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Detrended fluctuation analysis �DFA� is an improved method of classical fluctuation analysis for nonstation-
ary signals where embedded polynomial trends mask the intrinsic correlation properties of the fluctuations. To
better identify the intrinsic correlation properties of real-world signals where a large amount of data is missing
or removed due to artifacts, we investigate how extreme data loss affects the scaling behavior of long-range
power-law correlated and anticorrelated signals. We introduce a segmentation approach to generate surrogate
signals by randomly removing data segments from stationary signals with different types of long-range corre-
lations. The surrogate signals we generate are characterized by four parameters: �i� the DFA scaling exponent
� of the original correlated signal u�i�, �ii� the percentage p of the data removed from u�i�, �iii� the average
length � of the removed �or remaining� data segments, and �iv� the functional form P�l� of the distribution of
the length l of the removed �or remaining� data segments. We find that the global scaling exponent of positively
correlated signals remains practically unchanged even for extreme data loss of up to 90%. In contrast, the
global scaling of anticorrelated signals changes to uncorrelated behavior even when a very small fraction of the
data is lost. These observations are confirmed on two examples of real-world signals: human gait and com-
modity price fluctuations. We further systematically study the local scaling behavior of surrogate signals with
missing data to reveal subtle deviations across scales. We find that for anticorrelated signals even 10% of data
loss leads to significant monotonic deviations in the local scaling at large scales from the original anticorrelated
to uncorrelated behavior. In contrast, positively correlated signals show no observable changes in the local
scaling for up to 65% of data loss, while for larger percentage of data loss, the local scaling shows overesti-
mated regions �with higher local exponent� at small scales, followed by underestimated regions �with lower
local exponent� at large scales. Finally, we investigate how the scaling is affected by the average length,
probability distribution, and percentage of the remaining data segments in comparison to the removed seg-
ments. We find that the average length �r of the remaining segments is the key parameter which determines the
scales at which the local scaling exponent has a maximum deviation from its original value. Interestingly, the
scales where the maximum deviation occurs follow a power-law relationship with �r. Whereas the percentage
of data loss determines the extent of the deviation. The results presented in this paper are useful to correctly
interpret the scaling properties obtained from signals with extreme data loss.
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I. INTRODUCTION

In real-world signals data can be missing or unavailable to
a very large extent, especially in archeological, geological,
and physiological recordings which often once recorded in
the past cannot be generated again. Knowing the effects
which data loss may have on the correlations and other dy-
namical properties of the output signals of a given system is
instrumental in accurately quantifying and modeling the un-
derlying mechanisms driving the dynamics of the system.
Significant data loss can also be caused by failure of the data
collection equipment, as well as by the removal of artifacts
or noise-contaminated data segments. To correctly interpret
results obtained from correlated signals with missing data, it
is important to understand how the dynamical properties of
such signals are affected by the degree of data loss. Here we

systematically investigate how loss of data changes the scal-
ing properties of various long-range power-law anticorre-
lated and positively correlated signals. Specifically, we de-
velop a segmentation approach to generate surrogate signals
by randomly removing data segments from stationary long-
range power-law correlated signals and we study how the
correlation properties are affected by �i� the percentage of
removed data, �ii� the average length of the removed �or
remaining� data segments, and �iii� the functional form of the
probability distribution of the removed �remaining� seg-
ments. We utilize the detrended fluctuation analysis �DFA� to
quantify the effect of extreme data loss on the scaling prop-
erties of long-range correlated signals.

Scaling �fractal� behavior was first encountered in a class
of physical systems �1–3� which for a given “critical” value
of their parameters, exhibit complex organization among
their individual components, leading to correlated interac-
tions over a broad range of scales. This class of complex
systems are typically characterized by �i� multicomponent*Corresponding author; plamen@buphy.bu.edu
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nonlinear feedback interactions, �ii� nonequilibrium output
dynamics, and �iii� high susceptibility and responsiveness to
perturbations. Scaling behavior has been found in a diverse
group of systems—ranging from earthquakes, to traffic jams
and economic crashes, to neuronal excitations as well as the
dynamics of integrated physiologic systems under neural
control—and has been associated with the underlying
mechanisms of regulation of these systems �4,5�. The output
signals of such systems exhibit continuous fluctuations over
multiple time and/or space scales �6,7�, where the amplitudes
and temporal/spatial organization of the fluctuations are char-
acterized by absence of dominant scale, i.e., scale-invariant
behavior. Due to the nonlinear mechanisms controlling the
underlying interactions, the output signals of these systems
are also typically nonstationary, which masks the intrinsic
correlations. Traditional methods such as power spectrum
and autocorrelation analysis �8–10� are not suitable for non-
stationary signals.

DFA is a robust method suitable for detecting long-range
power-law correlations embedded in nonstationary signals
�11,12�. It has been successfully applied to a variety of fields
where scale-invariant behavior emerges such as DNA
�11,13–26�, cardiac dynamics �27–46�, human locomotion
�5,47–49�, circadian rhythm �50–53�, neural receptors in bio-
logical systems �54�, seismology �55,56�, meteorology �57�,
climate temperature fluctuations �58–63�, river flow and dis-
charge �64,65�, and economics �66–79�. The DFA method
may also help identify different states of the same system
exhibiting different scaling behavior—e.g., the DFA scaling
exponent � for heart-beat intervals is significantly different
for healthy and sick individuals �27,32,44� as well as for
wake and sleep states �30,35,40,45,52�.

