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The dynamic characteristics of strongly coupled one-component plasmas are studied within the moment
approach. Our results on the dynamic structure factor and the dynamic local-field correction satisfy the sum
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data on the plasma dynamic properties, including the dispersion and decay of collective modes. Our approach
allows us to correct and complement the results previously found with other treatments.
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I. INTRODUCTION

The classical one-component plasma �OCP� might be
considered a test-tube for the modeling of strongly interact-
ing Coulomb systems �1�, see also �2,3� for more recent re-
views. OCP is often employed as a simplified version of real
physical systems ranging from electrolytes and charged-
stabilized colloids �4�, laser-cooled ions in cryogenic traps
�5� to dense astrophysical matter in white dwarfs and neutron
stars �6�. Another modern and highly interesting pattern of
the OCP is dusty plasmas with the pure Coulomb interpar-
ticle interaction potential substituted by the Yukawa effective
potential �7�.

The classical OCP is defined as a system of charged par-
ticles �ions� immersed in a uniform background of opposite
charge. It is characterized by a unique dimensionless cou-
pling parameter

� = ��Ze�2/a . �1�

Here �−1 stands for the temperature in energy units, Ze des-
ignates the ion charge, and a= �3 /4�n�1/3 is the Wigner-Seitz
radius, n being the number density of charged particles. For
��1 the interaction effects determine the physical proper-
ties of the OCP.

The OCP static properties like the pair correlation func-
tion, g�r�, the static structure factor �SSF�, S�k�, and the
static local-field correction, G�k�, can be found by computer
simulations �see �2,3��. Moreover, molecular dynamics �MD�
as well as other simulations can provide valuable informa-
tion on the dynamic structure factor �DSF�, S�k ,��, and
other dynamic characteristics.

In this paper, the OCP dynamic properties are studied by
the moment approach based on sum rules and other exact
relations, see �8,9� and references therein and comparison is
made with the simulation data of Hansen et al. �10� and of
Wierling et al. �3�. The results of alternative theoretical
methods, the quasilocalized charge approximation �QLCA�

�2,11,12�, the viscoelastic approximation �VEA� �13,14�, and
the recurrence relation �RR� technique �3,15�, are considered
as well.

Precisely, the aim of the work is threefold. First, we use
the method of moments to study the OCP dispersion plasmon
frequency, �L�k�, the corresponding decay decrement, �L�k�,
and the dynamic local-field correction �DLFC�, G�k ,��. Sec-
ond, we compare our results on the dynamic structure factor
to the MD simulation data of �10� and pay special attention
to onset of the so-called negative dispersion of the plasmon
mode in strongly coupled OCPs by determining the range of
the coupling parameter � within which the derivative
d�L�k� /dk changes its sign. And third, we crosscheck our
results against the theoretical methods mentioned above. In
particular, we note that the plasmon decay rate cannot be
studied within the QLCA approach due to its intrinsic nature
and its k dependence was not referred to in the literature as
yet. We also show how the VEA and RR results for the
DLFC and the DSF can be retrieved and partly extended
within the sum rule or moment approach.

II. MATHEMATICAL BACKGROUND

Consider five convergent sum rules which are frequency
power moments of the system DSF,

S��k� =
1

n
�

−�

�

��S�k,��d�, � = 0,1,2,3,4. �2�

All odd-order moments vanish since, in a purely classical
system, the DSF is an even function of frequency.

The method of moments is, generally speaking, capable of
handling any number of convergent sum rules. In two-
component plasmas, though, all higher-order frequency mo-
ments diverge which can be attributed to and understood �16�
from the exact asymptotic form of the imaginary part of the
dielectric function �17�. There is no such clear theoretical
result for the model system to be dealt with here and, thus, it
is simply impossible to presume that the three first even or-
der moments �Eq. �2�� are the only convergent even order
frequency sum rules. However, the ambiguity of higher-order
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frequency moments �13�, related to our scarce knowledge of
the triplet and, presumably, higher-order correlation func-
tions, remains insuperable nowadays and can only impede
our understanding of the physical processes to be described
below.

