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In this work, closure of the Boltzmann–Bhatnagar-Gross-Krook �Boltzmann-BGK� moment hierarchy is
accomplished via projection of the distribution function f onto a space HN spanned by N-order Hermite
polynomials. While successive order approximations retain an increasing number of leading-order moments of
f , the presented procedure produces a hierarchy of �single� N-order partial-differential equations providing
exact analytical description of the hydrodynamics rendered by �N-order� lattice Boltzmann-BGK �LBBGK�
simulation. Numerical analysis is performed with LBBGK models and direct simulation Monte Carlo for the
case of a sinusoidal shear wave �Kolmogorov flow� in a wide range of Weissenberg number Wi=��k2 �i.e.,
Knudsen number Kn=�k=�Wi�; k is the wave number, � is the relaxation time of the system, and ���cs is the
mean-free path, where cs is the speed of sound. The present results elucidate the applicability of LBBGK
simulation under general nonequilibrium conditions.
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I. INTRODUCTION

Kinetic representations of hydrodynamics are potentially
applicable to flows beyond the reach of classical �near-
equilibrium� fluid mechanics. Nevertheless, the derivation
and solution of high-order hydrodynamic equations for far-
from-equilibrium flows with arbitrary geometry remains an
open challenge. Computational methods are a valuable alter-
native but even with the aid of efficient algorithms the solu-
tion of Boltzmann equations is a formidable task. Among
different kinetic approaches, the lattice Boltzmann–
Bhatnagar-Gross-Krook �LBBGK� method has been able to
span from scientific research to large-scale engineering ap-
plications. The LBBGK method has two distinctive compo-
nents largely responsible for its success: discretization of ve-
locity space and adoption of the BGK collision ansatz.
Decades of work have established that LBBGK approaches
correctly represent macroscopic physics at the Navier-Stokes
�NS� level of approximation. On the contrary, it is not widely
accepted in the fluid mechanics community that high-order
LBBGK models provide hydrodynamic descriptions beyond
the NS equations. Efforts in establishing LBBGK as a legiti-
mate model for far-from-equilibrium flows must address two
key points: the effect of velocity discretization and the valid-
ity limits of the BGK ansatz.

The rigorous formulation of the LBBGK method by Shan
et al. �2� places LBBGK in the group of Galerkin procedures
for the BBGK equation governing the evolution of the
single-particle distribution f . The approximate solution in
N-order LBBGK procedures is sought within a function
space HN spanned by Hermite polynomials of order �N. In
this work, within the framework of Hermite-space approxi-
mation f �HN, we present a technique to systematically de-
rive closed moment equations in the form of �single� N-order
partial-differential equations �PDEs�. At each order of ap-
proximation, an increasing number of moments of f are pre-
served and, thus, the derived hierarchy of equations tends to

the exact BBGK hydrodynamics as N→�. To assess the
derived hydrodynamic relations we perform numerical
analysis with N-order LBBGK models �1,2� and direct simu-
lation Monte Carlo �DSMC� �3� for the case of Kolmogorov
flow in a wide range of Knudsen/Weissenberg numbers
�0.01�Wi=� /T�10�; this free-space problem allows us to
remove from analysis all issues related to solid-fluid interac-
tion and choice of kinetic boundary condition �e.g., diffuse
scattering and bounce back�. Comparison of the derived re-
lations for f �HN against kinetic simulations and previous
theoretical expressions �1,4� obtained from exact solution of
the BBGK equation uncovers capabilities and limitations of
lattice discretization and the BGK model in general nonequi-
librium conditions.

II. HIGH-ORDER HYDRODYNAMICS FROM
BOLTZMANN-BGK

The single-particle distribution f�x ,v , t� can determine all
macroscopic properties �e.g., thermohydrodynamic quanti-
ties� observed in configuration space. In describing the flow
of simple fluids we employ the velocity moments

M�n��x,t� =� f�x,v,t�vndv . �1�

Hereinafter, integration limits are from −� to � unless ex-
plicitly given. The n-order moment �M�n�	Mi1,i2,. . .,in

�n� ; ik

=1,D
 is a symmetric tensor of rank n and D is the velocity-
space dimension. In similar fashion, hydrodynamic moments
at local thermodynamic equilibrium are Meq

�n�=�feqvndv. The
low-order moments �n�2� relate to conserved quantities,
namely, mass, momentum, and energy,

M�0� = Meq
�0� = � , �2�

M�1� = Meq
�1� = �u , �3�

tr�M�2�� = tr�Meq
�2�� = ��u2 + D�� . �4�

Here we define �=kBT /m, where T is the temperature, kB is
the Boltzmann constant, and m is the molecular mass. We*colosqui@princeton.edu
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assume that the evolution of f�x ,v , t� is governed by the
BBGK �5�,

� f

�t
+ v · �f = −

f − feq

�
, �5�

where � is the so-called single relaxation time and the local
equilibrium distribution feq is given by

feq�x,v,t� =
�

�2	��D/2exp�−
�v − u�2

2�

 . �6�

An evolution equation for n-order moment �1� can be readily
obtained via moment integration over BBGK �5�,

�1 + �
�

�t
�M�n� = Meq

�n� − � � · M�n+1�, n = 0,� . �7�

The obtained moment equation �Eq. �7�� is clearly not closed
as it involves the higher-order moment M�n+1�.

