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The dynamic structure factor, which determines the Thomson scattering spectrum, is calculated via an
extended Mermin approach. It incorporates the dynamical collision frequency as well as the local-field correc-
tion factor. This allows to study systematically the impact of electron-ion collisions as well as electron-electron
correlations due to degeneracy and short-range interaction on the characteristics of the Thomson scattering
signal. As such, the plasmon dispersion and damping width is calculated for a two-component plasma, where
the electron subsystem is completely degenerate. Strong deviations of the plasmon resonance position due to
the electron-electron correlations are observed at increasing Brueckner parameters rs. These results are of
paramount importance for the interpretation of collective Thomson scattering spectra, as the determination of
the free electron density from the plasmon resonance position requires a precise theory of the plasmon disper-
sion. Implications due to different approximations for the electron-electron correlation, i.e., different forms of
the one-component local-field correction, are discussed.
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I. INTRODUCTION

Recently, Thomson scattering has been established as a
diagnostic tool for high energy laser-matter interaction in
particular for warm dense matter �1–5�. The Thomson signal
probes the dynamic structure factor See�k ,�� of the plasma
�6�. Reversing the argument, we can synthesize the Thomson
signal by using an appropriate expression for the dynamic
structure factor, or equivalently the dielectric function of the
plasma, and infer density and temperature conditions by
matching the synthesized signal to the experimental one �7�.
This technique has become a primary diagnostic tool for in-
ertial confinement fusion projects, laboratory astrophysics,
and laser generated warm dense matter in general. At such
extreme conditions as present in the aforementioned ex-
amples, collisions and correlations have to be accounted for
in modeling the Thomson scattering signal, i.e., See�k ,�� �8�.

Collective Thomson scattering, where photons scatter in-
elastically on the collective resonances of the plasma �plas-
mons� is well adapted for the diagnostics of plasmas at or
near solid density using x-ray sources, since the plasmon
peak is energetically well separated from the elastically scat-
tered photons �9�. Measuring the plasmon resonance position
allows for the direct determination of the free electron den-
sity provided the plasmon dispersion relation is known pre-
cisely, i.e., the relation between the resonance energy, the
scattering wave vector at given temperature, density, and de-
gree of ionization. The electron temperature can be inferred
due to detailed balance from the ratio of the peak heights of
the red and blue shifted plasmon, respectively �10�.

In a proof-of-principle experiment, Glenzer et al. �4� have
demonstrated plasmon scattering in warm dense matter. Fit-
ting of the plasmon signal by random phase approximation
�RPA� overestimated the plasma temperature as compared to

simulations. This indicated that additional plasmon damping
due to collisions needed to be taken into account. To this end,
the Born-Mermin �BM� approach was successfully applied.

The principal difficulty in describing the plasmon disper-
sion as well as the plasmon damping consistently, is the fol-
lowing: the plasmon dispersion is contained already in the
collisionless theory, i.e., the RPA. On the other hand, trac-
table models of plasmon damping, such as the Drude model,
are only strictly valid in the long-wavelength limit, i.e., k
→0. The Mermin approximation �11� has been found �12� to
be a useful way of bridging between the collision-less
plasma �RPA� at large wave vectors, where collisions may be
neglected due to strong Landau damping, and collisions in
the long-wavelength limit, i.e., a Drude-like expression for
the dielectric function. However, in the static limit �→0, the
Mermin dielectric function equals the RPA expression, i.e.,
static correlations �at finite k� beyond RPA are not incorpo-
rated in the Mermin approach. These static correlations can
be described, e.g., via the local-field correction �LFC� factor
�13�. An extension of the conventional Mermin approach,
that incorporates both static local-field corrections and the
dynamical electron-ion collision frequency has been sug-
gested in Ref. �14� using the Zubarev approach to the non-
equilibrium statistical operator �15,16�. This scheme guaran-
tees the correct account of electron correlations in the static
limit.

Starting from this extended Mermin ansatz, a systematic
study of the influence of both electron-ion collisions as well
as electron-electron correlations on the Thomson scattering
is now possible. It is the objective of this paper to contribute
to such a study. In particular, since the correct form of the
dynamic as well as the static local-field corrections for the
interacting electron gas is still a matter of debate, we com-
pare a few recent suggestions in their consequences for the
Thomson scattering signal. It should be noted that the influ-
ence of local-field corrections on the elastic part of the scat-
tering spectrum, the so-called ion feature, has been studied*fortmann1@llnl.gov
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by Gregori and co-workers �17,18�. Here, we focus on the
inelastically scattered light due to plasmon excitation.

The paper is organized as follows: in Sec. II, we give a
brief review of the formalism and the approach to the dy-
namic collision frequency. Section III in some detail explains
the different models for the dynamic local-field correction
considered here. Results for the plasmon dispersion and
damping are discussed in Sec. IV. Finally, conclusions and an
outlook complete this paper.