Elucidating the intrinsic mechanisms of a given system
requires an accurate analysis and proper interpretation of the
dynamical �scaling� properties of its output signals. It is of-
ten the case that the scaling exponent quantifying the tempo-
ral �spatial� organization of the systems’ dynamics across
scales is not always the same, but depends on the scale of
observation, leading to distinct crossovers—i.e., the value of
the scaling exponent may be different for smaller compared
to larger scales. Such behavior has been observed for diverse
systems, for example: �i� the spontaneous motion of micro-
beads bound to the cytoskeleton of living cells as quantified
by the mean-square displacement does not exhibit a Brown-
ian motion but instead undergoes a transition from subdiffu-
sive to superdiffusive behavior with time �80�; �ii� cardiac
dynamics of healthy subjects during sleep are characterized
by fluctuations in the heartbeat intervals exhibiting a cross-
over from a higher scaling exponent �stronger correlations� at
small time scales �from seconds up to a minute� to a lower
scaling exponent �weaker correlations� at large time scales
�from minutes to hours�, associated with changes in neural
autonomic control during sleep �30,81�; and �iii� stock mar-
ket dynamics where both absolute price returns and inter-
trade times exhibit a crossover from a lower scaling expo-
nent at small time scales �up to a trading day� to much higher
exponent at large time scales �from a trading day to many
months�, a behavior consistent for all companies on the mar-
ket �69,79�. However, crossovers may also be a result of
various types of nonstationarities and artifacts present in the

output signals, which, if not carefully investigated, may lead
to incorrect interpretation and modeling of the underlying
mechanisms regulating the dynamics of a given system �44�.

In previous studies, we have systematically investigated
the effects of various types of nonstationarities, data prepro-
cessing filters and data artifacts on the scaling behavior of
long-range power-law correlated signals as measured by the
DFA method �82–84�. In particular, we studied a type of
nonstationarity which is caused by the presence of disconti-
nuities �gaps� in the signal, i.e., how randomly removing data
segments of fixed length affects the scaling properties of
long-range power-law correlated signals �83�. Such disconti-
nuities may arise from the nature of the recordings—e.g.,
stock exchange data are not recorded during the nights,
weekends and holidays �66–73�. In these situations, discon-
tinuities correspond to segments of fixed size.

Alternatively, discontinuities may be caused by the fact
that �i� part of the data is lost due to various reasons and/or
�ii� some noisy and unreliable portions of continuous record-
ings �e.g., measurement artifacts� are discarded prior to
analysis �27–39,45,46�. In these cases, the lengths of the lost
or removed data segments are random, and may follow a
certain type of distribution which can often be related to the
process responsible for the removal or loss of data—e.g., a
data acquisition device which fails randomly with a given
probability p will result in a geometric distribution P�l�= �1
− p�lp with mean �=1 / p, where l is the length of the data
lost segments. Thus, investigating the effect of data loss is
essential to determine the true correlation properties of the
signal output of a given system.

To address this question, we propose a segmentation al-
gorithm to generate surrogate signals by randomly removing
data segments from long-range power-law correlated signals
with a priori known scaling properties, and we investigate
the effects of the percentage of the removed data, different
average lengths, and different distributions of removed data
segments. We compare the scaling behavior of the original
signals with the scaling of the surrogate signals by system-
atically studying changes in the DFA scaling exponent. We
utilize local scaling exponents to reveal subtle deviations and
to characterize changes in the scaling behavior at different
scales in signals with segment removed. We note that in our
investigation we consider the effect of data loss on signals
where the scaling behavior remains constant for the duration
of the observations. Signals comprised of segments charac-
terized by different scaling exponents have been considered
elsewhere �83�.

This paper is structured as follows: in Sec. II A, we
briefly describe the DFA method. In Sec. II B we describe
how to generate stationary long-range power-law correlated
signals. In Sec. II C we introduce an algorithm for randomly
removing data segments from these signals to test the effects
of data loss on the scaling behavior. In Sec. III A, we study
the effect of data loss on the global scaling of positively
correlated and anticorrelated artificially generated signals
with different length, and we show examples on two differ-
ent sets of empirical data. In Sec. III B we compare the local
scaling properties of correlated signals before and after data
removal by considering the effect of several parameters of
the removed segments. In Sec. III C we consider the inverse
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situation—instead of focusing on the properties of the re-
moved segments we investigate how the correlations/scaling
of the signal depend on the properties of the remaining data
segments. We summarize and discuss our findings in Sec. IV.

II. METHODS

A. Detrended fluctuation analysis (DFA)

The DFA is a random walk based method �11�. It is an
improvement of the classical fluctuation analysis �FA� for
nonstationary signals where embedded polynomial trends
mask the intrinsic correlation properties in the fluctuations
�11�. The performance of DFA for signals with different
types of nonstationarities and artifacts has been extensively
studied and compared to other methods of correlation analy-
sis �12,82–88�. The DFA method involves the following
steps �11�:

�i� A given signal u�i� �i=1, ... ,N, where N is the length of
the signal� is integrated to obtain the random walk profile
y�k���i=1

k �u�i�− �u��, where �u� is the mean of u�i�.
�ii� The integrated signal y�k� is divided into boxes of

equal length n.
�iii� In each box of length n we fit y�k� using a polynomial

function of order � which represents the trend in that box.
The y coordinate of the fit curve in each box is denoted by
yn�k�. When a polynomial fit of order � is used, we denote
the algorithm as DFA-�. Note that, due to the integration
procedure in step �i�, DFA-� removes polynomial trends of
order �−1 in the original signal u�i�.

�iv� The integrated profile y�k� is detrended by subtracting
the local trend yn�k� in each box of length n

Y�k� � y�k� − yn�k� . �1�

�v� For a given box length n, the root-mean-square �rms�
fluctuation function for this integrated and detrended signal
is calculated

F�n� �	 1

N
�
k=1

N

�Y�k��2. �2�

�vi� The above computation is repeated for a broad range
of box lengths n �where n represents a specific space or time
scale� to provide a relationship between F�n� and n.