It is well known �18� that the analytic prolongation of the
positive function of frequency, DSF, onto the upper half
plane Im z	0, constructed by means of the Cauchy integral
formula,

S�k,z� =
1

n
�

−�

� S�k,��
� − z

d� , �3�

admits the asymptotic expansion

S�k,z → �� � −
S0�k�

z
−

S2�k�
z3 −

S4�k�
z5 − o� 1

z5�, Im z 
 0.

�4�

The zero-order moment is, obviously, the SSF, S0�k�=S�k�,
while the second moment is the f-sum rule,

S2�k� = �0
2�k� = �p

2� k2

kD
2 � = �p

2� q2

3�
� , �5�

and

S4�k� = �p
2�0

2�k�	1 +
3k2

kD
2 + U�k�


= �p
2�0

2�q�	1 +
q2

�
+ U�q�
 . �6�

Here q=ka, �p=�4�ne2 /m refers to the plasma frequency,

and kD=�4�ne2Z2� is the Debye wavelength, m being the
ion mass, and

U�q� =
1

4�2n
�

0

�

�S�k�� − 1�f�k�;k�k�2dk�

=
1

3�
�

0

�

�S�p� − 1�f�p;q�p2dp ,

where

f�p;q� =
5

6
−

p2

2q2 + � p3

4q3 −
p

2q
+

q

4p
�ln�q + p

q − p
�, q = ka ,

p = k�a .

This last contribution to the fourth moment is due to the
ion-ion interactions in the OCP, while the second term rep-
resents the Vlasov correction to the ideal-gas dispersion re-
lation of the plasmon mode, �L=�p.

As in �19� the following limits hold

U�k → �� =
2

3
�g�0� − 1� = −

2

3
, �7�

U�k → 0� �
2

15


��k��
��k�

, �8�

where, by virtue of Parseval’s theorem,


��k�� =� ��k��S�k� − 1�
dk

�2��3n
=� ��r��g�r� − 1�dr

is the average interaction energy between two ions with

��k� = 4��Ze�2/k2, ��r� = �Ze�2/r .

The Nevanlinna formula of the classical theory of mo-
ments �18,20� expresses the response function �8�

S�k,z� = −
1

n

E3�z;k� + Q�k,z�E2�z;k�
D3�z;k� + Q�k,z�D2�z;k�

�9�

in terms of a Nevanlinna class function Q=Q�k ,z�, analytic
in the upper half-plane Im z	0 with a positive imaginary
part: Im Q�k ,�+ i��	0, �	0. The function Q�k ,z� should
additionally satisfy the limiting condition:

Q�k,z�
z

→
z↑�

0, Im z 	 0. �10�

Any such function admits the integral representation �18,20�

Q�k,z� =
i


�k�
+ 2z�

0

� du�t�
t2 − z2 �11�

with 
�k�	0 and a nondecreasing bounded function u�t�
such that

�
−�

� du�t�
1 + t2 � � .

Furthermore, the polynomials Dj�z ;k�, j=0,1 ,2 ,3, or-
thogonal with respect to the distribution density S�k ,�� �21�
together with their conjugate counterparts Ej�z ;k�, j
=0,1 ,2 ,3 determined as

Ej�z;k� = �
−�

� Dj��;k� − Dj�z;k�
� − z

S�k,��d�, j = 0,1,2,3

have real coefficients and their real zeros simply alternate
�18,20�. A rather routine renormalization casts these polyno-
mials as

D0�z;k� = 1, D1�z;k� = z, D2�z;k� = z2 − �1
2�k� ,

D3�z;k� = z3 − z�2
2�k�, E0�z;k� � 0, E1�z;k� = S0�k� ,

E2�z;k� = S0�k�z, E3�z;k� = S0�k��z2 + �1
2�k� − �2

2�k�� .