II. THEORETICAL BACKGROUND

We consider a neutral plasma of electrons and ions in
thermal equilibrium with electron density ne, ion density ni
=ne �i.e., Z=1� and temperature T. For later use, we intro-
duce the Fermi wave vector kF= �3�2ne�1/3, the Fermi energy
EF=�2kF

2 / �2me�, and the Brueckner parameter rs given by
�4� /3�neaB

3 rs
3=1, where aB is Bohr’s radius. These param-

eters are relevant in our context, because we use the model of
an electron gas at T=0 interacting with an inert background
of ions in carrying out our exploratory calculations. In par-
ticular, the coupling parameter �, i.e., the ratio of average
potential energy per particle to average kinetic energy per
particle, scales as �rs in Fermi degenerate plasmas, �
�0.5rs. As a consequence, the electron-electron coupling de-
creases with increasing electron density and the theory of
ideal Fermi gases is recovered in the limiting case of ne
→�. This is in marked contrast to the case of classical plas-
mas, where ��ne

1/3.

A. Thomson scattering and Born-Mermin approach

It is well-known, see �3–5�, that the experimental Thom-
son scattering cross section is related to the dynamic struc-
ture factor of all electrons in the plasma according to

d2�

d	d�
= �T

k1

k0
See�k,�� . �1�

In this expression, �T=6.65
10−29 m2 is the Thomson
cross section, and k0 and k1 are the wave numbers of the
incident and the scattered light. The energy and momentum
transfer are given by �E=��=��1−��0 and �k=�k1
−�k0. The momentum is related to the scattering angle �s in
the limit ��
��0 by k=4� sin��s /2� /�0 for an incident
wavelength �0. Here, we follow Chihara’ s approach �6�, in
that the total dynamic structure factor can be written in terms
of contributions from free electrons and bound electrons. In
this paper, only the dynamic structure factor of free electrons
is considered.

In thermodynamic equilibrium, the dynamic structure fac-
tor See�k ,�� and the longitudinal response function �ee�k ,��
are related via the fluctuation-dissipation theorem

See�k,�� = −
1

�ne

1

1 − e−��/�kBT� Im �ee�k,�� . �2�

Theoretical approaches to the dynamic structure factor of
two-component plasmas have been developed starting from
different approaches such as perturbation theory, the vis-

coelastic model �19�, the recurrence-relation method �20�, or
the moment approach, see Ref. �21�. As an example for a
perturbative treatment, we mention Refs. �22,23�. There,
based on the generalized linear response theory of Zubarev, a
systematic account of correlations as well as collisions has
been accomplished by partial summation of diagram classes
using thermodynamic Green’s functions. While a detailed
evaluation of the resulting expressions for the response func-
tions is cumbersome at arbitrary wave vectors k, numerical
calculations have been carried out in the long-wavelength
limit k→0. In particular, approximative expressions for the
collision frequency ���� have been studied taking care of
strong collisions as well as dynamical screening in a consis-
tent manner.

To generate approximative results for the response func-
tion at finite wave vectors k, we follow an idea suggested by
Mermin �11�. Ensuring particle number conservation by in-
troducing local thermal equilibrium together with a relax-
ation time ansatz, the electron-electron response function is
approximated by

�ee
�M��k,�� = �1 −

i�

�
� �ee

RPA�k,� + i���ee
RPA�k,0�

�ee
RPA�k,� + i�� −

i�

�
�ee

RPA�k,0�
,

�3�

with a relaxation parameter �. For details, see Ref. �16�.
Here, �ee

RPA is the electron response function in random phase
approximation, i.e.,

�ee
RPA�k,�� =

�e
�0��k,��

1 − V�k��e
�0��k,��

, �4�

where �e
�0��k ,�� is the ideal, i.e., noninteracting response

function, see �24�. For T=0, this ideal response can be found
as

V�k��e
�0��k,�� = −

�0
2

4z3 �g�u + z� − g�u − z�� , �5�

with u=m� / ��kkF� , z=k / �2kF� , �0
2= ��kFaB�−1 and

g�x� = x +
1

2
�1 − x2�ln

x + 1

x − 1
, �6�

The function g�x� given here is a generalization of the func-
tion g�x� given in �24� to complex arguments. Furthermore,
V�k�=e2 / ��0k2	0� denotes the Coulomb potential in momen-
tum space, with the normalization volume 	0. Note, that Eq.
�3� reduces to the RPA expression in the absence of colli-
sions, i.e., �=0. Also, in the long-wavelength limit, Eq. �3�
turns into the familiar Drude form, allowing to identify the
relaxation parameter � as the collision frequency �=����.
For practical calculations, the collision frequency is evalu-
ated in Born approximation, which will be discussed in more
detail in Sec. II C.

The Born-Mermin approach, i.e., the combination of the
Mermin ansatz for the response function �3� and the Born
approximation for the collision frequency, allows for the
consistent interpretation of x-ray Thomson scattering in
warm dense matter �4�. On the other hand, there are certain
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deficiencies associated to the Born-Mermin approach.
Namely, electron-electron correlations, which become impor-
tant at lower temperatures due to the Fermi degeneracy, are
not contained. It is well-known �26� that electron-electron
correlations lead to severe modifications of the plasmon dis-
persion at wave numbers k in the vicinity of the Fermi wave
number kF. In order to account for both electron-electron
correlations as well as electron-ion collisions in a unified,
consistent approach, an extended Mermin approach has been
suggested �14�, which will be outlined briefly in the next
section.