A power-law relation between the root-mean-square fluc-
tuation function F�n� and the box size n, i.e., F�n�
n�, in-
dicates the presence of scaling-invariant behavior embedded
in the fluctuations of the signal u�i�. The fluctuations can be
characterized by a scaling exponent �, a self-similarity pa-
rameter which represents the long-range power-law correla-
tion properties of the signal. If �=0.5, there is no correlation
and the signal is uncorrelated �white noise�; if ��0.5, the
signal is anticorrelated; if ��0.5, the signal is positively
correlated; and �=1.5 indicates Brownian motion �integrated
white noise�. For stationary signals with long-range power-
law correlations, the value of the scaling exponent � is re-
lated to the exponent � characterizing the power spectrum
S�f�= f−� of the signal, where �=2�−1 �14�. Thus, the spe-
cial case of 1 / f noise, where �=1, observed in various

physiological and biological system dynamics, correspond-
ing to �=1. Since the power spectrum of stationary signals is
the Fourier transform of the autocorrelation function, for sig-
nals with scale-invariant long-range positive correlation and
��1, one can find the following relationship between the
autocorrelation exponent � and the power spectrum exponent
� for signals with scale-invariant long-range correlations: �
=1−�=2−2�, where � is defined by the autocorrelation
function C���=�−�, and should satisfy 0���1 �89�.

We note that for anticorrelated signals, the scaling expo-
nent � obtained from the DFA method overestimates the true
correlations at small scales n �82�. To avoid this problem,
one needs first to integrate the original anticorrelated signal
and then apply the DFA method. The correct scaling expo-
nent can thus be obtained from the relation between n and
F�n� /n �instead of F�n�� �see Fig. 4�a��. This procedure is
applied for all cases of anticorrelated signals in this study. In
our analysis in the following sections we apply DFA-2. The
choice of DFA-2 is dictated by the fact that this order of
DFA-l can accurately quantify the scaling behavior of signals
with exponents in the range 0���3 �85�, which covers
practically all signals generated by real-world systems.
Moreover, earlier investigations have demonstrated that
DFA-2 is sufficient to accurately quantify a broad range of
nonstationary signals generated by different physiologic
dynamics—e.g., for heartbeat and gait dynamics the expo-
nent � obtained from higher order DFA-l is not significantly
different compared to � obtained from DFA-2 �49�. Further,
deviations from scaling which appear at small scale become
more pronounced in higher order DFA-l �89�. In order to
provide an accurate estimate of F�n�, the largest box size n
we use is n=N /8, where N is the signal length.

B. Procedure to generate stationary signals with long-range
power-law correlations

We use a modified Fourier filtering technique �90� to gen-
erate stationary long-range power-law correlated signals u�i�
�i=1,2 , . . . ,N� with mean �u�i��=0 and standard deviation
	=1. The correlations of u�i� are characterized by a Fourier
power spectrum of a power-law form S�f�
 f−�, where f is
the frequency. By manipulating the Fourier spectrum of ran-
dom Gaussian-distributed sequences, we generate signal u�i�
with desired power-law correlations. This method consists of
the following steps:

�i� first, we generate a Gaussian-distributed sequence 
�i�
with mean �
�i��=0 and standard deviation 	
=1, and we
calculate its Fourier transformation 
̂�f�.

�ii� Next, we generate û�f� using the following transfor-
mation:

û�f� = 
̂�f� · f−�/2, �3�

where û�f� is the Fourier transform of the desired correlated
signal u�i� characterized by a Fourier power spectrum of the
form

S�f� = �û�f��2 
 f−�. �4�

�iii� We calculate the inverse Fourier transform of û�f� to
obtain u�i�. The generated stationary signal u�i� is then nor-
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malized to zero mean and unit standard deviation.

C. Algorithm to generate surrogate signals with randomly
removed segments

We introduce a segmentation approach to generate surro-
gate nonstationary signals ũ�i� by randomly removing data
segments from a stationary correlated signal u�i� and stitch-
ing together the remaining parts of u�i�. Such “cutting” pro-
cedure is often used in the preprocessing of data prior to
analysis in order to eliminate, for example, segments of data
artifacts. The proposed segmentation approach allows the
simulation of empirical data series where data segments are
lost or removed. The surrogate signals ũ�i� are characterized
by four parameters: �i� the DFA scaling exponent � of the
original signal u�i�, �ii� the percentage p of the data removed,
�iii� the average length � of the removed data segments as
well as �iv� the functional form P�l� of the distribution of the
length l of the removed data segments.

To generate a surrogate signal ũ�i� from the original sig-
nal u�i�, we first construct a binary sequence g�i� with the
same length N as u�i�. In our algorithm the positions i where
g�i�=0 will correspond to the positions at which data points
in u�i� are removed, while the positions where g�i�=1 will
correspond to the positions in u�i� where data points are
preserved �Fig. 1�.

We developed the following method to construct the bi-
nary series g�i�:

�i� we generate the lengths lj �j=1,2 , . . . ,M� of the seg-
ments that will be removed from the original signal u�i� by
randomly drawing integer numbers from a given probability
distribution P�l� with mean value �. Each integer number
drawn from P�l� represents the length of a segment removed
from u�i�. The process continues until the summation of the
lengths of all removed segments becomes equal or exceeds a
predetermined amount pN of data to be removed, i.e.,

�
j=1

M

lj � pN , �5�

where M is the minimal number to fulfill Eq. �5�. Eventually,
we will cut the size of the last segment to obtain the exact
fraction pN of the lost data.

�ii� We append a “1” to each element in the series �lj

which will serve as a separator between two adjacent seg-

ments �see step �iv��, and results in a new series ��lj ,1�
.
Note that now the summation over the series yields pN+M.

�iii� We append �N− �pN+M�� number of elements ‘‘1’’ to
the end of the series ��lj ,1�
 to obtain an extended series
where the sum of all elements is N, equal to the length of the
original series u�i�. This extended series is then shuffled
leading to a set of M elements �lj ,1� randomly scattered in a
“sea” of �N− �pN+M�� of elements ‘‘1’’ �see Eq. �6��.