�12�

The frequencies �1�k� and �2�k� in Eq. �12� are defined by
the respective ratios of the moments S��k� �8� and, thus, are
determined by the system static characteristics:

�1
2 = �1

2�k� = S2�k�/S0�k�, �2
2 = �2

2�k� = S4�k�/S2�k� .

�13�

The DSF is therefore found from Eq. �3� as
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S�k,�� =
n

�
lim
�↓0

Im S�k,� + i�� =
n

�

S�k��1
2��2

2 − �1
2�Im Q�k,��

����2 − �2
2� + Re Q�k,����2 − �1

2��2 + �Im Q�k,���2��2 − �1
2�2 . �14�

In the present work we approximate the Nevanlinna interpo-
lation function Q�q ,z� by its static value i
−1�k�=Q�k ,0�,
where the “relaxation time” is selected to reproduce an exact
static value of the dynamic structure factor in Eq. �14�:


�k� =
�S�k,0�

nS�k�
�1

2�k�
�p

2��k�
. �15�

Alternatives in determination of the relaxation time were dis-
cussed in �22� �Chap. 9�. Note that

��k� ª
�2

2�k� − �1
2�k�

�p
2 	 0 �16�

due to the Cauchy-Schwarz inequality. It is important that the
DSF �Eq. �14��, by virtue of Eq. �10�, obeys the correct
asymptotic expansion �4� and, hence, satisfies the sum rules
�2� by construction, regardless of the form of the Nevanlinna
parameter function Q�k ,z�. On the other hand, this means
that the asymptotic expansion �4� holds for any adequate
choice of the function Q�k ,z�.

Within the approximation described above we adopt

S�k,��
S�k,0�

=
�1

4

��2 − �1
2�k��2 + ���2 − �2

2�k���
�k��2 . �17�

The static characteristics, i.e., S�k ,0�, S�k� together with
the moments S2�k� and S4�k�, which, in turn, determine the
characteristic frequencies �1�k�, �2�k�, and 
−1�k�, are to be
calculated independently, e.g., in the hypernetted chain
�HNC� approximation or to be taken directly from the MD
simulation data on the DSF. Straightforward comparison of
the data obtained from Eq. �17� with the simulation data is
transferred to Sec. V. Note that the DSF �Eq. �17�� contains
an exact static value, S�k ,0�.

In a classical system and due to the fluctuation-dissipation
theorem �FDT�,

S�k,�� =
L�k,��
����k�

�18�

so that the moments �Eq. �2�� are proportional, for a given
value of the wave number, to the corresponding moments of
the loss function

L�k,�� = −
Im �−1�k,��

�
, �19�

in the following way:

S��k� =
k2

kD
2 C��k�, � = 0,2,4, �20�

C��k� =
1

�
�

−�

�

��L�k,��d�, � = 0,2,4. �21�

where �−1�k ,�� stands for the plasma inverse dielectric func-
tion �IDF�, a genuine response �Nevanlinna� function of fre-
quency.

Since the DSF has previously been constructed on the
basis of the Nevanlinna formula �18,20�, we, thus, obtain for
the IDF �8�:

�−1�k,z� = 1 +
�p

2�z + Q�
z�z2 − �2

2� + Q�z2 − �1
2�

, z = � + i0+,

�22�

where, the Nevanlinna parameter function Q=Q�k ,z� coin-
cides with that of Eq. �9� due to relation �18�. The main
objective of the following section is to compare expression
�17� to those stemming from the viscoelastic approximation
�13,14� and the continued-fraction approach.

III. ALTERNATIVE THEORETICAL APPROACHES

A. VEA

It is well known that the VEA is based on the random-
phase approximation �RPA� for the polarization operator and
interpolates between the DLFC and the RPA itself �14�. Con-
sider, first, the RPA polarization operator �a simple loop�

��k,�� = �n�1 + �Z����, � =
�

k
��m

2
+ i0+.