B. Extended Mermin approach

To account for correlations among the electrons, an exten-
sion of the traditional Mermin expression has been sug-
gested, see Ref. �14�. For an adiabatic model with inert ions,
it reduces to replacing the RPA response function in Eq. �3�
by the response function of the interacting one-component
�OCP� electron gas �ee

OCP�k ,��,

�ee
�xM��k,�� = �1 −

i�

����	


 �ee

OCP�k,� + i������ee
OCP�k,0�

�ee
OCP�k,� + i����� − �i�/������ee

OCP�k,0�� ,

�7�

where the label xM indicates the extended Mermin expres-
sion for the response function. Note, that the same expres-
sion has been derived independently by Barriga-Carrasco
�25�. Traditionally, the OCP response function is represented
using a dynamic local-field correction Gee�k ,�� as

�ee
OCP�k,�� =

�e
�0��k,��

1 − V�k��1 − Gee�k,����e
�0��k,��

. �8�

Having a collisionless plasma ����=0, the response function
is solely the OCP expression. Due to the fact, that electron-
electron collisions do not contribute in the long-wavelength
limit, i.e., Gee�k ,���k2 for k→0, this expression still re-
duces to the Drude-like form for small k with the same ����
as before. However, contrary to Eq. �3�, the static limit is
now given by the electron-electron correlation in the OCP,

lim
�→0

�ee
�xM��k,�� = �ee

OCP�k,0� . �9�

C. Collision frequency at arbitrary degeneracy

For the exploratory calculation discussed here, we use the
collision frequency in Born approximation and for arbitrary
degeneracy, see Ref. �23�,

Re ���� =
�0ni	0

2

6�2e2neme
�

0

�

dqq6VS�q�2Si�q�
1

�
Im �RPA,e�q,�� ,

�10�

where VS�q�=V�q� /�RPA,e�q ,0� is the statically screened po-
tential, Si�q� is the static structure factor of the ions, which

can be taken, e.g., from HNC calculations or from MD simu-
lations. In this work, we used Si�q�
1 in order not to mix
different contributions and to keep the discussion of our re-
sults as straightforward as possible. Typically, the collision
frequency is lowered if the ion structure is taken into ac-
count. Furthermore, �RPA,e�q ,��=1−V�q��e

�0��q ,�� is the di-
electric function of the electron OCP. Again, we determine
the RPA dielectric function for T=0 by using Eq. �5�.

We restrict ourselves to the Born approximation �10�
since we want to focus on the interplay between collisions
and electron-electron correlations and the role of different
approximations for the OCP local-field corrections. More ad-
vanced expressions are given in Ref. �23�. Calculations be-
yond the Born approximation should include electron-
electron effects on the collision frequency, which can be
taken into account by increasing the number of moments in
the linear response approach, see Ref. �23� as well.

In Fig. 1, we show the collision frequency ���� as a func-
tion of the frequency � for three different values of the
Brueckner parameter rs=1,2 ,5 and at T=0. Here and in the
following, we choose Z=1. As a reference, we also show the
position of the plasma frequency �pl= �nee

2 /�0me�1/2 as thin
vertical lines for the three cases. Note that the fact that
��pl /EF�1 for rs=1 is purely fortuitous, since ��pl /EF

�0.9405�rs.
The imaginary part of the collision frequency Im ���� is

connected to Re ���� by a Kramers-Kronig relation

Im ���� = �
−�

� d��

�

Re �����
� − ��

. �11�

The account of this imaginary part is essential for obeying
both, the f-sum rule and the perfect screening sum rule.
While, loosely speaking, the real part of ���� leads to a
broadening of the plasmon at k=0, the imaginary part pro-
duces a shift in the plasmon. For a static frequency �=0, the
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FIG. 1. �Color online� Real �black curves� and imaginary part
�gray curves� of the collision frequency ���� as a function of the
frequency �. Various values of the Brueckner parameter rs are con-
sidered. The thin lines indicate the position of the plasma frequency
�pl for rs=1 �solid�, rs=2 �dashed�, and rs=5 �dash-dotted�. Crosses
at �=0.1EF /� indicate the static limit for the collision frequency
�Ziman formula�. The vertical lines give the plasma frequency �pl.
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imaginary part vanishes, i.e., replacing the dynamic by a
static collision frequency ��0� one ignores the shift in the
plasmon position. As a reference, the crosses at �
=0.1EF /� indicate the value of ��0�=Re ��0� as given by the
Ziman formula evaluated in Born approximation �22�,

���Ziman�

EF
= 0.11523rs

2�ln�1 +
6.02921

rs
� −

1

1 + rs/6.02921
	 .

�12�

Note that the collision frequency increases with increasing
rs, i.e., with increasing electron-electron coupling, but with
decreasing electron density.