�iv� Next, we replace the numbers lj in Eq. �6� with lj
elements of zeros, to obtain a binary series g�i� as shown in
Eq. �7�.
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FIG. 2. Examples of theoretical probability density for �a�
Gaussian distribution and �b� power-law distribution used in our
simulations of different situations of data loss. The parameters for
the functional form of distributions are determined by the average
length � we chose for each simulation and by specific boundary
conditions, i.e., for the Gaussian distribution, we set the probability
of the smallest segment length P�l=1�=1 / pN, and for the power-
law distribution we set the probability of the largest segment length
P�l= lmax�=1 / pN �see text for details�.
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FIG. 3. Illustration of data removal from stationary correlated
signals. Removed data segments �shaded regions� are randomly po-
sitioned within the original signal and their lengths l are drawn from
an exponential distribution P�l�= 1

�exp�−l /�� with average value �.
An average length �=10 is chosen for �a� the anticorrelated signal
�DFA scaling exponent �=0.3� and �b� the positively correlated
signal ��=1.3�. Larger segments with �=50 are removed from �b�
anticorrelated signal ��=0.3� and �d� positively correlated signal
��=1.3�.
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FIG. 1. Illustration of generating a surrogate signal ũ�i� by re-
moving data points from the original signal u�i� according to a
binary series g�i�. The positions i where g�i�=0 �or 1� correspond to
the positions at which data points in u�i� are removed �or preserved�
to obtain ũ�i�.
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�. . . ,1, �lj,1�, 1, . . . ,1, �lj+1,1�, �lj+2,1�, 1, . . .
 , �6�

�. . . ,1,0, . . . ,0,1, 1, . . . ,1,0, . . . ,0,1, 0, . . . ,0,1,1, . . .� .
�7�

Note that, in step �iii� of our algorithm, the shuffling of
the extended series may lead to two or more �lj ,1� elements,
which represent removed data segments, to become direct
neighbors �Eq. �6��. Adding ‘‘1’’ to each element �lj
 in step
�ii� thus ensures that adjacent �lj ,1� elements in the shuffled
extended series in Eq. �6� would not allow two or more sepa-
rate removed segments to be merged leading to the formation
of removed segments with longer average length � and dif-
ferent form of their probability distribution compared to the
original choice in step �i� of the algorithm.

Finally, the surrogate signal ũ�i� is obtained by simulta-
neously scanning the original signal u�i� and the binary se-
ries g�i� from Eq. �7�, removing the i-th element in u�i� if
g�i��0 and concatenating the segments of the remaining
data �Fig. 1�.
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FIG. 4. �Color online� Effect of data loss on the scaling behavior
of long-range correlated signals with length N=220 �before data
removal�, zero mean and unity standard deviation. The lengths of
the removed segments are drawn from an exponential distribution
with mean �=10. �a� Scaling behavior of anticorrelated signals
�scaling exponent ��0.5� with a data loss of 10% �blue circles�,
65% �red triangles�, and 90% �green squares�. Note that, to obtain
an accurate estimation of the DFA scaling exponent � for anticor-
related signals, we first integrate the signals and then we apply the
DFA method. Thus, to obtain the correct scaling exponent for anti-
correlated signals we divide F�n� by n to account for the integration
of the signals and next we plot F�n� /n vs the scale n �see also Sec.
II A and Fig. 15 in �82��. �b� Scaling behavior of positively corre-
lated signals �scaling exponent ��0.5� with 10%, 65%, and 90%
data loss. The scaling behavior of strongly anticorrelated data is
dramatically changed even when only 10% of the data are removed.
A crossover at scale nx indicates a transition �arrow�, due to loss of
data in the signals, from the original anticorrelated behavior with
�=0.1 to an uncorrelated behavior with �=0.5. In contrast, for
positively correlated signals, i.e., 0.5���1.5 only an extreme data
loss of 90% leads to small deviations from the original scaling
behavior. This effect becomes weaker for increasing values of �. As
expected, for �=0.5 �white noise� and �=1.5 �Brownian noise� data
removal does not affect the scaling behavior.
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FIG. 5. �Color online� Effect of data loss on the scaling behavior
of short signals �N=4000 before data removal�. �a� Removing up to
50% of the data �i.e., 2000 data points remain� does not have an
observable effect on the scaling behavior of positively correlated
signals and leads to small deviations from the original scaling be-
havior in anticorrelated signals. �b� Extreme data loss of 90% �i.e.,
only 400 data points remain� leads to more pronounced deviations
from the original scaling behavior. In general, the deviations are
smaller with larger average length � of removed segments.
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In this study, we consider four different functional forms
of the probability distribution P�l� of segment lengths l, i.e.,
exponential, Gaussian, � and power-law distributions, and
we use the average length � of the removed data segments as
a common parameter to compare the effect of removed data
segments with different distributions. For the exponential
and � distribution, the average length � is sufficient to de-
termine their probability distribution functions. The Gaussian
and power-law distributions require additional parameters to
be clearly defined, and thus, we need to introduce boundary
conditions, so that these parameters can be related to the
average length �.

The functional form of the Gaussian distribution is

P�l� =
1

	2
	2
exp�−

�l − ��2

2	2 � , �8�

where � is the average and 	 is the standard deviation of the
segment lengths l. Since with a fixed small 	, the Gaussian
distribution is not much different from a � distribution, and
with a fixed large 	, the Gaussian distribution resembles an
exponential distribution, we relate 	 with � in such a way, as
a boundary condition, that the smallest segment �l=1� can
only be obtained �statistically� once in each realization, i.e.,
P�l=1��1 / pN, where N is the length of the original signal,
and p is the percentage of data loss.

