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Localized cyclotron mode driven by fast a particles under a nonuniform magnetic field
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Resonance requires precise synchronization. Surprisingly, relativistic cyclotron instability can survive under
a magnetic field with its nonuniformity larger than the requirement of synchronism. Localized eigenmode
observed in a hybrid simulation is found to be consistent with that predicted by an analytical theory including
both profile and eigenvalue. Half of the spatial area of the wave profile is located where the frequency
mismatch is negative as against to the positive requirement generally believed. The consequence on the «

dynamics is also demonstrated.
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Resonance is a fundamental issue in science with wide
applications and requires precise synchronization [1-5]. For
a harmonic oscillation with damping, the width of the fre-
quency mismatch between the driving force and the oscilla-
tor is required to be smaller than the damping rate in order to
remain in resonance [1]. For cyclotron resonance, the wave
frequency has to be very close to the harmonic frequency of
charge particle’s gyromotion under magnetic field [2-7]. Cy-
clotron instability through the resonance involving relativis-
tic mass variation effect has been studied for half a century
[2-16]. The cyclotron maser instability [2-5] is the most
important mechanism responsible for generating state-of-the-
art high power microwave source with critical applications in
space, defense, and industry. In order to drive the instability,
it is well known [2-5] that the precise synchronism has to be
stably maintained and the frequency mismatch between the
wave and the harmonic cyclotron frequency, . of the
charge particles is required to be positive [2-5]. While the
charge particles are losing their kinetic energy to the wave,
their Lorentz factor decreases, their harmonic cyclotron fre-
quency increases, the frequency mismatch decreases, and
thus the resonance is enhanced to sustain the wave growth
and the instability [2—4].

Fusion produced fast ions are the only direct source to
reheat the plasmas to maintain the burning [17-19]. The fast
a particles produced by the fusion reaction of deuterium and
tritium have an energy of 3.5 MeV corresponding to a Lor-
entz factor of y=1.000 94. It is interesting to find that the
small factor of relativistic mass variation is capable to drive
harmonic cyclotron instabilities [11-16]. The relativistic cy-
clotron instabilities can significantly affect fast ions’ dynam-
ics [20-24]. Moreover, the instability provides an explana-
tion [25] for experimentally observed ion cyclotron emission
in JET(Joint European Torus) [26-31] and causes the selec-
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tive gyrobroadening [20-24] of « energy spectrum measured
in Princeton’s TFTR (Tokamak Fusion Test Reactor) [32,33].
However, the magnetic field in tokamak device is not uni-
form. The nonuniformity is usually much larger than the rate
of wave growth in homogenous plasmas that shall be larger
than the rate of damping. Thus, the relativistic effect is be-
lieved [16] to be minor in tokamak as echoed by the belief
[10] that resonance synchronism can be easily destroyed by
inhomogeneity.

In this paper, we will show the simulation and analytical
results that impact our understanding of resonance and the
requirement of frequency mismatch. In contrast to conven-
tional wisdom [16], localized eigenmodes of cyclotron
waves [34] are excited at the minimum of the magnetic field
which is taken to be sinusoidally nonuniform. One of the
possibilities is that resonance and the resultant structure of
wave mode is a consequence of the need to drive instability
for dissipating free energy and increasing the entropy. We
even find that the wave mode can exist at where the wave
eigenfrequency is lower than the local harmonic cyclotron
frequency. An eigenmode theory derived is found to be con-
sistent with the simulation results.

A one-spatial-and-three-momentum-dimension particle-
in-cell code was developed to study the dynamics of the «
particles and the resultant relativistic electrostatic ion cyclo-
tron instability. The system is in the x direction with its pe-
riodical length of L=4096 Ax while the external magnetic
field is in the z direction as B=By[1+ & sin(2mx/L)], where
the cell size Ax=0.043 cm, By=5 T, 6=0.01, and the mini-
mum B is at the cell of 3072. To reduce the numerical noise,
the quiet-start technique [35,36] was used for isotropic mo-
noenergetic particle e with an initial maximum gyroradius of
pa=125 Ax at By (where the subscript « is for the « particle),
and for 5 keV particle deuterons that may also be described
by fluid scheme; while the electrons are treated as a dielectric
neutralizing background. The « density is 2 X 10° cm™ and
the deuteron density is 10! cm™. For the particle deuterons
case, the number of « particles is 5 038 848 and that of deu-
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terons is 11 390 625. On the other hand, for the fluid deute-
rium case, the number of « particles is 10 077 696. Besides,
the unit time is 7= w, (Where w,,, is at B;) and the time step
is 0.025. The wave number is k=27m/L, where m is the
mode number.