A. High-order hydrodynamic equations

Leaving temporarily aside the problem of closing Eq. �7�
let us observe that the evolution of M�n� is actually deter-
mined by all higher-order moments �M�k� ;k
n
. From Eq.
�7� we find that the first time derivative of M�n� is related to
the divergence of M�n+1�, i.e., the flux of moments one order
above. In the same way, the dynamics of M�n+1� is deter-
mined by M�n+2� and so on. Climbing up the infinite moment
hierarchy, one can express the evolution of M�n� in terms of
arbitrary high-order moments �M�n+k� ;k�1
 after suitable
combination of the moment equations. Multiply Eq. �7� by
�1+� �

�t �

�1 + �
�

�t
�2

M�n� = �1 + �
�

�t
��Meq

�n� − � � · M�n+1�� �8�

and take divergence of the moment equation for the follow-
ing �n+1� order:

�1 + �
�

�t
� � · M�n+1� = � · �Meq

�n+1� − � � · M�n+2�� . �9�

By using Eq. �9� one can eliminate the term
�1+� �

�t �� ·M�n+1� in Eq. �8� to obtain

�1 + �
�

�t
�2

M�n� = �1 + �
�

�t
�Meq

�n� − � � · Meq
�n+1�

+ �2 � · � · M�n+2�. �10�

The resulting expression, involving the evolution equations
for M�n� and M�n+1�, takes the form of a second-order PDE.
The same procedure that leads to Eq. �10� can be applied in
order to eliminate M�n+2� and iteratively performed an arbi-
trary number of times as the following higher-order moments
consequently appear. After �N−1� iterations we arrive to the
general expression

�1 + �
�

�t
�N

M�n� = �
k=0

N−1

�− � � ·�k�1 + �
�

�t
�N−�k+1�

Meq
�n+k�

+ �− � � ·�NM�n+N�. �11�

Notice here that the term ��·�NM�n+N� represents a tensor of
rank n. The time evolution of the thermohydrodynamic vari-
ables corresponding to M�n� is now given by Eq. �11� in the
form of a N-order PDE. A single N-order equation of this
kind implicitly involves the evolution of N velocity mo-
ments, i.e., those of order n to n+N−1. Equilibrium mo-
ments readily computed from feq �Eq. �6�� are explicit func-
tion of mass, momentum, and energy; in solving Eq. �11� one
still faces the problem of evaluating the nonequilibrium mo-
ment M�n+N� and its N-order space derivatives. As elaborated
in Sec. II B, a possible way to close Eq. �11� is to express the
nonequilibrium distribution f in terms of its leading-order
moments �M�k� ;k�n+N
 by means of finite Hermite series.

B. Unidirectional shear flows

The moment hierarchy described by Eq. �11� is valid for
general flow conditions under the assumptions of a BGK
model with �single� constant relaxation time �. For the sake
of analytical simplicity, we will focus on the case of unidi-
rectional shear flow u=ui with spatial gradients �=�j
	�yj and within nearly isothermal regime �Ma=u /��
1�.
Note that the studied unidirectional flow is exactly incom-
pressible �� ·u=0� and thus �t�=0; hereinafter we adopt �
=1. The fundamental hydrodynamic variables thus are

��x,t� = 1, �12�

u�x,t� = u�y,t�i , �13�

��x,t� = � + O�Ma2� , �14�

while the components of the n-order moment M�n� are

Mi1,i2,. . .,in
�n� �x,t� =� fvi1

vi2
. . . vin

dv 	 �vi1
vi2

. . . vin
� .

�15�

For the studied flow the underlying distribution function
must not vary along the x and z axes ��x=�z=0�, while for
�vy�= �vz�=0, it follows that only the moment components
�vxvy

k� �k=0,�� exhibit spatial variation. The N-order equa-
tion �Eq. �11�� for the fluid velocity u�y , t� then reduces to

�
�

�t
�1 + �

�

�t
��N−1�

u = �
k=1

N−1

�− ���k�1 + �
�

�t
��N−1−k�

�vxvy
k�eq

+ �− ���N�vxvy
N� �16�

after recalling conservation of momentum u= �vx�= �vx�eq.
Hereafter, we refer to each N-order PDE defined by Eq. �16�
as the N-order hydrodynamic description of the flow. More
explicitly, Eq. �16� yields the following hydrodynamic rela-
tions for the studied flow: for first order �N=1�
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�u