The functional form of a power-law distribution is given
by

P�l� = alk, l � �1,lmax� , �9�

with �1
lmaxP�l�dl=1 and the average length �=�1

lmaxlP�l�dl.
Similar to the Gaussian distribution, we set the probability of
the largest segment to P�l= lmax��1 / pN. With these three
boundary conditions, we can relate the three parameters a, k,
and lmax in Eq. �9� with the average length �.

In Fig. 2, we show examples of Gaussian and power-law
distributions with different average lengths � based on the
criteria described above. Figure 3 shows examples of our
procedure of data removal. The lengths of the removed seg-
ments were chosen to be exponentially distributed with dif-
ferent average length.

III. RESULTS

A. Effect of data loss on global scaling

Previously, we have studied the effect of data loss on the
scaling behavior of long-range correlated signals by remov-
ing data segments with fixed length �83�. We have found that
data loss in anticorrelated signals substantially changes the
scaling behavior even when only 1% of data are removed. In
contrast, the scaling behavior of �positively� correlated sig-
nals is practically not affected even when up to 50% of the
data are removed. Data loss generally causes a crossover in
the scaling behavior of anticorrelated signals. At the scales
larger than the crossover the anticorrelated scaling behavior
is completely destroyed and resembles uncorrelated behav-
ior. This crossover is shifted to smaller scales with increasing
percentage of removed data or decreasing length of the re-
moved segments, indicating a stronger effect on the scaling
behavior.

In most cases, the length of data loss segments is not fixed
but random and follows a certain distribution. How does the
distribution of data loss segments influence the scaling be-
havior of correlated signals? In some cases, especially when
archeological data are studied, the percentage of data loss
can be extremely large �and can reach up to 95% �91��.
Would the extreme data loss affect also positively correlated
signals? To address these questions, in this section we study
the effect of data loss caused by random removal of data
segments that follow a certain distribution.

First, we consider the case in which the lengths of data
loss segments are exponentially distributed. Following the
approach introduced in Sec. II C, we first generate stationary
correlated signals u�i� with length N=220 and with scaling
exponents � ranging from 0.1 to 1.5, and then randomly
remove exponentially distributed data segments from the
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FIG. 6. �Color online� Two examples of the effect of extreme
data loss: �a� interstride intervals of human gait and �b� annual
prices of pepper in England in the period 1209–1914. Removing up
to 90% of the gait intervals and up to 75% of the commodity data
using segments of different average length � does not significantly
affect the global scaling behavior. Closed symbols represent a
single realization and open symbols indicate the mean and standard
deviations obtained from 100 realizations of randomly removing
data segments. The lengths of the removed data segments are drawn
from an exponential distribution.
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original signal u�i� to obtain surrogate signals ũ�i�. As illus-
trated in Fig. 4, the rms fluctuation function F�n� shows
similar changes in the scaling behavior as observed in �83�
where segments with a fixed length were removed from the
original signal. �i� The scaling behavior of surrogate signals
strongly depends on the scaling exponent � of the original
signals. �ii� The anticorrelated signals substantially change
their scaling behavior even if only 10% of the data are re-

moved �Fig. 4�a��. A crossover from anticorrelated to uncor-
related ��=0.5� behavior appears at scale nx due to data loss,
i.e., at the scales larger than nx, the anticorrelations in the
original signals are completely destroyed. The crossover
scale nx is shifted to smaller scales with increasing percent-
age of lost data. �iii� In contrast, positively correlated signals
show practically no changes for up to 65% of data loss �Fig.
4�b��. Surprisingly, even with extreme data loss of up to 90%
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FIG. 7. �Color online� Effect of data loss on the local scaling behavior �quantified by local scaling exponent �loc� of long-range
power-law correlated signals. The symbols indicate average �loc values obtained from 100 different realizations of surrogate signals with the
same correlation exponent � and the error bars show the standard deviations. The more data are removed, the more the scaling exponent
deviates from the original exponent. The data loss segments are exponentially distributed with average length �=10 ��a�–�c�� and �=100
��d�–�f��. For anticorrelated signals, the removal of larger segments ��=100� has less effect on the scaling behavior. For positively correlated
signals, the deviations vary across scales, showing both overestimated and underestimated regions.
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FIG. 8. �Color online� Effect of the average length � of data loss segments �a�-�d� and effect of the percentage p of data loss �e�–�h� on
the local scaling behavior in anticorrelated signals ��a�, �e�: �=0.3� and positively correlated signals ��b�, �f�: �=0.7; �c�, �g�: �=1.0; �d�, �h�:
�=1.3�. For �a�–�d�, p=90% of data are removed, and for �e�–�h�, the average length of removed segments �=100. In all the cases, the
removed segments are exponentially distributed, and the length of the original signals is N=220. To clearly see the power-law relation
between the average length � of removed segments and the scale n at which �loc achieves the same value, the �loc values are projected into
the log10 �-log10 n plane �see color-coded insets in figures �a�–�d��. The symbols in the inset figures in �c� and �g� indicate the positions
where �loc values reach a maximum �red closed circle� or a minimum �blue open circle�, and depict the shift of the overestimated and
underestimated regions to large scales with increasing � and decreasing p. The local scaling curves highlighted by black symbols correspond
to the curves shown in Fig. 7 �rectangle: �=10, p=90%; diamond: �=100, p=90%; circle: �=100, p=65%; triangle: �=100; p=10%�.
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of the signal the scaling behavior is still practically pre-
served, exhibiting a slightly lower exponent � �waker
correlations�—an effect which is less pronounced with in-
creasing values of � �see Fig. 4�b��.