III. LOCAL-FIELD CORRECTIONS FOR AN
INTERACTING ELECTRON GAS AT T=0

A. Static local-field correction for the OCP

In an often used approximation, the dynamics in the local-
field correction is ignored, reducing it to the static limit only,

�ee
OCP�k,�� =

�e
�0��k,��

1 − V�k��1 − Gee�k���e
�0��k,��

. �13�

For the static local-field correction Gee�k�, a plethora of ap-
proximations have been suggested beginning with the origi-
nal paper by Hubbard �13�. Here, it is impossible to give an
exhaustive review. For an overview of other approximations,
see Ref. �28�. For the sake of illustration, we compare a few
approximations in Fig. 2 for rs=2. Besides Hubbard’s ap-
proximation shown as dotted curve, we also give the Singwi-
Tosi-Land-Sjølander approximation �30� �dash-dotted curve�,
the widely used result by Utsumi and Ichimaru �26� �dash-
dash-dotted curve�, the extension of the latter given by Farid
et al. �27� �solid curve�, as well as the Born approximation
�29� �dashed curve�. Note that the latter exhibits a sharp reso-
nance at k=2kF, which is an artifact due to the discontinuity

of the Fermi distribution function at kF and occurs for all rs.
For comparison and to evaluate the aforementioned analytic
expressions, we also show the Monte Carlo �MC� simulation
data by Moroni et al. �31� �points with error bars�. Qualita-
tively similar results are obtained for other values of rs. For
small values of k, the Utsumi-Ichimaru approximation and
the extended model of Farid et al. are identical by construc-
tion limk→0 GUI�k�=limk→0 GFarid�k�=�0�rs�k2/kF

2 . Here,
�0�rs� is an exactly known function of the correlation energy,
ensuring the compressibility sum rule �26�. There is a good
agreement with the MC data and both, the Utsumi-Ichimaru
and the Farid et al. description, while the other approxima-
tions do not describe these so well. In the deep inelastic
regime at large k, Farid et al. take account of the results by
Holas �32�, that Gee�k� scales as k2, i.e.,

lim
k→�

Gee
Farid�k� =

2

3
�1 − g�0�� +

48EF
2

35�2�pl
2 �4 −

16EF
2

25�2�pl
2 �2�2 + �2

2�

+
4EF

2

5�2�pl
2 �2

k2

kF
2 , �14�

with �2 and �4 being constants only depending on rs, and
g�r� the radial pair distribution function. The k2 asymptotics
is not included into the Utsumi-Ichimaru ansatz, where

lim
k→�

Gee
UI�k� =

2

3
�1 − g�0�� . �15�

Within error bars, the MC data support the quadratic scaling.
For our discussion, this difference is rather unimportant,
since the plasmon ceases to be a well-defined mode already
at momenta smaller than kF, while the differences between
Utsumi-Itchimaru and Farid et al. arise for k�2kF.

B. Dynamic local-field corrections for the OCP

As already mentioned, there are several approximative ap-
proaches to the dynamic structure factor of the electron gas.
Here, we describe the approach of Dabrowski �33� and the
approach of Hong and Lee �34�. Both approaches are inter-
polation schemes incorporating sum rules and other exact
properties. In particular, the static properties are inputs into
these schemes and we can use the local-field correction of
Farid et al. again in this case. This would have been impos-
sible if we choose perturbative results of, e.g., Richardson
and Ashcroft �35�.

Being a dynamical quantity, the local-field correction is
also a complex quantity obeying Kramers-Kronig like rela-
tions. For the real part Re Gee�k ,�� of the dynamic local-
field correction, the static limit is just approximated by
Gee�k� given above. The high-frequency asymptotics is given
by the third-frequency moment sum rule and therefore by the
static structure factor and the correlated kinetic energy of the
electron gas, see Refs. �36,37�,

lim
�→�

Re Gee�k,�� = I�k� −
2k2

m�pl
2 ��Ekin� − �Ekin�0� , �16�

where I�k� in turn is given by the static OCP structure factor
S�k�
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FIG. 2. Static local-field correction Gee�k� for rs=2. Approxima-
tions: Hubbard �dotted�, Born �dashed�, Singwi-Tosi-Land-
Sjoelander �STLS� �dash-dotted�, Utsumi and Ichimaru �dash-dash-
dotted�, Farid et al. �solid�, and Moroni et al. �points with error
bars�.
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I�k� = −
1

N
�

q��k�,0�
K�k�,q���k� · q��2�S��q� − k��� − 1� , �17�

and

K�k�,q�� =
q� · k�

k2 +
q� · �q� − k��

�q� − k��2
. �18�

Furthermore, �Ekin� is the kinetic energy of the interacting
electron gas, �Ekin�0 its noninteracting counterpart.

Dabrowski also incorporates the perturbative result of
Glick and Long �38� for the high-frequency behavior of the
imaginary part of the dynamic structure factor. He extends a
Padé approximation suggested by Gross and Kohn �39� to
finite values of the wave vector,

Im Gee�k,�� =
a�k��

�1 + b�k��2�5/4 , �19�

with

a�k� = Ck2�Re Gee�k,0� − Re Gee�k,��
CDk2 �5/3

, �20�

b�k� = �Re Gee�k,0� − Re Gee�k,��
CDk2 �4/3

, �21�

and C=23 /60�rs, D=��3 /4� / �����5 /4���0.763, �
= �4 / �9���1/3. The corresponding real part is then obtained
by a Kramers-Kronig relation,

Re Gee�k,�� = Re Gee�k,�� + P�
−�

� d��

�

Im Gee�k,���
�� − �

,

�22�

where P� indicates Cauchy principal value integration.
As a second option for the dynamic local-field correction

of the OCP we mention the approach of Hong and Lee
�34,36�, which is based on the recurrence-relation technique.
Specifically, we use the lowest dynamical extension of the
local-field correction, which can be introduced by this tech-
nique. Adapting the notation to the present paper, the dy-
namical local-field correction reads