�t
= − ��vxvy� , �17�

for second order �N=2�

�1 + �
�

�t
� �u

�t
= − ��vxvy�eq + ��2�vxvy

2� , �18�

for third order �N=3�

�1 + �
�

�t
�2�u

�t
= − �1 + �

�

�t
� � �vxvy�eq + ��2�vxvy

2�eq

− �2�3�vxvy
3� , �19�

and for fourth order �N=4�

�1 + �
�

�t
�3�u

�t
= − �1 + �

�

�t
�2

� �vxvy�eq

+ �1 + �
�

�t
���2�vxvy

2�eq

− �2�3�vxvy
3�eq + �3�4�vxvy

4� . �20�

The resulting expressions are not closed uniquely due to the
presence of high-order terms �−���N�vxvy

N�. If high-order
terms are dominant �����N�
 �����N−1�, precise knowledge of
the distribution f is required for accurate calculation of high-
order �nonequilibrium� moments in Eqs. �17�–�20�. On the
other hand, flow regimes where �����N�� �����N−1� will per-
mit certain approximations of f in terms of its N leading-
order moments to produce accurate equations in closed form.

III. HERMITE EXPANSION OF THE BOLTZMANN
DISTRIBUTION

As originally proposed by Grad �6�, the single-particle
distribution can be expressed in terms of hydrodynamic mo-
ments via Hermite series expansion �7�,

f�x,v,t� = fM�v��
n=0

�
1

n!
C�n��x,t�:H�n��v� , �21�

with fM being the Gaussian weight �i.e., Maxwellian distri-
bution for �=1�,

fM�v� =
1

�2	��D/2exp�−
v2

2�
� , �22�

while �=const. The N-dimensional Hermite polynomials in
velocity are defined by

H�n��v� = �− 1�n�n/2ev2/2��ne−v2/2�, �23�

while the Hermite coefficients are

C�n��x,t� =� f�x,v,t�H�n��v�dv . �24�

Both H�n� and C�n� are n-rank symmetric tensors; the product
C�n� :H�n� in Eq. �21� and hereafter represents full contrac-
tion. Each component of H�n��v� is a n-degree polynomial in

velocity v; the first four Hermite polynomials in particular
are

H�0��v� = 1, �25�

Hi
�1��v� =

1

�1/2vi, �26�

Hij
�2��v� =

1

�
�viv j − ��ij� , �27�

and

Hijk
�3��v� =

1

�3/2 �viv jvk − ��vi� jk + v j�ik + vk�ij�� . �28�

Hermite polynomials satisfy the orthogonality condition

�H�m�,H�n�� =� fMH�m�H�n�dv = 0 ∀ m � n �29�

and, hence, span the Hilbert space of square-integrable func-
tions gi�v� with inner product �gi ,gj�=�fMgigjdv. Another
fundamental advantage of employing the Hermite polyno-
mial basis is that the n-order Hermite coefficient is a linear
combination of the leading n-order moments of f . For ex-
ample,

C�0� = M�0� = � , �30�

�1/2C�1� = M�1� = �u , �31�

�C�2� = M�2� − ��I . �32�

In similar fashion, the equilibrium distribution can be ex-
pressed as the Hermite expansion of Maxwell-Boltzmann
distribution �6�,

feq�x,v,t� = fM�v��
n=0

�
1

n!
Ceq

�n��x,t�:H�n��v� . �33�

The Hermite coefficients Ceq
�n� can be readily computed using

Eq. �6� for feq in Eq. �24�.

Closure of hydrodynamic equations via Hermite expansions

Successive order approximations can be obtained by trun-
cating infinite Hermite series �21� at increasing orders; the
N-order approximation,

fN�x,v,t� = fM�v��
n=0

N
1

n!
C�n��x,t�:H�n��v� , �34�

expresses the distribution function in terms of its leading
N-order moments. The approximation f = fN�HN is tanta-
mount to projecting the distribution function onto a finite
Hilbert space HN spanned by the orthonormal basis of Her-
mite polynomials of order �N. Due to orthogonality of the
Hermite basis �Eq. �29��, a finite expansion �Eq. �34�� and
the infinite series representation of f �Eq. �21�� give the same
leading moments
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M�n� =� fvndv =� fNvndv, n � N . �35�

While low-order moments are preserved the higher-order
moments �n
N� can be approximately expressed in terms of
low-order moments. In order to close the N-order hydrody-
namic equations �Eqs. �17�–�20�� we employ

M�N+1� � � fNv�N+1�dv . �36�

Hence, within the framework of projection onto HN, the
closed-form approximations below are obtained for unidirec-
tional shear flow �see Appendix for detailed derivation�: for
f �H2

�1 + �
�

�t
� �u

�t
= ���2u , �37�

for f �H3

�1 + 2�
�

�t
+ �2 �2

�t2� �u

�t
= �1 + 3�

�

�t
����2u , �38�

and for f �H4

�1 + 3�
�

�t
+ 3�2 �2

�t2 + �3 �3

�t3� �u

�t

= �1 + 7�
�

�t
+ 6�2 �2

�t2����2u − 3�2�3�4u . �39�

As evidenced by Eqs. �30�–�32� for �C�n� ;n�2
, second- or
higher-order expansions �N�2� are required to satisfy con-
servation of mass, momentum, and energy.

