21� and �22� into Eq. �19� and

neglect of a term of O�uq2� �which is unimportant in the
asymptotic regime of small wave vectors and low frequen-
cies� leaves us with

u�̂̃�q,u� −
eiq·r0

�r0,0�
= − u1−��2q2

2A �̂̃�q,u� . �24�

Laplace and Fourier inversions then yield

���r,t�r0,0�
�t

= K� 0Dt
1−��r

2��r,t�r0,0� , �25�

where we have introduced the anomalous diffusion coeffi-
cient

K� =
�2

2A
. �26�

The integrodifferential operator 0Dt
1−� acting on y�t� is de-

fined as the inverse Laplace transform of u1−�ỹ�u�,

Lu→t
−1 �u1−�ỹ�u� = 0Dt

1−�y�t� , �27�

and is closely related to the Riemann-Liouville operator

0Dt
1−� defined by

0Dt
1−�f�r,t� =

1

����
�

�t
�

0

t

dt�
f�r,t��

�t − t��1−� . �28�

In fact, both operators 0Dt
1−� and 0Dt

1−� are the same when
applied to sufficiently regular functions f�t� as determined by
the condition limt→0�0

t d��t−���−1f���=0 �see pages 384 and
118 in �13��. This condition is satisfied for all situations of
interest here.

In terms of the probability density w, Eq. �25� explicitly
yields the fractional reaction-subdiffusion equation
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�w�r,t�r0,0�
�t

= �r,t�K� 0Dt
1−��r

2 1

�r,t�
w�r,t�r0,0�

+
̇�r,t�
�r,t�

w�r,t�r0,0� . �29�

Equation �29� is the first mesoscopic highlight of our paper
in that all further results for subdiffusion are obtained as
special cases. It is perhaps the most general fractional sub-
diffusion equation associated with a CTRW with evanes-
cence for a single-species system obtained to date. It is not as
general as one might hope because of the rather stringent
condition �Eq. �10��, but it does include a number of cases
treated in recent work. Notably, the results of Sokolov et al.
�3� and the explicit results in Henry et al. �9� are recovered if
we set �r , t��exp�−kt�. More complex cases will be dis-
cussed in Sec. IV B.

As a final note in this subsection, we mention that under
the same conditions that led to our subdiffusive fractional
Eq. �29� with a Riemann-Liouville operator, we can arrive at
an equivalent fractional subdiffusion equation of Caputo
form. It turns out to be

��

�t�

w�r,t�r0,0�
�r,t�

= K��r
2w�r,t�r0,0�

�r,t�
. �30�

This is in general not our preferred choice because of the
difficulties in carrying out the Caputo fractional derivative of
a product.

B. Beyond exponential evanescence

We next proceed to discuss the connection between Eq.
�29� and the recent work of Fedotov �15�, which in turn
recovers results in �9�. In the language of Fedotov translated
to our work, his choice corresponds to the particular selec-
tion �in one dimension�

�x,t� = exp��
�

t

R���x,t���dt�� . �31�

Here in Fedotov’s language the chemical reaction respon-
sible for the evanescence is assumed to follow the law of
mass action so that the reaction term is of the form R����,
with the rate coefficient thus defined as

R���x,t�� = � �̇

�
�

Reaction
. �32�

In turn, ��x , t� is the density of �surviving� particles at point
x at time t, which in a one-particle system is related to our
probability density via an integration over the distribution
p�x0� of all possible initial positions,

��x,t� =� dx0p�x0�w�x,t;x0,0� . �33�

The time � in Eq. �31� is an arbitrary reference time that can
be chosen to be zero. Specifically, the choice �=0, substitu-
tion of Eq. �31� into our general Eq. �29�, and subsequent
integration over the initial condition leads exactly to Eq. �23�

in Ref. �15�, which is thus again a special case of our more
general formalism. The result is especially noteworthy be-
cause the probability of spontaneous death is not set a priori
but depends on the changing density itself. This leads to an
interesting complex nonlinear problem.