Gee�k,z� = Gee�k,0� + �Gee�k,�� − Gee�k,0��c2
0�z� �23�

with a function c2
0 given by �40�

c2
0�z� =

�1
0

�2
0���0��k,0�

��0��k,z�
− 1� +

z2

�2
0 . �24�

Here, the quantities �1
0 and �2

0 are the ideal recurrants

�1
0 = −

�pl
2

V�k��e
�0��k�

, �2
0 = �12

5
� k

kF
�2

+ � k

kF
�4	�EF

�
�2

− �1
0

�25�

Both approaches have been adapted in the present work to
the most recent results for the static OCP electron-electron
structure factor S�k� and the correlated kinetic energy, see
Ref. �41�.

IV. COMPARISON OF DIFFERENT APPROXIMATIONS

Instead of showing the dynamical structure factor
See�k ,�� for each of the different approximations and for
various values of the wave vector k and the frequency �, we
introduce the plasmon position ��k� as the position of the
maximum in the dynamical structure factor and the plasmon
width ��k� as the full width at half maximum �FWHM� of
See�k ,��. In a collision-less plasma at T=0, the plasmon is a
well-defined mode for k�k0�rs� corresponding to a �-like
spike in the dynamic structure factor. Its position is given by
the solution of V�k���0��k ,��k��=1. For small k, ��k� can be
approximated by the Gross-Bohm relation

��GB�k�
EF

�2

= ��pl

EF
�2

+
12

5
� k

kF
�2

. �26�

For k�k0�rs�, Landau damping sets in, i.e., electrons in
the Fermi sea take energy �momentum� from the collective
mode. This process is not possible at smaller momenta since
the final momentum still lies inside the Fermi sphere �24�.
The wave vector k0�rs�, where Landau damping sets in, can
be estimated as the intersection of the Gross-Bohm relation
�26� and the single-particle ridge, i.e., k0 is the solution of
�GB�k0�=��k0

2+2k0kF� /2me. For small rs, one obtains
k0�rs� /kF�0.9405�rs /2 �28�. Evaluation of the full RPA re-
sponse function yields k0�rs�=0.53kF, 0.72kF, and 0.99kF for
the values rs=1, 2, and 5, respectively, following the �rs
scaling roughly. Deviations are due to the Gross-Bohm rela-
tion being limited to small rs.

Collisions as well as correlations modify these RPA dis-
persion relations leading to a shift and a broadening of the
plasmon even at k�k0�rs�.

A. Plasmon dispersion without collisions

In a first step, we discuss the effects induced only by
local-field corrections, i.e., for ����=0. The modifications of
the plasmon properties are shown in Fig. 3 for rs=1 and in
Fig. 4 for rs=5. RPA �dotted�, static local-field corrections
�dashed� and dynamic local fields �solid� given by the im-
proved Dabrowski interpolation scheme are compared. Fur-
thermore, we also show the Gross-Bohm dispersion relation
�26�. Here and in the following figures, black lines indicate
the plasmon position, whereas gray lines give the plasmon
damping width.

All dispersion curves start at the same origin, e.g., the
plasma frequency �note again that ��pl /EF=0.9405�rs�. At
increasing k, deviations of the LFC curves from the RPA
behavior are observed, reflecting the k2 scaling of the LFC at
small k. In the case of static LFC corrections, these devia-
tions are quite small. Also, the dynamic LFC is only a minor
correction to the static expression. This is consistent with the
plasmon width, which is below 1% for almost all wave vec-
tors k. Note that the rapid increase above 0.55kF is due to the
onset of Landau damping in the RPA expression. The Gross-
Bohm relation works well except for k�0.3kF, i.e., close to
k0.

For rs=5, more noticeable deviations occur. Also, a clear
influence of dynamical LFC is visible. This is also reflected
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in the plasmon damping, where a width of up to 17% is
found, see inset in Figs. 3 and 4, where the plasmon damping
width using the dynamical LFC is shown. The dip in the
plasmon width at k0 is due the imaginary part of the LFC at
this position, which has a minimum here due to its construc-
tion. We interpret it as an artifact of the approximation with
no physical relevance. The Gross-Bohm relation gives a
good approximation to the RPA dispersion again up to k
�0.3kF, however since here k0=0.99kF, it is not capable to
describe the plasmon dispersion up to the onset of Landau
damping. This shows the limitations of the Gross-Bohm
relation.