Here

Z��� =
1

��
�

−�

� exp�− t2�
t − �

dt �23�

is the plasma dispersion function �23�. Note that the follow-
ing expansions hold:

Z�� → 0� � i��exp�− �2� − 2��1 −
2

3
�2 +

4

15
�4 − ¯� ,

�24�

Z�� → �� � i��exp�− �2� − �−1�1 +
1

2�2 +
3

4�4 + ¯� .

�25�

When the coupling effects come to play, the DLFC
amends the RPA form of the IDF as follows:

�−1�k,�� = 1 −
��k���k,��

1 − ��k��G�k,�� − 1���k,��
. �26�
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A direct comparison of Eqs. �22� and �26� leads to the
following expression for the DLFC:

G�k,�� = A�k,�� +
��k�

1 +
�

Q�k,��

, �27�

which, in the static approximation Q�k ,��= i
−1�k� we em-
ploy, simplifies to

G�k,�� = A�k,�� +
��k�

1 − i
�
=

B�k,�� − i
�A�k,��
1 − i
�

.

�28�

Right above the following notations are utilized:

A�k,�� = 1 +
1

��k���k,��
+

�2 − �2
2

�p
2 ,

B�k,�� = A�k,�� + ��k� .

Due to the Kramers-Kronig relation,

�−1�k,�� = 1 −
1

�
�

−�

�

L�k,���
��d��

�� − z
, z = � + i0+,

�29�

S�k� = S0�k� =
k2

kD
2 C0�k� =

k2

kD
2 �1 − �−1�k,0�� �30�

so that the correct value of the static local-field correction
�SLFC�, B�k ,0�=G�k ,0�ªG�k� is automatically obtained
from Eq. �27�. Moreover, by virtue of Eq. �30�, the SLFC is
directly related to the SSF:

G�k� = 1 +
k2

kD
2 �1 −

1

S�k�� . �31�

Another static characteristic we employed was the static
value of the DSF, S�k ,0�. Since the asymptotic behavior of
the DLFC as �→0 is difficult to predict for strongly coupled
systems, we had to consider S�k ,0� to be an input parameter
determined on the basis of the simulation data together with
the SSF S�k�.

The influence of the SLFC on the static properties of
dense and cold electronic liquids �the interaction potential,
the static conductivity, etc.� within the STLS model �14� has
recently been studied in detail in �24�.

It follows from Eq. �25� that A�k ,�→���−U�k� asymp-
totically. Thus, we recover the VEA, which is an interpola-
tion between the asymptotic values of the DLFC at �=0 and
�→�:

GVEA�k,�� =
B�k,0� − i
�A�k,��

1 − i
�
=

G�k� + i
�U�k�
1 − i
�

.

�32�

But expression �28� might be considered as an extension of
the VEA equivalent to representation �17� and

�−1�k,�� = 1 +
�p

2��
 + i�
�
��2 − �2

2� + i��2 − �1
2�

, �33�

stemming from Eq. �22� with Q= i
−1 �25�. As further shown
in Sec. V, numerical results obtained from Eqs. �17� and �33�
coincide, within the computational error, with those found
from Eqs. �26�–�28�.

It is relevant to note that the model expression for the
DSF �Eq. �17�� coincides formally with that obtained within
the same VEA in �22�. Such a coincidence takes place be-
cause the adjustable parameters of the general hydrodynam-
ics approach �22� were chosen to satisfy the same number of
convergent frequency moments of the DSF. The difference
between these two expressions lies in that the OCP hydrody-
namic characteristics, which, of course, describe the dissipa-
tion processes in the system, acquire, within the moment
approach, some specific definitions, see below, �Eq. �42� and
�43��.

Generally speaking, the hydrodynamic characteristics
such as the kinematic viscosity, the adiabatic sound velocity,
and the thermal conductivity, for which there exist generic
expressions in terms of the specific limiting values of the
correlation functions of the hydrodynamic current longitudi-
nal component, can presumably be determined by numerical
simulations only.