A less demanding version of the above problem arises if
the reaction rate depends only on the mean global density

�̄�t� =
1

V
� dr��r,t� , �34�

where V is the system volume. The corresponding equations
for the homogeneous rate coefficient and the associated
-function are, respectively,

R��̄�t�� =
1

�̄

d�̄

dt
, �35�

and �taking �=0 in one dimension�

�x,t� = �t� = exp��
0

t

R��̄�t���dt�� =
�̄�t�
�̄�0�

. �36�

Now the physical meaning of �t� in this case becomes clear:
in a many-particle system it is simply the fraction of surviv-
ing particles in the system. Then, according to Eq. �10�, the
probability ��t , t�� that a randomly chosen evanescent par-
ticle present at time t� in the system survives up to time t is
�̄�t� / �̄�t��. This is the correct result that one would expect
from the interpretation of ��t , t�� as a conditional probabil-
ity, namely, the survival probability �̄�t� / �̄�0� of a given par-
ticle up to time t must be equal to the probability ��t , t�� that
it does not die during the interval �t� , t� provided that it sur-
vived up to time t�, multiplied by the probability �̄�t�� / �̄�0�
for this condition to be fulfilled. Using Eq. �36� in Eq. �29�,
the equation for the kinetics of individual particles subject to
a density-dependent homogeneous rate coefficient then fol-
lows,

�w�r,t�r0,0�
�t

= �̄�t�K� 0Dt
1−��r

2 1

�̄�t�
w�r,t�r0,0�

+
�̇̄�t�
�̄�t�

w�r,t�r0,0� . �37�

Going even further, note that Eq. �29� is not restricted to the
case of a density-dependent rate coefficient. It goes further
�and is a key difference from existing work� in allowing for
the possibility of an external control mechanism of the eva-
nescence rate coefficient not necessarily coupled to the in-
stantaneous particle population. Indeed, one can prescribe a
reactivity field R�r , t��0 and subsequently set �r , t�
=exp��0

t
R�r , t��dt� which is then the probability that the

particle does not vanish up to time t given that it stays at r all
the time �immobile reactant limit�. Consequently, our as-
sumption �10� implies that the probability for a particle to
vanish during the time interval �t� , t� if it is known to be at
position r� at time t� and at position r at time t depends only
on the instantaneous values of the local rate coefficient at the
start and end points via the ratio of the associated survival
probabilities for particles, respectively, fixed at r� and r.
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However, the probability that the particle evanesces during
this time interval does not depend on the particular trajectory
followed by the particle between these two points.

C. Fractional superdiffusive equation with evanescence

In Sec. IV A we dealt with a waiting time distribution
with long tails together with a “normal” distribution of dis-
placements, and the end result was a fractional subdiffusion
equation. In this subsection we consider a “normal” waiting
time distribution along with a distribution of displacements
that has long tails. This will lead to a superdiffusive equa-
tion.

We thus consider a waiting time distribution with a finite
mean waiting time � between steps so that its Laplace trans-
form at small argument �corresponding to long times� be-
haves as

�̃�u� � 1 − �u . �38�

For the jump length distribution we assume an inverse
power-law behavior,

��r� �
��

r1+� �39�

with 1���2 and r= �r�. Its variance diverges, and its Fou-
rier transform is

�̂�q� � 1 − ��q�, �40�

where q= �q�. The steps to follow are now straightforward.
Again, it turns out to be convenient to work with Eq. �17�.
Substitution of the above expansions into this equation, re-
tention of leading terms, and some simple algebra leads to

u�̂̃�q,u� −
eiq·r0

�r0,0�
= −

��

�
q��̂̃�q,u� , �41�

or, inverting the time Laplace transform,

�

�t
�̂�q,t� = −

��

�
q��̂�q,t� . �42�

Let �� /�r� be the operator defined by the following Fourier
transform property,

F� ��f�r�
�r� � = − q�f�q� . �43�

We can thus write

���r,t�r0,0�
�t

= K
��

�r���r,t�r0,0� , �44�

where we have introduced the anomalous diffusion coeffi-
cient

K =
��

�
�45�

For a one-dimensional system �� /�r�=�� /�x� is the Riesz
operator �11–13�.

Undoing variable transformation �16�, we finally arrive at
the fractional reaction-superdiffusion equation,

�w�r,t�r0,0�
�t

= �r,t�K
��

�r�

1

�r,t�
w�r,t�r0,0�

+
̇�r,t�
�r,t�

w�r,t�r0,0� . �46�

This is the second important mesoscopic result of our paper,
namely, the derivation of a reaction-superdiffusion fractional
equation starting from a CTRW.

D. Bifractional equation with evanescence

Finally, in this subsection we combine subdiffusion and
superdiffusion in that we choose a waiting time distribution
that lacks finite moments �and thus leads to subdiffusion by
itself� with a jump distance distribution that also lacks mo-
ments �and thus leads to superdiffusion by itself�. Our meth-
odology directly lends itself to this combination.