Next, we consider the case in which the length of the
original signal is much shorter �N=4000�, as illustrated in
Fig. 5. We find that the scaling behavior of both anticorre-
lated and positively correlated signals with extreme data loss
change in the same way as we observed in Fig. 4 �where N
=220�. In addition, we find �see Fig. 5� that when increasing
the average length � of the data loss segments, the scaling
behavior of the surrogate signals deviates less from the origi-
nal scaling behavior. Thus, removing the same percentage of
the data using longer �and fewer� segments has a lesser im-
pact on the scaling behavior of both positively correlated and
anticorrelated signals compared to removing segments with
smaller average length �.

To show how missing data segments affect correlations in
real-world signals, we consider two examples of complex
scale-invariant dynamics: �i� human gait as a representative
of integrated physiologic systems under neural control with
multiple-component feedback interactions �Fig. 6�a��, and
�ii� commodity price fluctuations from England across sev-
eral centuries reflecting complex economic and social inter-
actions �Fig. 6�b��. In agreement with our tests on surrogate
signals shown in Figs. 4 and 5, our analyses of real data
confirm the observation that even extreme data loss of up to
90% does not significantly affect the global scaling behavior
of positively correlated ���0.5� signals.

B. Properties of removed data segments: Effect of data loss
on local scaling

To reveal in greater detail the effect of data loss, we in-
vestigate the local scaling behavior of the F�n� curves by
fitting F�n� locally in a window of size w=3 log 2. We de-
termine the local scaling exponent �loc at different scales n
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FIG. 9. �Color online� Effect of different kinds of distributions
of data loss segments on the local scaling behavior. The power-law
distributed data loss segments lead to higher values of �loc for posi-
tively correlated signals and lower values for anticorrelated signals
compared to the other distributions. There is no difference between
Gaussian and �-distributed segments which yield slightly lower �loc

values than exponentially distributed signals. For anticorrelated sig-
nals, exponentially, Gaussian and �-distributed segments lead to
identical �loc values whereas the power-law distribution yields
slightly lower local scaling exponents.
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FIG. 10. �Color online� Effect of the average length � of data loss segments on the local scaling behavior in long-range correlated signal
with �=1.0. The length of the data loss segments are �a� exponentially distributed, �b� Gaussian distributed, �c� � distributed, and �d�
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�loc changes with � is similar for exponential, Gaussian and � distribution, while the power-law distribution shows less variations. The local
scaling curves highlighted by black symbols correspond to the curves shown in Fig. 9.
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by moving the window w in small steps of size �= 1
4 log 2

starting at n=4.
In Fig. 7, we show �loc for 10%, 65%, and 90% of data

loss, and the average length of the data loss segments is �
=10 �cf. Figure 4�. The scaling behavior of anticorrelated
signals shows systematic deviations from the original behav-
ior: the stronger the anticorrelations, the faster is the decay of
�loc toward 0.5 �uncorrelated behavior�. The deviations are
stronger when more data were removed from the original
signal. Note that when 90% of the data are removed, the
correlation properties of originally anticorrelated signals are
completely destroyed �Fig. 7�c��, because there are practi-
cally no consecutive data points of the original signals pre-
served in the surrogates when �=10 and p=90% �see Sec.
III C and Eq. �10��. When increasing the average length of
the removed segments from �=10 to 100 �Fig. 7�, the scal-
ing behavior of anticorrelated signals is less affected and
�loc=0.5 is reached at larger scales.

For positively correlated signals �0.5���1.5�, the effect
of data loss is more complex. The local scaling exponents
show significant and systematic deviations from the original
scaling behavior not observed in the rms fluctuation func-
tions F�n� in Fig. 4�b�. The deviations from the original scal-
ing behavior are more pronounced for a higher percentage of
data loss and vary across scales. For small average length
��=10, Figs. 7�a�–7�c��, the local scaling exponent is under-
estimated at small scales and gradually recovers to the origi-
nal scaling behavior at larger scales. For a larger average
length of removal data segments ��=100, Figs. 7�d�–7�f��,
we find overestimated regions at small scales and underesti-
mated regions at large scales. The overestimation of the local
scaling behavior is more pronounced for stronger positively

correlated signals, while the underestimation is more pro-
nounced for weaker positively correlated signals.

An interesting phenomenon seen in Fig. 7 is that for an-
ticorrelated signals the scale at which �loc reaches 0.5 �un-
correlated behavior� is shifted toward smaller scales with in-
creasing percentage of data loss. Similarly, for positively
correlated signals, the overestimated and underestimated re-
gions are also shifted toward smaller scales, when a higher
percentage of data is removed. This phenomenon occurs in
both cases �=10 and 100.

To understand precisely how the two parameters—the av-
erage length � of the data loss segments and the percentage
p of data loss—influence changes in the local scaling behav-
ior in Figs. 8�a�–8�d� we show how �loc changes with the
average length � of the removed segments. For anticorre-
lated signals, the scale at which �loc reaches 0.5 monotoni-
cally increases and shows a power-law relationship with �
�Fig. 8�a��. For positively correlated signals, as shown in
Figs. 8�b�–8�d�, the overestimated regions at small scales as
well as the underestimated regions at large scales are shifted
to higher scales with increasing �. This shift in the local
scaling behavior also follows a power law with average
length � �Fig. 8�c�, inset�.

In Figs. 8�e�–8�h�, we show how the percentage p of data
loss influence changes in the local scaling behavior. For a
fixed average length �=100, we find that the deviation from
the original scaling behavior is more pronounced for higher
values of p in both anticorrelated and positively correlated
signals, as also observed in Fig. 7. The scaling behavior of
positively correlated signals also shows overestimated re-
gions at small scales and underestimated regions at large
scales �Figs. 8�f�–8�h��, although not as clear as in Figs.
8�b�–8�d�. Both regions are shifted to larger scales with de-
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FIG. 11. �Color online� Effect of the percentage p of data loss on the local scaling behavior in long-range correlated signal with �
=1.0. The length of the data loss segments are �a� exponentially distributed, �b� Gaussian distributed, �c� � distributed, and �d� power-law
distributed. In all the cases, the average length of removed segments �=100, and the length of the original signals N=220. Similar to Fig.
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creasing percentage of data loss as illustrated in the inset in
Fig. 8�g�.