B. Results for the extended Mermin approach

We start the presentation of the results for the extended
Born-Mermin approach by focusing on the long-wavelength

limit k→0. In this limit, the Born-Mermin ansatz reduces to
a Drude-type dielectric function with a frequency-dependent
and complex collision frequency ����. This frequency leads
to a broadening and a shift in the plasmon as can be seen
from the imaginary part of the inverse dielectric function,
which is given by

Im �−1�k → 0,��

= −
Re ������pl

2

��2 − �pl
2 − Im ������2 + �Re �����2�2 . �27�

To zeroth order, the real part of the collision frequency is
connected to a broadening, while the imaginary part induces
a shift in the plasmon. Local-field corrections do not play
any role in this limit as discussed above. The shift and the
broadening are illustrated in Fig. 5 as a function of the
Brueckner parameter rs. Note, that both width and position
are scaled by the EF�rs

−2. At small rs�rs�5�, the width �solid
gray curve� evolves parallel to the Ziman formula �12�, given
as dashed gray curve. The offset follows from the fact that
the damping width ��0��Re ���pl� is smaller than the Zi-
man limit ��0�, due to the decrease of Re ���� with increas-
ing �. At higher rs �approaching rs=6�, the Ziman formula
bends downwards due to the second term in Eq. �12�,
whereas the observed plasmon damping width keeps rising
as expected at increased coupling rs. This is partly due to the
contribution of Im ���� to the plasmon damping, which be-
comes important at increased rs. However, here and in the
following, we limit our discussion to rs�5, where the Ziman
formula gives a reasonable estimate of the plasmon damping
at k=0. The question of plasmon damping and dispersion at
very high coupling rs�5 is beyond the scope of this paper.
Looking at the plasmon position �solid black curve�, for rs

�2, ��k=0� follows the plasma frequency ��pl /EF��rs
�dashed black curve�. At stronger coupling, Im ���pl�, and
hence the plasmon position at k=0, increases. Again, in the
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��k� as a function of the wave vector k for rs=1. We compare the
static local-field correction �dashed� to the dynamic local-field cor-
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regime of moderate coupling, rs�2, both real and imaginary
part of the collision frequency contribute to the plasmon
shift, which makes the discussion of rs scaling difficult.

Interestingly, we observe, that plasmon damping and shift
show different dependence on density, i.e., rs. Taking into
account that the Fermi energy scales as 1 /rs

2, the plasmon
damping is to lowest order independent of density, while the
plasmon dispersion follows roughly the �rs behavior. The
reason behind this difference is related to the fact that the
plasmon collisional damping is a true many-body effect, not
present in a model neglecting correlations. On the other
hand, the plasmon dispersion is—to lowest order—already
included in the mean-field theory or RPA. We will not dwell
further on this subject here, however, a general remark
should be made: To clarify the question of density depen-
dence of quantities describing energy dissipation in interact-
ing many-body systems requires in-depth analysis of the per-
turbative methods applied to their calculation. E.g., in the
case of the single-particle self-energy, describing the disper-
sion and damping of single-particle excitations, it has been
found, that a consistent density scaling can only be found in
a generic nonperturbative calculation �42�.

Next, we present the wave vector dependence of the plas-
mon shift ��k� and the plasmon width ��k�. The results for
the shift are shown in Figs. 6–8 for rs=1,2 ,5. Figures 10–12
display the width for the same rs values. We compare three
different approximations, the traditional BM given by Eqs.
�3� and �10�, the extended Born-Mermin approach with static
local-field correction �BM+sLFC� of Eq. �7�, together with
Eq. �13�, and finally the extended Born-Mermin approach
with dynamic local-field corrections �BM+dLFC� by the
Dabrowski ansatz, i.e., Eqs. �19� and �22�. Also, the RPA
dispersion relation is shown, with 1−V�k���0��k ,��k��=0 for
k�k0 and the position of the maximum of Im �ee

RPA�k ,�� for
k�k0.

The shift at k=0 shown in these figures corresponds to the
values for rs=1,2 ,5 in Fig. 5. In this limit, the local-field
corrections do not contribute. Thus, the different approxima-

tions �i.e., BM, BM+sLFC, and BM+dLFC� merge for k
→0. As in the long-wavelength limit, the deviation of all
approximative expressions from the RPA results are more
pronounced with increasing rs. As for the Born-Mermin re-
sult, it shows a systematic behavior with a switch from a
blue shift to a red shift at a value of k close to k0. Similar
results have been reported by Thiele et al. �5�, where calcu-
lations for finite temperature conditions at moderate degen-
eracy are given. We refer for details to that paper and take
the traditional Born-Mermin results as a reference point for
the inclusion of local-field effects.

Using the extended Born-Mermin approach together with
a static local-field correction shows a drastic change in the
dispersion relation for larger values of k. This is expected
from Fig. 2, where Gee�k� shows considerable deviations

0 0.25 0.5 0.75 1 1.25 1.5
wave vector k [units of k

F
]

0.5

1

1.5

2

2.5

3

pl
as

m
on

po
si

tio
n

ω
(k

)
[u

ni
ts

of
E

F/h_ ]

RPA
BM
BM + sLFC
BM + dLFC
k

0

r
s
=1

FIG. 6. �Color online� Plasmon shift ��k� as a function of the
wave vector k for rs=1 BM: traditional Born-Mermin approxima-
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from the RPA limit, i.e., Gee�k�=0. Also, the larger local-field
factor for increasing rs leads to a more pronounced change in
the dispersion relation, as can be seen by comparing the three
values of rs. However, once we refine the approximation by
allowing for dynamic local-field corrections, these drastic
changes disappear again and a dispersion close to the origi-
nal Born-Mermin curve is found, at least for rs=1 and rs
=2. In the case of rs=5, noticeable differences from both,
BM and BM+sLFC remain.