We choose the waiting time distribution of Eq. �20� whose
Laplace transform is given in Eq. �21�, and the jump distri-
bution Eq. �39� whose Fourier transform is given in Eq. �40�.
The steps to follow are now essentially the same as in the
previous sections, with appropriate care given to the reten-
tion of the leading contributions. After some algebra we find

���r,t�r0,0�
�t

= K 0Dt
1−� ��

�r���r,t�r0,0� . �47�

Undoing variable transformation �16�, we finally obtain the
fractional reaction-sub/superdiffusion equation,

�w�r,t�r0,0�
�t

= �r,t�K 0Dt
1−� ��

�r�

1

�r,t�
w�r,t�r0,0�

+
̇�r,t�
�r,t�

w�r,t�r0,0� . �48�

This is our third mesoscopic result and is unique in that it
combines both subdiffusion and superdiffusion in a single
equation.

V. SUMMARY AND OUTLOOK

In this paper we have approached the problem of describ-
ing the evolution equation of particles that move in a me-
dium in which they can also die as they move. The model is
based on a CTRW description of the motion of the particles.
The motion may be anomalous �subdiffusive or superdiffu-
sive� and the particles may die at a rate that can depend on
position as well as time. We are able to capture the models
that have been explicitly considered in the literature, e.g., the
space-independent exponential evanescence model of Refs.
�3,9�, but our model can also capture complicated position
dependences of the evanescent behavior such as that of the
model of Fedotov �15� that render the problem nonlinear. We
confirm in a more general way than had been established
previously the known result that the interplay of the �anoma-
lous� motion and the evanescence is quite complex and that
in general it cannot be represented as the sum of two pro-
cesses the way it can in normal reaction-diffusion scenarios.
Having said this, we note as an aside that in certain cases
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�e.g., that of evanescence at a constant rate r=k� it is possible
to reduce the reaction-subdiffusion problem to a pure subdif-
fusion problem by a proper transformation �15�, much in the
spirit of Danckwerts’ solution for the problem of classical
diffusion with a linear reaction �16�.

We started by constructing an integral equation for the
probability density of finding a �surviving� particle at a loca-
tion r at time t given that it stepped on location r0 at time
t=0. To proceed from this CTRW-based equation to the frac-
tional equations, we found it necessary to make some spe-
cific assumptions about the form of the rate of evanescence.
The kernel of the integral equation under these conditions is
simply related to the single-step jump probability density of
the underlying CTRW. In spite of the constraints, our models
include as special cases many of the explicit models that
have been presented in the literature �3,9,15�.

Once we have arrived at an integral equation, the deriva-
tion of various fractional diffusion equations relies on fairly
standard procedures dictated by the form of the single-step
probability properties, except that we have added evanes-
cence to the picture and are thus able to see the complex
interplay of motion and evanescence, at least under our as-
sumptions. Eventually we hope to be able to relax some of
our more stringent assumptions. We also plan to include
other particle loss mechanisms such as bimolecular reactions
in our scheme, possibly at the expense of introducing some
kind of mean-field assumption to deal with the complexity
arising from effects of cooperativity. The existing formalism
can be adapted to some situations where instead of evanes-
cence we have particle sources, or perhaps sources and sinks
simultaneously. However, in some cases particle sources re-
quire special scrutiny. For example, special care is needed
when dealing with particles that give rise to offspring be-
cause one must specify the rules surrounding the location
and time of creation of new particles, especially when the
pertinent jump and waiting time distributions have long tails.

In addition to these long-term goals, we are in the process
of applying our results to a number of specific systems. We
have, for instance, considered the problem of the survival
probability P�t� of an immobile target that is surrounded by a

d-dimensional sea of evanescent traps whose motion may be
subdiffusive if the waiting times for motion are too long,
or superdiffusive if the jumps are sufficiently long, or a mix-
ture of both. For the one-dimensional subdiffusive case,
we have been able to rederive the key result ln�P�t��
�−�0

t dt��̄�t��t��/2−1 obtained in �17� by a different method
�here �̄�t� stands for the decaying mean density of traps�. The
starting point to recover the above formula is Eq. �37� de-
scribing the kinetics of a single trap. In the route to the
solution one can apply similar techniques to the ones em-
ployed in �18� for the nonevanescent case. The above result
for the survival probability as well as higher dimensional
extensions thereof are objects of our current research.

Finally, we end with an interesting observation that does
not appear obvious. One might, instead of Eq. �14�, have
been motivated to write the integral equation

w�r,t�r0,0� =� dr��
0

t

dt���r� − r0,t��
�r�,t��
�r0,0�

w�r,t�r�,t��

+ ��t�
�r0,t�
�r0,0�

��r − r0� . �49�

Again in the language of Hughes �14�, this corresponds to a
“partition over the first step.” What is interesting is that we
are not able to arrive at any reasonable fractional diffusion
equation starting from this integral equation, in any case not
by the methods followed in this paper for Eq. �14� even
though one might have expected a certain symmetry to the
situation. This, too, is a question to be explored further.
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