A previous theory [37] also indicates the instability can
survive a nonuniform magnetic field and shows a localized
wave mode. The corresponding characteristics and physics of
the instability and the localized wave mode are, however,
different from the present results. The gyrokinetic theory de-
rived an integral dispersion relation and solved it numeri-
cally in k space. The eigenfrequency is significantly lower
than the local harmonic cyclotron frequency of the a par-
ticles at the magnetic minimum; i.e., the resonant condition
cannot be satisfied for driving a relativistic instability [2].
Also, the localized wave mode has a different profile and
may correspond to a different class of wave modes other than
an absolute instability needed. Thus, an analytical theory
based on the absolute instability condition is needed in order
to obtain correct results consistent with the simulation and to
explain the characteristics and the interesting resonance
physics relevant to the observed localized eigenmode.

Consider the dispersion relation for a uniform magnetic
field as D (w,k)=0 and for a nonuniform magnetic field
as D (w,k,x) Pp(x)=0. Let ¢(x)=p(x)exp(ik.x), where k,
represents the spatial fast-varying part of the wave function.
By employing the two-scale-length expansions [38] with w
=w,+ 0w, k=k,—id,, and x=x+ dx, the corresponding eigen-
mode equation becomes

[D(0,.,k,x0) + Q(8w) + 9D (= id,) + 1/28,D(~ id,)*
+ 0D + 125D & + 32, D S~ id,)
+ 3 Déx(— id,) + 05, D Swdx]p(x) =0, (1)

where Q(6w)=d,DSw+ ﬂiD5w2/2+ ...higher orders; all
terms are at w=uw,, k=k,, and x=x,.

To investigate the localized modes, we make a parabolic
approximation of the magnetic field at the minimum as
B(x)=B[1+e,(x—xy)*/2], where &, denotes the nonunifor-
mity; for the simulation case of 6=0.01, g, is 3.71 X 1074,
Choose xy=0 at the cell of 3072 for simplicity; all terms
associated with the first order derivative to x, will vanish.

We further request k., satisfying the absolute instability
condition of D=0 [38], which implies that the group ve-
locity is zero. Also, in order to remove the term related to
&fukD, let ¢(x)=P(x)exp(ik,x) and k1=—<9ikD/o7§D5w. After
some algebra, Eq. (1) can be transformed to a parabolic cyl-
inder equation [39] as

GO — (P4 - E)D =0. (2)

Then, we obtain the eigenvalue of E=E,=n+1/2
=—Q(dw)/(B*#D) and the corresponding eigenfunction
of ®(r)=®,(r)=He,(H)exp(-r>/4), where B*=D/#D, t
=2'2px, and the He,(7) is the modified Hermite polynomial
of order n, where the rank of the eigenvalue is =
=0,1,2,.... During the algebra, we had also neglected the
term of (¢2,D)?/ D 8w which should be much smaller than
the term of #2Ddw’ in Q(éw) when the charge particles

PHYSICAL REVIEW E 81, 026404 (2010)

fluid deuterium with

10 all modes kept

10

10

particle deuterons
with modes kept
\ from 60 to 110
fluid deuterium
with modes kept
from 60 to 110

0 1000 2000 3000
time (units of co;;)

10

10

electrostaic energy / system energy

FIG. 1. (Color online) Histories of the total field energy from the
simulation cases of particle deuterons with wave modes m kept
from 60 to 110, fluid deuterium with all wave modes kept, and fluid
deuterium with wave modes m kept from 60 to 110, respectively,
where m=kL/21r.

strongly resonate with the wave. For localized solutions, ®
should vanish while away from x,. Hence, only the solutions
satisfying Re(¢?) >0 are chosen to make sure the localiza-
tion.

The waves can propagate in both positive and negative
x directions. Therefore, with ky=k.+k,, the wave function
can be written as (x)=D(x)[exp(ikox)+exp(—ikyx)]/2
=®d(x)cos(kyx), which is a symmetric and localized solution.

To study the behavior of instabilities under nonuniform
magnetic field, we use the dispersion relation derived for a
uniform B [11] and follow the procedures described above.
From the dispersion relation D(w,k)=0, @ can be deter-
mined from k numerically with Muller’s method. There are
several solutions satisfying the d,D=0 condition; the mode
with a highest growth rate is of interest. The corresponding
wave function is then calculated.

Figure 1 shows the histories of the field energy from the
simulations. While the deuterons are treated as particles and
all the wave modes are kept, the system is too noisy. By
reducing the wave modes kept (110=m=60; i.e., 21.09
=k=11.50) or treating the deuterium as a fluid, the wave
grows with some noises. With both, the wave grows expo-
nentially from a low noise and then saturates at a similar
level as other cases. The normalized growth rate is
3.3%x 1073

A snapshot of the field profile in real space near the mini-
mum B is shown in Fig. 2. A twin-wavelet structure is clearly
formed; the width at each side is about four times the «a’s
initial maximum gyroradius. Note that the variation in the
normalized frequency mismatch across the wave profile is
about 3.5X 1072 that is much larger than the normalized
damping rate of 1.4X 1073, estimated from the difference
between the normalized growth rates in the homogenous
plasma and in the nonuniform B, and even the normalized
growth rate of 4.7X 107 in the homogenous plasma. The
relativistic effect cannot satisfy the requirement of synchro-
nism [1,2,10] for oscillation resonance with damping (or
growth). However, our results show that the relativistic in-
stabilities can still survive and play an important role in this
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FIG. 2. (Color online) The electrostatic field at the simulation
time of 1900 (red solid curve) during the linear wave growth for the
simulation case of fluid deuterium and m from 60 to 110 as well as
the wave function predicted by the analytical theory (blue dashed
curve). The inserted figure shows the k space profiles of the elec-
trostatic field snapshot from the simulation (red solid curve) and the
analytical wave function (blue dashed curve).