This behavior can be understood by inspection of the fre-
quency dependence of Re Gee�k ,��. While Re Gee�k ,0� in-
creases with k, Re Gee�k ,�� is considerably smaller or even
negative for large k, see, e.g., �37�. As a consequence, values
at intermediate frequencies are considerable smaller than the
static value Re Gee�k ,0�. For larger values of k, a zero in
Re Gee�k ,�� is found corresponding to a RPA-like behavior
at this frequency.

We illustrate this fact in Fig. 9, showing the real and the
imaginary part of the dynamic local-field correction as a
function of the frequency � for k=kF , k=2kF and rs=2. At
�=0, the real part of the dynamical LFC is fixed by con-
struction through the Farid approximation, scaling as k2 in
the long-wavelength limit. At �→�, the high-frequency
limit applies, cf. Eq. �16�. This limits also scales as k2 for
k→0. Details are presented in the Appendix. Due to the Padé
ansatz in Eq. �19�, the imaginary part starts linearly for small
�, while the high-frequency behavior is given by the pertur-
bative result. In between there is a maximum whose position
is at �max=�2 /3b�k�, with Im Gee�k ,�max�
= �3 /5�5/4a�k� /�3b�k� /2, see the Appendix for a detailed
analysis. In the long-wavelength limit, one observes a�k�
�k2 and b�k��k0. Even at finite k, a careful analysis shows
that b�k� and in turn �max only weakly depend on k. Also, the
amplitude scales as k2, which explains the behavior of the
two dashed curves in Fig. 9, i.e., comparing the cases k=kF
and k=2kF. As for the solid lines, the real and imaginary part
are connected by a Kramers-Kronig relation. Thus,
Re Gee�k ,�� shows a small value or a zero at the position
where the maximum occurs in Im Gee�k ,��.

Note, however, that the dispersion relation given for the
calculations including the dynamical LFC is somewhat mis-
leading. A frequency scan of the dynamic structure factor
reveals a rich structure, which cannot be adequately repre-
sented by a shift and a width only.

Finally, we investigate the plasmon width at rs=1, 2, and
5 for the three different approximations, see Figs. 10–12.
Again, at k=0, the broadening is only due to the collision
frequency. For k�k0, the rapid increase of the broadening
with k is due to Landau damping. At finite k, local-field
effects also contribute. In particular, the imaginary part of the
dynamic local-field correction adds to the total width of the
plasmon, if one compares the BM+dLFC result to the BM
curve. To first order, the additional damping due to the
imaginary part of the LFC can be estimated as ���k�
�2 Im Gee�k ,��k����k�. Taking the values at rs=2 and k
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=kF, where ��kF��2.5EF /�, we find ���kF��0.7EF /�,
which agrees with the values in Fig. 11.

Although the static LFC is real valued, it gives a change
to the plasmon width as well. This is due to the frequency
dependence of the collision frequency. Taking the static LFC
into account, the plasmon position is shifted to lower ener-
gies as compared to RPA, and hence the plasmon is stronger
damped, owing to the increased collision frequency at the
lowered plasmon energy. For illustration, we consider again
the case rs=2: At k=kF, the plasmon position in the Born-
Mermin and in the Born-Mermin plus static LFC approxima-
tions are, respectively, �BM�kF��2.5EF /� and
�BM+sLFC�kF��2.3EF /�, cf. Figure 7. Using the well-known
�22� high-frequency behavior Re ������−3/2 for the colli-
sion frequency, we can estimate the ratio of damping in both
models as �BM /�BM+sLFC����BM�kF�� /���BM+sLFC�kF��
���BM+sLFC�kF� /�BM�kF��3/2= �2.3 /2.5�3/2=0.88. This esti-
mate agrees well with the values for ��kF� in Born-Mermin
approximation and using the extended model with static LFC
at rs=2, see Fig. 11.

It remains to point out that for both functions, plasmon
shift and position, the deviation between various models be-
comes stronger as rs increases and at k�k0, the onset of
Landau damping. This is an important information for ex-
perimental studies of cold solid density plasmas. As long as
rs�2, i.e., in the weakly coupled regime, scattering at k
vectors up to k0 allows for robust determination of plasma
density, temperature, and transport coefficients by measuring
the plasmon dispersion and damping, since the models agree
within typical accuracy of x-ray plasma scattering experi-
ments. At increased rs, the range of k vectors where models
agree is confined to lower k, e.g., k�0.5k0 in the case rs
=5.

So far, we have only presented results using the adapted
Dabrowski ansatz for the dynamical local-field correction of
the electron gas. The overall behavior of the plasmon disper-
sion with a recurrence-relation based approach outlined
above, cf. Eq. �23� and �24�, is similar, while there are no-

table differences in detail. This is in part due to fundamental
differences in the high-frequency behavior of the imaginary
part of the local-field factor. We will discuss this in a forth-
coming paper.

V. CONCLUSIONS

We devise an extended Mermin approach which incorpo-
rates both, electron-ion collisions as well as electron-electron
correlations. We apply this new formalism to the calculation
of the dynamical structure factor for an interacting electron
gas at T=0 interacting with a background of inert ions. As
inputs act a dynamical collision frequency taken in Born
approximation and various models for dynamic local-field
corrections of the interacting OCP electron gas. Being impor-
tant experimental observables, we focus on the spectral prop-
erties of plasmon resonances in the structure factor, and we
analyze the relevance of collisions and correlations on these
signatures.