IV. N-ORDER LATTICE BOLTZMANN-BGK METHOD

The rigorous formulation of the so-called N-order lattice
Boltzmann models introduced by Shan et al. �2� is based on
the projection of the continuum distribution function onto HN

so that f i�x , t�= fN�x ,vi , t� at a finite discrete-velocity set
�vi ; i=1,Q
. Since the finite set of distributions �f i ; i=1,Q

is expressed by N-order Hermite series, Gauss-Hermite �GH�
quadrature with algebraic degree of precision d�2N allows
for exact integration of the leading N-order velocity mo-
ments. Once velocity abscissas vi and weights wi are deter-
mined by a proper GH quadrature formula �2,7� one has

M�n��x,t� 	 � f�x,v,t�vndv = �
i=1

Q

wif i�x,t�vi
n, n = 0,N .

�40�

Note that all Hermite coefficients �Eq. �24�� in the expansion
of f �Eq. �34�� are then exactly integrated as well. At the
same time, high-order GH formulas determine velocity sets
�vi ; i=1,Q
 that fulfill high-order moment isotropy required
for hydrodynamic representation beyond NS �8,9�. A collat-
eral conclusion of the Hermite expansion formulation is that
the employed number Q of lattice velocities �i.e., quadrature
points� sets an upper limit on the attainable order of hydro-
dynamic description.

The lattice Boltzmann-BGK equation. The Hermite expan-
sion formulation �2� places LBBGK in the category of Galer-
kin methods; within this theoretical framework the evolution
equations

� f i

�t
+ vi · �f i = −

f i − f i
eq

�
�i = 1,Q� �41�

for f i�x , t� can be systematically derived via approximation
in velocity function space HN. The equilibrium distribution
f i

eq�HN in Eq. �41� takes the form

f i
eq�x,t� = fM�vi��

n=0

N
1

n!
Ceq

�n��x,t�H�n��vi� . �42�

LBBGK algorithm

Conventional LBBGK algorithms for solving Eq. �41� use
an operator splitting technique and, thus, advance in two
steps: advection f i

a�x , t�= f i�x−vi�t , t� and collision f i�x , t
+�t�= f i

a�x , t�− �f i
a�x , t�− f i

eq��t /�. These steps do not consti-
tute a standard Galerkin procedure, where one would directly
compute the evolution of the Hermite coefficients. As a con-
sequence, conventional LBBGK algorithms exhibit an un-
desired dependence on the flow field alignment with the un-
derlying lattice. This numerical anisotropy becomes
noticeable at finite Knudsen or Weissenberg numbers where
nonequilibrium effects are important �1,10–12�. For nonequi-
librium systems f i

a will lie outside HN but the problem is
effectively solved using a so-called regularization procedure
�10�, i.e., by reprojecting the nonequilibrium component f i

ne

= f i
a− f i

eq onto HN,

f i
̂ne = fM�vi��

n=0

N
1

n!
Cne

�n��x,t�H�n��vi� , �43�

where

Cne
�n��x,t� = �

j=1

Q

wjf j
ne�x,t�H�n��v j� . �44�

Projected nonequilibrium component �43� can be reintro-
duced at the collision step,

f i�x + vi,t + �t� = f i
eq + �1 −

�t

�
� f i

̂ne. �45�

Provided that Hermite expansions for f i
eq �Eq. �42�� and f i

̂ne

�Eq. �43�� are truncated at the same Nth order, then the re-
projection step keeps f i within HN �as it must be the case for
standard Galerkin procedures�. The reprojection of f i

a onto
HN is indispensable in order to ensure that numerical integra-
tion of the leading N-order moments is exact. As confirmed
in previous studies �1,10�, LBBGK algorithms with projec-
tion in HN yield numerical solutions that are completely in-
dependent of the lattice-flow alignment or number of states
employed for any GH quadrature with algebraic degree of
precision d�2N.
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V. NON-NEWTONIAN KOLMOGOROV FLOW

The decay of a sinusoidal shear wave in free space, also
known as Kolmogorov flow, is a useful benchmark to assess
derived hydrodynamic descriptions and kinetic methods em-
ployed in this work. In order to characterize the flow at ar-
bitrary nonequilibrium conditions we employ the Weissen-
berg number Wi=� /T	��k2, where �=�� is the kinematic
viscosity and T=�k2 determines a characteristic decay time.
Assuming a mean-free path �=���, the employed Weissen-
berg number directly converts to a Knudsen number Kn
=�k	�Wi. In order to remain within laminar and nearly
isothermal regimes the flow Mach number is kept small,
Ma=U0 /���0.1; thus Re=U0 /�k=Ma /�Wi�1 is always
below the stability limit Re��2. Kinetic initial conditions
are given by a distribution f�y ,v ,0�= feq�� ,u�y ,0� ,��, i.e.,
local equilibrium. For this arbitrary choice of initialization
the collision term in the kinetic equation vanishes and the
simulated dynamics is collisionless at t=0. As a conse-
quence, initial conditions at hydrodynamic level are given by
the free-molecular flow solution �1�,