To understand whether different functional forms of dis-
tributions of data loss segments have different effects on the
scaling behavior, we repeated the same tests with three other
kinds of distributions: a Gaussian distribution, a � distribu-
tion �i.e., segments have fixed length� and a power-law dis-
tribution. We find that all three kinds of distributions show
similar deviations from the original local scaling behavior as
reported above for exponentially distributed data loss seg-
ments. However, for power law distributed segments lengths,
the estimated local scaling exponents are generally higher
�lower� across scales for positively �anti�correlated signals
�Fig. 9�. When increasing the average length � of the re-

moved data segments or increasing the percentage p of data
loss, the power-law distribution shows less variations than
the other three kinds of distributions �Figs. 10 and 11�.

C. Properties of remaining data segments: Effect of data loss
on local scaling

In the previous section, we tested the effect of data loss by
specifying the distribution and average length of removed
segments. In this section, we study the effect of data loss by
specifying the distribution and average length of remaining
data segments. The results obtained by focusing on the prop-
erties of remaining data segments are different from what
was shown above and will lead to a better understanding of
the effect of data loss on the scaling behavior of long-range
correlated signals.

The approach to generate the appropriate surrogate sig-
nals with different properties of remaining data segments is
similar to the one described in Sec. II C, except that now the
binary series g�i� are obtained according to the parameters of
the remaining data segments, and the surrogate signals ũ�i�
are generated by removing the i-th data point in the original
signal u�i� if g�i�=1, and preserving the i-th data point if
g�i�=0. The relation between the average length of data loss
segments ��l� and remaining data segments ��r� can be de-
rived as follows:

Let the length of the original signal be N. If pl is the
percentage of data loss, the amount of data loss is given by
Nl= plN, and the amount of remaining data is given by Nr
= prN= �1− pl�N. If �l is the average length of the lost data
segments, the number of lost segments is approximately
given by nl�Nl /�l. The number of remaining data segments
is approximately equal to the number of data loss segments,
i.e., nr�nl. Hence, the average length of the remaining data
segments is

�r �
Nr

nr
�

�1 − pl�
pl

�l. �10�

Note that the lengths of data loss segments are always geo-
metrically distributed due to the shuffling procedure in our
segmentation approach �see Sec. II C and Fig. 12�.

We find similar changes in the scaling behavior as ob-
served in Fig. 7 where the distribution of removed segment
lengths was specified. As illustrated in Fig. 13 where the
lengths of remaining segments are exponentially distributed,
the local scaling behavior of anticorrelated surrogate signals
deviate monotonically from original behavior toward uncor-
relation at larger scales. While the local scaling exponents of
positively correlated surrogate signals vary across scales,
showing both overestimated and underestimated regions.
These regions as well as the scales at which the anticorre-
lated signals reach �loc=0.5 are also shifted toward larger
scales when the average length of remaining segments �r
increases. However, in contrast to what was observed in Fig.
7, there is no shift to smaller scales with increasing percent-
age of data loss. Note that, according to Eq. �10�, an average
length �r=10 of remaining segments and a percentage pr
=10% of remaining data �as shown in Fig. 13�c��, corre-
sponds to an average length �l=90 of removed segments and
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FIG. 12. The distributions of remaining data segments �left col-
umn� and corresponding distributions of data loss segments �right
column�. The remaining data segments follow �a� exponential, �b�
power law, �c� Gaussian, and �d� � distribution with average length
�r=100 and 35% of data remaining. The data loss segments are
always geometrically distributed independent of the distributions of
remaining segments. Note that, the average lengths are practically
the same as estimated from Eq. �10�.
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a percentage pl=90% of removed data. Thus the local scal-
ing behavior observed in Fig. 13�c� is vary similar to Fig.
7�g� �where �l=100 and pl=90%�, and Fig. 13�d� ��r=100,
pr=90%, and correspondingly �l=11, pl=10%� is similar to
Fig. 7�a� ��l=10, pl=10%�.

In Figs. 14�a�–14�d�, we show how the local scaling be-
havior changes with the average length �r of remaining seg-
ments. Similar to Figs. 8�a�–8�d� where the distribution of
removed segments was specified, the variation in the local
scaling behavior of positively correlated signals also shows
overestimated regions at smaller scales followed by underes-
timated regions at larger scales. Both regions are shifted to
larger scales, when the average length of remaining segments
increases, forming a power-law relationship between the

shift in the local scaling behavior and �r �Fig. 14�c��. For
anticorrelated signals the local scaling behavior also shows a
power-law relationship between the scale at which �loc
reaches 0.5 and the average length �r. Note that, according
to Eq. �10�, the �loc curves from �r=8 to 455 in Figs.
14�a�–14�d� correspond to �l=72 to 4095 in Figs. 8�a�–8�d�,
thus the local scaling behavior in these two regions are very
similar.

With increasing percentage pr of remaining data, the de-
viation from the original scaling behavior becomes smaller
�Figs. 14�e�–14�h��. However, for anticorrelated signals, the
scale at which �loc reaches 0.5 does not depend on the per-
centage of data loss �Fig. 14�e��, in contrast to Fig. 8�e�
where removed data segments were studied. Similarly, the
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overestimated regions in positively correlated signals are
also not shifted with the percentage of data loss �Figs.
14�f�–14�h�, and compare to Fig. 8�f�–8�h��.