The choice of the Nevanlinna parameter function, a non-
phenomenological component of the moment approach,
might seem to be as arbitrary as that of the memory function
form and its parameters, see, e.g., �22�. Nevertheless, here
we manage to relate all parameters involved in Eq. �17� to
measurable quantities such as the zero-frequency value of the
DSF. Although, for more realistic systems such as two-
component plasmas �16�, the Nevanlinna parameter function
can further be specified by taking into account some details
of the energy dissipation processes �17�.

B. Remark on the continued-fraction approach

As it is mentioned above, we compare our theoretical re-
sults to two data sets �3,10�. The theoretical approach em-
ployed in �3� was the method of recurrence relations �15�,
closely related to the method of continued fractions, which,
in turn, is equivalent to the classical moment method we
apply. Indeed, it is easy to see that expression �22� for the
response function

��k,z� = �−1�k,z� − 1 =
�p

2�z + Q�
z�z2 − �2

2� + Q�z2 − �1
2�

, z = � + i0+

�34�

is equivalent to the truncated continuous-fraction form �3�
�the so-called J-fraction, for a recent review, see �26��:

��k,z� ª �−1�k,z� − 1 = ��k,0��1 −
z

z −
�1

2

z −
�2

2 − �1
2

z + Q
�

�35�

with the same Nevanlinna parameter function Q=Q�k ,z�,
��k ,0�=�−1�k ,0�−1. Of course, representation �35� satisfies
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the sum rules �21� independently of the choice of the func-
tion Q=Q�k ,z�. Nevertheless, the form of the DLFC em-
ployed in �3�, is equivalent to the VEA expression �32� but
without any limitation to small wavelengths.

IV. PLASMA MODES

A. Approximate solution to the dispersion relation

If, in a complete accord with the Landau damping, the
decay rate of the plasma mode is assumed exponentially
small, then, the poles of Eq. �33� lead to the existence of two
modes in the system, i.e., the diffusion, unshifted, mode at
�us=0 and the plasmon modes at �L= ��2�k�. From the
mathematical point of view, such an assumption implies the
incorporation of the so-called canonical solution to the mo-
ment problem �27� for the DSF:

S�k,�� = �0
2	� 1

�1
2 −

1

�2
2����� +

1

2�2
2 ���� + �2

2�

+ ��� − �2
2��
 , �36�

which generalizes the Feynman approximation for the DSF

used in �22� �Chap.7� and, thus, justifies the VEA.
Equation �36� makes the Landau-Placzek ratio,

RLP�k� =
�2

2 − �1
2

�1
2 	 0,

a measurable quantity. Note that if the plasma isothermal
compressibility is introduced as �=n��n /�p��, with p being
the pressure, the compressibility sum rule then states that

G�k → 0� =
k2

kD
2 �1 −

�n

�
� , �37�

hence, due to Eq. �8�,

RLP�k → 0� �
k2

kD
2 �3 −

n�

�
+

8�kD
2

15k0
2 � . �38�

On the other hand, in the classical limit one gets for any
frequency,

lim
k→�

G�k,�� = 1 − g�0� = 1, �39�

RLP�k → �� � 2. �40�

Further, if the decay decrements are assumed to be finite
but small enough, then, the dispersion relation

�
��2 − �2
2� + i��2 − �1

2� = 0 �41�

can approximately be solved to give simple estimates for the
decrements of the two collective modes, respectively, as

� �
� �

�

�
�
�
�

�

�

�

�
�

�

�

�

�

�
�
� �

0 0.5 1 1.5 2
0

10

20

Ω�Ωp

S
�
k
,

Ω
�

�
S

�
k
,
0

�

FIG. 1. The OCP normalized dynamic structure factor for �
=0.993 and q=0.6187 in comparison with the simulation data of
�10� �boxes�. The solid line is constructed according to Eq. �17�
with the values of the moments taken from �10� and/or calculated
by the HNC method; the dot-dashed line is also constructed accord-
ing to Eq. �17� but with the values of the moments obtained by
direct integration of the graphic data of �10�.
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FIG. 2. Same as in Fig. 1 but for �=9.7 and q=1.3835.
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FIG. 3. Same as in Fig. 1 but for �=110.4 and q=3.0937.
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FIG. 4. Same as in Fig. 1 but for �=152.4 and q=6.1837.
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�us�k� = −
�1