�nu�y,0�
�tn = U0 sin�ky�

�n

�tnexp�−
�k2t2

2

, n � 0. �46�

We remark that after the choice of initialization at local equi-
librium the microscopic dynamics remains practically colli-
sionless for a finite time t��, therefore �viscous� Newtonian
behavior or purely exponential decay can only be observed
after time intervals of the order of the relaxation time. The
analytical description of the flow at arbitrary Wi is given by
solution of the hydrodynamic approximations, i.e., Eqs.
�37�–�39�, derived in Sec. III via Hermite-space approxima-
tion f �HN. For a periodic wave, the solution to each
N-order hydrodynamic equation is expressed by

u�y,t� = �
n=1

N

Cn Im�eikye−�n�t+�n�
 . �47�

Each mode in the solution is determined by the complex
frequencies �n�Wi�=Re��n
+ i Im��n
 �n=1,N�; these val-
ues are the roots of the dispersion relation �i.e., a N-order
polynomial� that corresponds to the N-order hydrodynamic
approximation. The constants Cn and �n in the particular
solution can be determined by imposing N initial conditions
given by Eq. �46� and symmetry constraints. While �positive�
real roots produce exponentially decaying modes, each pair
of complex conjugate roots describes two identical waves
�i.e., same amplitude C and phase �� which combine into a
single standing wave that decays in time.

A. Numerical simulation

The decay of a velocity wave u�y ,0�=U0 sin ky of wave
number k=2	 / ly is simulated with two different kinetic
methods: the DSMC algorithm described in �3� and the LB-
BGK scheme described in Sec. IV. In the analysis of DSMC
results, given that � is not a simulation parameter for this
method, we use Wi���k2 /cs �i.e., ��� /cs�; the speed of
sound cs, mean-free path �, and viscosity � are determined

from the relations for a hard-sphere gas. For DSMC simula-
tion we set Ma=0.1 and employ a rather large number of
particles �Np=30 000�, ensembles �Ne=2000�, and collision
cells along ly �Nc=500�. To further reduce the statistical
noise in DSMC results we perform spatial averaging
u�t� / �U0 sin�ky��=�u�y , t� /u�y ,0�dy over the wavelength
segments ly /8− ly3 /8 and ly5 /8− ly7 /8; these quantities are
presented in Fig. 1. For LBBGK simulation we set Ma
=0.01 while the computational domain has lx� ly =10
�2500 nodes; in all cases the spatial resolution is conserva-
tively larger than that determined by grid convergence tests.
For the present results we employ the D2Q37 model �two-
dimensional lattice with 37 states� corresponding to a GH
quadrature rule with algebraic degree of precision d=9 �7�,
i.e., permitting the exact integration of fourth-order mo-
ments. Different N-order truncations of the Hermite expan-
sions are implemented on the D2Q37 lattice; we refer to
these schemes as D2Q37-H2 �N=2�, D2Q37-H3 �N=3�, and
D2Q37-H4 �N=4�. As in previous studies with regularized
LBBGK algorithms �1,10�, the present results are indepen-
dent of the flow-lattice alignment. In Fig. 1 we present the
velocity field at Wi=0.1,0.5,1 ,10 given by DSMC and LB-
BGK simulations, as well as analytical solution �Eq. �47�� of
Eqs. �37�–�39�. As expected, since Hermite-space approxi-
mations f �HN underpin the N-order LBBGK method, the
flow simulated by LBBGK models is exactly described by
analytical solution of Eqs. �37�–�39� at arbitrary Wi. The
DSMC method, which does not resort to discretization of
velocity space nor the BGK collision ansatz, is in good
agreement with LBBGK and the f �HN approximations in
the parameter range 0�Wi�1.

B. Long-time decay and hydrodynamic modes

The long-time dynamics becomes independent of the
choice of initial condition for t /�= t�k2 /Wi�1. The long-
time solution of the flow is determined by the decay fre-
quency ��Wi� with the smallest real part. In Newtonian re-
gime �Wi=0�, NS solution yields a single hydrodynamic
mode u=Im�U0 exp�iky−�t�
 describing purely exponential
decay with �=1 /�k2. Hermite-space approximations f �HN

�N=2,3 ,4� predict a long-time decay ��Wi� �see Fig. 2�
determined from the set of roots ��n ;n=1,N
 of dispersion
relations corresponding to Eqs. �37�–�39�. An alternative ap-
proach to Hermite-space approximations is provided by for-
mal solution of BBGK with the method of characteristics
�1,4�,

f�x,v,t� = f0�x − vt,v�e−t/� + �
0

t/�

e−sfeq�x − v�s,v,t − �s�ds .