system. The wave function of the rank n=1 obtained from
the theory is also plotted in Fig. 2 and is in a good agreement
with the simulation result in terms of the overall shape
and its width. The theoretical normalized growth rate of
2.54X 1073 agrees with that of the simulation (e.g.,
3.3X107%) as well. The figure inserted in Fig. 2 shows the
theoretical and simulation profiles in the k space. As also
agreeing, both show that there are two peaks located near 16
and 18, respectively, while the growing & modes of the spec-
trum are from 14 to 20; these kK modes have been included in
the simulation case of wave modes limited.

Figure 3 shows the power spectrum of the wave fre-
quency and the amplitude vs the position. Within the area of
the twin-wavelet structure, the wave frequency measured at

5-4-3-2-1012 3 45
x/pa

FIG. 3. (Color online) The power spectrum in log scale vs the
position. The upper panel is for the normalized wave frequency; at
each position, the power intensity is normalized to the correspond-
ing peak value that is shown in the lower panel. The red curve is for
the local relativistic 13-harmonic cyclotron frequency of the « par-
ticles at initial.
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FIG. 4. Scatter plots of the a particles in the phase space of
perpendicular momentum vs position at r=2000, 2500, and 3000,
respectively.

different position is almost as a constant of 12.875 that is
close to 12.8705 from the analytical theory. This evidences
that the localized wave mode is an eigenmode predicted by
the theory. The wave profile is symmetrical and its width at
both sides is about four @ Larmor radiuses. This may be
related to the fact that the excursion of one magnetized
charge particle is two Larmor radiuses. Moreover, while the
frequency mismatch in the central region is positive as re-
quired [2-5] by the relativistic cyclotron instabilities, the
mismatch at outer region from both the simulation and the
theory is negative as against the well-known resonant re-
quirement. The peaks of the wave mode are located at a
small positive mismatch and at about one a Larmor radius
away from the center as also indicated in Fig. 2. It is inter-
esting to note that the area of the wave profile at the outer
region and the number of « particles within are larger than
those at the central region. The shape of the profile may be
resulted from the need of the resonant interaction to drive the
instability to dissipate the free energy associated with the
energetic « particles.

The localized cyclotron wave mode has profound effects
on the dynamics of the « particles. Figure 4 shows the snap-
shots of the « particles in the phase space of perpendicular
momentum and real space. When the wave is still in its linear
growth stage at r=2000, some of the « particles are being
accelerated while some are decelerated; the acceleration is
stronger at the central region. At the stage of the wave satu-
ration at t=2500, the acceleration and deceleration of the «
particles are significant. At the end of the simulation at ¢
=3000, while some of the « particles have been accelerated
almost to double its perpendicular energy, the overall accel-
erated phase space becomes a rectangle shape and be almost
independent of the wave profile. At the edges of the wave
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profile, although taking a longer time, the much weaker wave
field is still capable of affecting the a dynamics as that at the
peak.

For simplicity, the nonuniformity studied analytically is
parabolic at the minimum of the sinusoidal function em-
ployed in the simulation. The eigenmode driven is near the
minimum, i.e., the zero at the derivation of B. As concerned
for possible applications in a realistic device, this kind of
nonuniformity may occur as a local approximation for the
magnetic field along toroidal direction due to the sharp pres-
sure gradients in high-B8 tokamak discharges or along
poloridal direction especially for trapped a. While the rela-
tivistic cyclotron instability studied here is for energetic ions,
the findings may still have important implications and thus
applications for electrons such as the increasing of tunability
in gyrotrons. The width of the wave eigenmode being eight «
Larmor radiuses is not small in a device. Besides the direct
consequences of the instability on the a dynamics, the details
of the nonlinear plasma dynamics are not within the scope of
this paper. While absolute instability is studied here, convec-
tive instability and its consequences driven by the energetic
« particles remain an interesting topic to be investigated.
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In summary, the relativistic ion cyclotron instability under
nonuniform magnetic field has been studied with a hybrid
simulation and an analytical theory. Although the nonunifor-
mity is too large to satisfy the synchronism requirement of
resonance, localized cyclotron mode is still observed in the
simulation and is found to be consistent with that predicted
by the theory questing for an absolute instability. Half of the
spatial area of the eigenmode is located where the frequency
mismatch is negative as against the positive requirement
generally believed for driving relativistic cyclotron instabili-
ties. The localized cyclotron wave demonstrates the profound
effects on the dynamics of the « particles involved. We have
also assessed the condition and possible applications in real-
istic devices such as high-S fusion tokamak plasmas.
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