2�k�

�k��2

2�k�
, �42�

�L�k� = −
�p

2��k�
2
�k��2

2�k�
. �43�

Both decrements determined above are obviously negative.
Finally, by construction, the sum of the intensities of all

three peaks equals S�k�, i.e., satisfies the elastic sum rule.
One serious drawback of the above approximate solution

to the dispersion equation is that it is unable to predict the
appearance of the “negative” dispersion, i.e., physical condi-
tions under which the derivative d�L�k� /dk first vanishes
and, then, turns negative. To specify these conditions it is
necessary to study the dispersion relation in a stricter
manner.

B. Exact solution of the dispersion relation

Dispersion relation �41� can be solved exactly using the
Cardano formulas. Let w=exp� 2�i

3 �= �− 1
2 + 1

2 i�3� and intro-
duce the following parameters:

Z3 =�− ��2
2

3
−

1

9
2�3

−
1

4
2�−
�2

2

3
+ �1

2 +
2

27
2�2

,

X =�3 Z3 −
i

2

�−

�2
2

3
+ �1

2 +
2

27
2� ,

Y =�3 −
i

2

�−

�2
2

3
+ �1

2 +
2

27
2� − Z3.

Then, the exact solutions of the dispersion relation, i.e.,
the solution with the zero real part and two solutions with
symmetric real parts, are

�us = − w2X − wY −
i

3

, �44�

�L = − wX − w2Y −
i

3

, �45�
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FIG. 5. The OCP normalized dynamic structure factor for �
=2.0 and q=0.49109 in comparison with the simulation data of �3�
�boxes�. The solid line is constructed according to Eq. �17� with the
values of the moments taken from �3� and/or calculated by the HNC
method; the dot-dashed line is also constructed according to Eq.
�17� but with the values of the moments obtained by direct integra-
tion of the graphic data of �3�.
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FIG. 8. The normalized plasmon frequency Re �L�q� /�p for
four different values of �: �a� �=0.993; �b� �=9.7; �c� �=110.4;
and �d� �=152.4. Solid lines: VEA �Eq. �50��; diamonds: the ap-
proximate solution of the dispersion equation, Re �L�q� /�p

=�2�q� /�p; triangles: determined from the positions of the recon-
structed DSF maxima with the values of the moments taken from
�10�; circles: same as triangles but with the values of the moments
obtained by direct integration of the graphic data of �10�; squares:
the exact solution of the dispersion equation with the values of the
parameters taken from �10�; dashed squares: determined from the
positions of DSF maxima of the graphic data of �10�.
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�L� = − X − Y −
i

3

. �46�

The approximate solutions are naturally recovered

�us�k� � −
i�1

2�k�

�k��2

2�k�
, �47�

�L�k� � �2�k� −
i�p

2��k�
2
�k��2

2�k�
, �48�

�L��k� � − �2�k� −
i�p

2��k�
2
�k��2

2�k�
�49�

when, formally, 
�k�→�.
It is expected that the frequencies �L�k� �and �L��k�� cor-

respond to the positions of the shifted peaks of the DSF �1�.
Our results for the OCP collective modes are invalid in

the long-wavelength limit only like those, for instance, of the
VEA hydrodynamic approach �22�. Note that in the QLCA

the direct thermal effects are dropped out, i.e., the corre-
sponding dispersion relation for the plasmon mode lacks the
classical Vlasov contribution �11�, �12� �though in �19� this
contribution was included as a result of the moment analysis
without providing any detail or obtaining quantitative agree-
ment with the simulation data� and the decrements of the
collective modes are out of the scope of that theory.