�48�

Hydrodynamic relations for arbitrary Wi can be derived by
taking velocity moments of Eq. �48�; in the long-time limit
t�� of the studied shear flows the following dispersion re-
lation is obtained �4�:

�� = 1 − �	z exp�z2�erfc�z� �49�

with z= �1−��� /�2Wi. Numerical solution to Eq. �49� is
presented in Fig. 2; this dispersion relation has one trivial
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solution �=1 /� and a second root �=��Wi� also on the
positive real axis �Re��

0, Im��
=0�. Based on
asymptotic analysis of the exact solution of BBGK approxi-
mate explicit expressions have been proposed �1�,

�

�k2 =
�1 + 4Wi − 1

2Wi
for Wi 
 1 �50�

and

�

�k2 =
1 � �1 − 4Wi

2Wi
for Wi � 1. �51�

In Fig. 2, different Hermite-space approximations f �HN

�N=2,3 ,4� which exactly described LBBGK results in Fig.
1 are now compared against numerical solution to exact dis-
persion relation �49� and asymptotic approximations �50� and
�51�. All roots of the different dispersion relations have a
positive real part indicating time decay of the flow; the non-
Newtonian decay is always slower than the Newtonian decay
Re��
��k2 for Wi
0 and becomes Re��
�1 /� for Wi


1. At a first glance, the studied expressions provide com-
parable results in the limits Wi→0 and Wi→� while sig-
nificant disagreement is observed for W�1. Notice that Eq.
�51� is the dispersion relation corresponding to the telegraph
equation �i.e., Eq. �37�� derived for f �H2.

VI. CONCLUSIONS AND DISCUSSIONS

Provided that BBGK is a valid model, moment equations
derived for f �HN are in principle not constrained to near-
equilibrium conditions. For unidirectional and isothermal
shear flow, Hermite-space approximations of different orders
�f �HN ; N=2,3 ,4
 led to N-order PDEs �37�–�39� for the
evolution of fluid momentum �see Appendix for detailed
derivation�. The studied Kolmogorov flow represents an ini-
tial value problem in free space with kinetic initialization at
local equilibrium; particular analytical solution to Eqs.
�37�–�39� has been compared against kinetic simulation via
LBBGK and DSMC �see Fig. 1�. We found that derived
N-order hydrodynamic equations predict exactly all hydrody-
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FIG. 1. u�y , t� / �U0 sin�ky�� vs t�k2: �a� Wi=0.1; �b� Wi=0.5; �c� Wi=1; and �d� Wi=10. Dotted line �f �H2�: analytical solution of Eq.
�37�. Dashed line �f �H3�: analytical solution of Eq. �38�. Solid line �f �H4�: analytical solution of Eq. �39�. Markers: ��� D2Q37-H2; ���
D2Q37-H3; ��� D2Q37-H4; and �+� DSMC.
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namic modes present in the flow simulated by N-order LB-
BGK models. We conclude that Eqs. �37�–�39� can be used
to benchmark LBBGK algorithms at arbitrary Wi and Kn
numbers. Although the studied problem constitutes an opti-
mal choice to benchmark numerical results, the employed
methodology is readily applicable to bounded flows. Closed-
form equations derived via the method in this work will be
retrieved in the continuum limit provided that the numerical
treatment of the boundary is consistent with Hermite-space
approximation, i.e., f i�HN within the fluid bulk and bound-
aries. The main difficulty that different �kinetic� boundary
schemes introduce �11� is determining proper �hydrody-
namic� boundary conditions �e.g., fluid momentum and its
derivatives at the boundary� to use in the analytical solution
of the PDEs governing the flow.

High-order LBBGK vs DSMC simulation. The high-order
LBBGK models in this work and derived Hermite-space ap-
proximations �e.g., D2Q37-H4 and f �H4� are in good
agreement with DSMC results in a wide region Wi�Kn2

�1 extending well beyond NS hydrodynamics. Similar find-
ings have been recently reported for Poiseuille flow �11,12�
albeit the employed LBBGK algorithms did not enforce pro-
jection in HN and these previous results exhibited a depen-
dence on the velocity-space discretization. The reported
agreement between LBBGK and DSMC simulations seems
to indicate that the BBGK moment hierarchy approximates
fairly well the low-order moments of the Boltzmann equa-
tion with binary collision integral in the region Wi�Kn2

�1. A significant disagreement exists between LBBGK and
DSMC solutions in the region Wi�1 as seen in Fig. 1�d�.

Galerkin solutions of BBGK. Hereafter, we set aside a
discussion on the validity of the BGK ansatz for far-from-
equilibrium flows �e.g., Wi�1 or Kn�1�. Instead, we pro-
ceed to study the effect of velocity-space discretization when
solving the continuum BBGK over the entire parameter
range 0�Wi��. The dispersion relation expressed by Eq.
�49� coming from exact solution of BBGK �f �H�� for t
�� has two branches of solutions �see Figs. 2�a� and 2�b��.