At small wave vectors, we observe a dominance of colli-
sions. The importance of local-field corrections increase with
increasing Brueckner parameter rs. For rs=5, it is indispens-
able to account for local-field correlations. Drastic changes
in the plasmon properties which occur by taking account of
static local-field corrections disappear to some extent when
using models for dynamic local-field corrections. The plas-
mon broadening shows in general a very involved behavior,
due to the interplay between dynamical collision frequency
and static or dynamic LFC. In the case of static LFC, the
ratio of plasmon damping in BM and BM+sLFC approxima-
tions can be estimated as ���BM�k�� /���BM+sLFC�k��
���BM+sLFC�k� /�BM�k��3/2. Using the dynamical LFC, the
additional damping due to the imaginary part of the LFC is
���k��2 Im Gee�k ,��k����k�.

Recently, x-ray Thomson scattering �XRTS� has been suc-
cessful in characterizing warm dense matter. To analyze the
scattering data, the conventional Born-Mermin approxima-
tion has been used. The extended Mermin approach pre-
sented in this work allows the application of the XRTS tech-
nique also to dense plasmas at temperatures far below the
Fermi temperature, i.e., to degenerate, yet strongly coupled
plasmas. The experimental determination of the plasmon dis-
persion and damping in such systems via XRTS seems a
highly promising project, since, together with the existing
data for hot plasmas and warm dense matter, it allows to
study the thermodynamic, structural, and dynamical proper-
ties of matter under extreme conditions and their changes
over a broad range of plasma parameters using the identical
technique and a unified theoretical approach.

The presented results show that the plasmon width and
the plasmon shift calculated with various models for the
local-field factor agree to a certain extend as long as rs�2,
i.e., in the weak coupling regime. Thus, scattering experi-
ments with rs�2 plasmas allow for robust determination of
plasma parameters and transport coefficients via fitting
model structure factors. At rs�2, these models start to devi-
ate significantly. Agreement is only observed at extreme for-
ward scattering k�0.5kF, where plasmons are difficult to
probe due to the increased elastic scattering component and
smaller plasmon shift.
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FIG. 12. �Color online� Plasmon width ��k� as a function of the
wave vector k for rs=5. BM: traditional Born-Mermin approxima-
tion. BM+sLFC: Born-Mermin including static local-field correc-
tions. BM+dLFC: Born-Mermin including dynamic local-field
corrections.
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The presented formalism can also serve as a tool to study
the interplay of impurity scattering and electron-electron cor-
relations in a jellium model description of metals. Here, con-
nection can be made to experimental results for the dynamic
structure factor measured by inelastic x-ray scattering �43�.
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APPENDIX: ANALYSIS OF THE DYNAMICAL LFC

Of course, the shape of the imaginary part as well as the
real part of the dynamic local-field correction Gee�k ,�� de-
pends crucially on the ansatz made by Dabrowski for the
imaginary part. The real part is then obtained from the
Kramers-Kronig relation. The Padé approximant of Dab-
rowski reads, see Eq. �19�,

Im Gee�k,�� =
a�k��

�1 + b�k��2�5/4 . �A1�

Taking the derivative, we obtain

d Im Gee�k,��
d�

=
a�k��2 – 3b�k��2�
2�1 + b�k��2�9/4 . �A2�

Thus, the maximum position for the imaginary part is given
by

�max =� 2

3b�k�
�A3�

As for the value at the maximum position, we have

Im Gee�k,�max� = �3

5
�5/4�2

3

a�k�
�b�k�

. �A4�

Now, b�k� and a�k� are defined by Eq. �20�. In the long-
wavelength limit, both Re Gee�k ,0� and Re Gee�k ,�� scale as

k2. The detailed behavior was analyzed, e.g., by Iwamoto
�44� to read,

lim
k→0

Re Gee�k,0� = ��rs�� k

kF
�2

, �A5�

lim
k→0

Re Gee�k,�� = � 3

20
+

11

20
��rsEc +

13

20
��rs

2dEc

drs
�� k

kF
�2

,

�A6�

with

��rs� =
1

4
−

��rs
5

24

d

drs
� 1

rs
2

dEc

drs
� . �A7�

Here, the correlation energy Ec�rs� enters. This quantity can
be taken from well elaborated fitting formulas, see Refs.
�41,45�. In particular, the small rs, i.e., high density limit
allows for simple analytic approximations of Ec�rs�, see
again Ref. �44�,

Ec =
2

�2 �1 − ln 2�ln rs − 0.094 + 0.018rs ln rs + O�rs� .

�A8�

As a consequence of the scaling of Re Gee�k ,0� and
Re Gee�k ,�� with k2, the coefficient b�k� behaves as k0 and
a�k� as k2. In turn, Im Gee�k ,�max� is proportional to k2 in
accordance to the discussion given above. In particular, for
rs
1, we obtain from Eq. �A8�,

lim
k→0

�CDb�k��3/4 =
1

10
−

11

10�
�1 − ln 2��rs ln rs

+ �11�

20
0.094 −

21

20�
�1 − ln 2�	�rs

−
67

60
��0.018rs

2 ln rs −
73

120
��0.018rs
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