Next, we investigate how different kinds of distributions
of remaining data segments influence the local scaling be-
havior. As illustrated in Fig. 15, the surrogate signals gener-
ated by using Gaussian or � distribution have almost identi-
cal local scaling behavior and the most pronounced deviation
from the original local scaling behavior, whereas the power-

law distribution shows the smallest deviations. Note that, the
local scaling exponent of surrogate signals generated by a
�-distribution jump to larger �loc values at certain small
scales when the scaling exponent of the original signal is 1.3,
1.4, and 1.5. This behavior is caused by the discontinuities in
the surrogate signal at the transition points between remain-
ing data segments, and since the remaining segments are of
fixed length, the transition points occur periodically. If the
segment length ��=100 in Fig. 15� is an integral multiple of
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the size of the fitting boxes �scales� in the DFA algorithm
�e.g., n=10,20,25,50�, the transition points are not included

in any fitting box and thus the rms fluctuation functions of
the surrogate signals will be the same as in the original sig-
nals. In all other cases, the discontinuities inside the fitting
box will cause larger rms fluctuation functions and lead to
jumps in the local scaling exponents at certain scales n
��r as observed in Fig. 15.

In Fig. 16, we show how the local scaling curves of posi-
tively correlated signals change with the average length �r of
remaining segments, which follow an exponential distribu-
tion �Fig. 16�a��, a Gaussian distribution �Fig. 16�b��, a �
distribution �Fig. 16�c��, and a power-law distribution �Fig.
16�d��. The Gaussian and � distributions lead to a similar
local scaling behavior with regions of pronounced overesti-
mation and underestimation which are shifted to larger scales
for increasing values of �r. This shift is also observed in the
case of the exponential distribution, however, the deviation
from the original scaling behavior �overestimation/
underestimation� is less pronounced. In contrast, the power-
law distribution shows less variation in the local scaling be-
havior and does not lead to such distinct regions of
overestimated and underestimated �loc values. In addition,
the local scaling curves do not show a clear dependency
�“shift”� with the average length of remaining segments �r.

The variation of the local scaling curves with the percent-
age pr of remaining data for the four different distributions
are presented in Fig. 17. Similar as shown in Fig. 14, the
scale of most pronounced deviation from the original scaling
behavior is independent of the percentage pr of remaining
data.

IV. SUMMARY AND CONCLUSION

In this paper, we studied the effect of extreme data loss on
the DFA scaling behavior of long-range power-law correlated
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signals. In order to simulate extreme data loss, often encoun-
tered in archeological and geological data, we developed a
segmentation approach to generate correlated signals with
randomly removed data segments. Using this approach, sur-
rogate signals can be generated for different percentages of
data loss, different average lengths and different distributions
of removed/remaining data segments. We compared the dif-
ference between the DFA scaling behavior of original and
surrogate signals by systematically changing the percentage
of data loss and the average length of removed/remaining
segments, and we also consider different functional forms of
the distributions of removed/remaining segment lengths. We
studied changes in the global scaling behavior as well as in
the local scaling exponents to reveal subtle deviations across
scales.

We find that anticorrelated signals are very sensitive to
data loss. Even if only 10% of the data are removed, the
scaling behavior of the surrogate signals changes dramati-
cally, showing uncorrelated behavior at large scales. In con-
trast, positively correlated signals are more robust to data
loss and no significant changes in the global scaling behavior
are observed for up to 90% of data loss. However, in case of
extreme data loss, we find significant and systematic devia-
tions in the local scaling behavior which is overestimated at
small scales and underestimated at large scales. Specifically,
we find that for anticorrelated signals the scale at which the
local scaling exponent �loc reaches 0.5 shifts to larger scales
with increasing the average length �l �or �r� of the removed

�or remaining� segments, following a power-law relationship
with �l �or �r�. For positively correlated signals the regions
of overestimation and underestimation of the local scaling
exponent are also shifted to larger scales following a power
law with increasing �l �or �r�.

As expected, increasing the percentage of data loss leads
to more pronounced deviations in the local scaling behavior.
However, the variation in local scaling curves follows differ-
ent rules if the properties of either removed segments or
remaining segments are considered. When the average length
�l of removed data segments is kept constant, for increasing
percentage pl of removed data, the deviations of both anti-
correlated and positively correlated signals are shifted to
smaller scales following a power law with pl. When we focus
on remaining data segments and keep their average length �r
constant, the deviations become more pronounced with de-
creasing percentage pr of remaining data, however, the de-
viations occur at the same scales.

This behavior can be explained by the relationship be-
tween removed and remaining data. In case of a fixed per-
centage of removed or remaining data, �l and �r are always
directly proportional to each other �Eq. �10�� and therefore
the deviations �and the shift of the most pronounced devia-
tion� show a similar power-law relation with �l and �r, while
fixing the average length of removed or remaining segments
leads to two different scenarios: �i� fixing �l and changing pl
leads to changes in �r proportional to pl; �ii� fixing �r and
changing pr leads to changes in �l proportional to pr. Since
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the scale of the most pronounced deviation from the original
scaling behavior is shifted for scenario �i� where �r is chang-
ing and �l is fixed, but not scenario �ii� where �l is changing
and �r is fixed, changes in �l do not contribute to the ob-
served shift. Thus, we suggest that �r is the key parameter to
determine the scales at which the scaling behavior is mostly
influenced, whereas the percentage of data loss determines
the extent of this influence.

Different distributions of the lengths of removed/
remaining segments affect the local scaling behavior differ-
ently. For Gaussian and �-distributed segment lengths, devia-
tions are most pronounced and similar in extent, whereas
power-law distributed segments show smallest deviations
and a very different overall behavior when compare to expo-
nential, Gaussian and �-distributed segments.

In conclusion, our study shows that it is important to con-
sider not only the percentage of data loss �removed/
remaining data�, but also the average length of remaining
segments to identify the scales at which deviations from the
original �“real”� DFA scaling behavior is most pronounced.
Therefore, when studying the scaling properties of signals
with extreme data loss, the DFA results should be carefully
interpreted to reveal the real scaling behavior.
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