Meanwhile, the dispersion relation corresponding to
Hermite-space approximation f �HN admits N roots; it fol-
lows that initial conditions may excite spurious modes in
Eqs. �37�–�39�. In order to remove initialization from analy-
sis we examine the long-time behavior t�� characterized by
the fundamental frequency ��Wi�. While Re��

0 deter-
mines the flow decay rate or momentum dissipation, an
imaginary component Im��
�0 is responsible for time os-
cillations or momentum wave propagation as observed in
Figs. 1�c� and 1�d�. We have compared in Fig. 2 the long-
time frequency ��Wi� determined from Eqs. �37�–�39�
against ��Wi� according to Eq. �49�. After truncation of the
Hermite series or corresponding velocity-space discretiza-
tion, dissipative properties of the flow can still be well rep-
resented for Wi
1, where Re��
 /�k2�1, and Wi�1,
where Re��
 /�k2�1 /Wi. The imaginary parts also approxi-
mate the exact BBGK prediction Im��
 /�k2=0 in both limits
Wi→0 and Wi→� as seen in Fig. 2�b�. Notice that odd-
order approximations �e.g., f �H3� yield a real-valued fre-
quency � for all Wi while even-order approximations admit
a long-time frequency with nonzero imaginary part at suffi-
ciently high values of Wi, i.e., Wi�0.25 for f �H2 and Wi
�0.388 for f �H4. In the case of Hermite-space approxima-
tions of even order when Wi�1, time oscillations may per-
sist in the long-time solution as the oscillation period be-
comes smaller than the decay time, e.g., Re��
 / Im��

=�Wi for f �H2. As observed in previous work �1,13�, a
second-order approximation f �H2 can be employed to
model a viscoelastic response in high-frequency oscillatory
flows similar to that observed for a Maxwell fluid and gov-
erned by the telegraph �Eq. �37��.

BBGK for non-Newtonian flow. The suitability of BBGK
for non-Newtonian flow has been proposed since the early
development of the LBBGK method; in fact, nonlocal effects
�in time and space� are easier to introduce than to avoid by
using a BBGK representation of hydrodynamics. Although
BBGK can model simple isothermal flows of linear vis-
coelastic fluids, e.g., where deviatoric stresses ��x , t� obey
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�H4 �Eq. �39��; and ���: f �H� �numerical solution of Eq. �49��. Dashed line: Wi
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Maxwell’s �1� or Jeffrey’s model �14�, the modeling of gen-
eral viscoelastic flows is a nontrivial task which remains the
subject of intense research; among other difficulties the re-
sulting hydrodynamic equations must satisfy Galilean invari-
ance. Since the deviatoric stress �=Meq

�2�−M�2� is the non-
equilibrium component of the momentum flux �i.e., second-
order moment�, the methodology in this work can facilitate
the derivation of �macroscopic� constitutive equations for �.
Employing Eq. �11� for n=2 and projection in a finite Her-
mite space HN one can, in principle, determine the moments
of the equilibrium distribution feq�HN so that a particular
constitutive relation for � is obtained. Because employment
of a single relaxation time � constrains the modeling of di-
verse constitutive relations for �, it is worth remarking that
the proposed methods can be employed with more complex
BGK models that resort to multiple relaxation times and/or
relaxation times that are functionals of hydrodynamic vari-
ables.

LBBGK and extensions. The LBBGK method has been
extensively employed for macroscopic description of various
physical phenomena �e.g., microfluidics, turbulence, reaction
diffusion, and phase transition�, albeit the exact �high-order�
moment dynamics that different LBBGK algorithms produce
has not been fully elucidated. This inconvenience is partly
because Chapman-Enskog �CE� expansions, which have
emerged as the preferred closure procedure, become increas-
ingly difficult when carried to high orders. The approach
presented in this work allows us to close the LBBGK mo-
ment hierarchy circumventing CE techniques. At the same
time, it is straightforward to determine the CE expansion
order that corresponds to a particular Hermite-space approxi-
mation �see �2��. The moment-equation hierarchy presented
by Eq. �11� when combined with different Hermite-space
approximations can be applied for a priori design of LBBGK
schemes that solve high-order and nonlinear PDEs governing
numerous complex physical systems beyond fluid mechan-
ics. It is also worth remarking that a relatively simple algo-
rithm, based on fully implicit and low-order finite-difference
schemes, offering significant computational advantages can
be effectively employed for the numerical solution of PDEs
involving high-order derivatives in time and space, e.g., see
Eq. �39� with hyperviscosity.

The validity limits of BBGK. The main scope of this work
is not to establish the validity of BBGK in far-from-
equilibrium conditions; efforts in that area could compare the
presented analytical expressions against experimental data or
more extensive numerical analysis via alternative methods.
From the results of this work it is clear that DSMC, which
emulates the Boltzmann equation with a binary collision in-
tegral, and BBGK produce similar solutions for the studied
shear flow in the region Wi=��k2�1. Nevertheless, the up-
per applicability limit of BBGK for describing macroscopic
physics remains to be established when the system dramati-
cally departs from equilibrium conditions.

ACKNOWLEDGMENTS

The author thanks Dr. V. Yakhot and Dr. H. Chen for
valuable suggestions and stimulating discussions throughout
the progress of this work.

APPENDIX: N-ORDER HYDRODYNAMIC EQUATIONS

Due to geometrical simplicity the studied shear flow u
=u�y , t�i is incompressible while mass conservation reads
Dt�=�t�=0. In what follows, �=1 is adopted to reduce no-
tation.

1. Hydrodynamic approximation in H2

Approximation within H2 space requires that all distribu-
tion functions be second-order Hermite expansions. Hence,
Eq. �34� yields

f = fM�1 +
1

�
uvx +

1

2�2 ��vx
2� − ���vx

2 − ��

+
1

2�2 ��vy
2� − ���vy

2 − �� +
1

�2 �vxvy�vxvy
 �A1�

and the equilibrium distribution becomes

feq = fM�1 +
1

�
uvx +

1

2�2u2�vx
2 − ��
 . �A2�

From Eq. �A2� we obtain the equilibrium moment

�vxvy�eq = 0, �A3�

while Eq. �A1� gives the third-order moment

�vxvy
2� = �u . �A4�

Using Eqs. �A3� and �A4� one can close the second-order
hydrodynamic description given by Eq. �18�,

�1 + �
�

�t
� �u

�t
= ���2u . �A5�

This equation is known as the telegraph equation.

2. Hydrodynamic approximation in H3

The f �H3 approximation leads to

f = fM�1 +
1

�
uvx +

1

�2 ��vx
2� − ���vx

2 − �� +
1

�2 ��vy
2� − ��

��vy
2 − �� +

1

�
�vxvy�vxvy +

1

6�3 ��vx
3� − 3u���vx

3 − 3vx��

+
1

6�3 �vy
3��vy

3 − 3vy�� +
1

2�3 ��vxvy
2� − u���vxvy

2 − vx��

+
1

2�3 �vx
2vy��vx

2vy − vy��
 �A6�

and the equilibrium distribution

feq = fM�1 +
1

�
uvx +

1

2�2u2�vx
2 − �� +

1

6�3u3�vx
3 − 3vx��
 .

�A7�

From Eq. �A7� one gets equilibrium moments

�vxvy�eq = 0, �vxvy
2�eq = �u , �A8�

while Eq. �A6� yields the fourth-order moment
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�vxvy
3� = 3��vxvy� . �A9�

Recalling Eq. �17� we have �3�vxvy�=− �
�t�

2u, and thus we
can close Eq. �19�,

�1 + 2�
�

�t
+ �2 �2

�t2� �u

�t
= �1 + 3�

�

�t
����2u . �A10�

3. Hydrodynamic approximation in H4

Carrying the Hermite expansion to the fourth-order gives

f = fM�1 +
1

�
uvx +

1

�2 ��vx
2� − ���vx

2 − �� +
1

�2 ��vy
2� − ��

��vy
2 − �� +

1

�
�vxvy�vxvy +

1

6�3 ��vx
3� − 3u���vx

3 − 3vx��

+
1

6�3 �vy
3��vy

3 − 3vy�� +
1

2�3 ��vxvy
2� − u���vxvy

2 − vx��

+
1

2�3 �vx
2vy��vx

2vy − vy�� +
1

24�4

���vx
4� − 6�vx

2� + 3�2��vx
4 − 6vx

2� + 3�2� +
1

24�4 ��vy
4�

− 6�vy
2� + 3�2��vy

4 − 6vy
2� + 3�2� +

1

4�4 ��vx
2vy

4� − �vx
2��

− �vy
2�� + �2��vx

2vy
4 − vx

2� − vy
2� + �2� +

1

6�4 ��vxvy
3�

− 3�vxvy����vxvy
3 − vxvy�� +

1

6�4 ��vx
3vy�

− 3�vxvy����vx
3vy − vxvy��
 �A11�

and

feq = fM�1 +
1

�
uvx +

1

2�2
1

2�2 u2�vx
2 − �� +

1

6�3u3�vx
3 − 3vx��


+� 1

24�3u4�vx
4 − 6vx� + 3�2�
 . �A12�

Thus, Eq. �A12� yields the following equilibrium moments:

�vxvy�eq = 0, �vxvy
2�eq = �u, �vxvy

3�eq = 0. �A13�

From Eq. �A11� the f �H4 approximation to the fifth-order
moment is

�vxvy
4� = 6��vxvy

2� − 3�2u . �A14�

Invoking Eq. �18� we have

�4�vxvy
4� =

6�

�
�1 + �

�

�t
�2 �

�t
�2u − 3�2�4u , �A15�

and the fourth-order hydrodynamic description �Eq. �20�� in
closed-form reads

�1 + 3�
�

�t
+ 3�2 �2

�t2 + �3 �3

�t3� �u

�t

= �1 + 7�
�

�t
+ 6�2 �2

�t2����2u − 3�2�3�4u . �A16�
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