V. NUMERICAL RESULTS AND DISCUSSION

We have carried out a numerical analysis of the dispersion
relation �45� based on the HNC results for the static charac-
teristics and have confirmed that the derivative d�L�k� /dk
vanishes at about �=9 so that the negative dispersion takes
place for higher values of the coupling parameter �.

We have also carried out an extensive comparison of our
theoretical results with the simulation data of �3,10�. To do
so we have used the graphic data presented in �10� and the
numerical data of �3�.

First of all we compare the theoretically predicted and
simulated forms of the DSF �Figs. 1–7�. The simulation data
have been processed in two different ways to calculate the
static parameters �the frequencies � j

2�k�, j=1,2, etc.�. We

TABLE I. The values of S�q=ka ,0� taken from �10�.

q=0.6187 q=0.8750 q=1.3835 q=1.8562

�=0.993 0.0133 0.0413 0.1059 0.1581

q=0.6187 q=1.3837 q=2.315 q=6.1873

�=9.7 0.001 0.0075 0.0763 0.3897

q=0.8750 q=1.8562 q=3.0937 q=6.1873

�=110.4 0.0003 0.0045 0.1220 1.003

q=0.8750 q=1.8562 q=3.0937 q=6.1873

�=152.4 0.0001 0.0045 0.1160 1.0733
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FIG. 9. The normalized plasmon decay rate Im �L�q� /�p for
four different values of �: �a� �=0.993; �b� �=9.7; �c� �=110.4;
and �d� �=152.4. Solid lines: VEA �Eq. �50��; triangles: the ap-
proximate solution of the dispersion equation �51�; squares: the ex-
act solution of the dispersion equation calculated using the data of
�10�.
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have used either the static MD data presented in the above
mentioned papers, or the data on the DSF itself to calculate
the moments directly. In the latter case, care, of course, has
been taken of the “tails” of the DSF, corresponding to high
frequencies: the asymptotic behavior of the DSF according
to Eq. �4� has been used, in a consistent way, to evaluate the
high-frequency contributions to the moments.

In all figures below we display the dimensionless DSF
normalized to its zero-frequency value, S�k ,�� /S�k ,0�, vs
the dimensionless frequency � /�p at fixed values of the di-
mensionless wave numbers q=ka and at different values of
the coupling parameter �, corresponding to the OCP liquid
state. It is seen that a good quantitative agreement with the
simulation data is gained, especially, for the positions of the
unshifted peaks of the DSF, i.e., for the plasmon mode dis-
persion when the moments are calculated by direct integra-
tion of the DSF data.

In a few cases we have had to adjust the static values of
the DSF within the numerical precision. In this context it is
necessary to admit that the simulation data of �10�, which are
already 34 years old, proved to be somewhat inconsistent
when we used the graphic data of �10� on the DSF to esti-
mate the values of the power moments �S��k��0

4. They turn
out quite different from the corresponding values provided in
the paper.

Additionally, we present results for the dispersion relation
of the Langmuir mode and the corresponding decay rates
obtained by the exact and approximate solutions of the dis-
persion equation ��k ,��=0 �Figs. 8–11�. These results on the
dispersion are compared to the positions of the plasmon
peaks of the DSF and to the prediction of the VEA estimate
�28�,

�L�q�
�p

= 1 +
q2

2�
�1 +

�1

3
� + i�2

q2

6�
,

�1 = −
6�

25
−

4�

25
W1�0.23��� ,

�2 = −
4�

25
W2�0.23��� , �50�

where

W��� = W1��� + iW2��� = 1 +
�

�2
Z� �

�2
� ,

and Z�x� is defined in Eq. �23� �23�.

Notice that no plasmon mode is observed on Fig. 4 for
�=152.4 and q=6.1837. This is confirmed by our exact so-
lution of the dispersion relation with the module of the
imaginary part being only about a half of the real part of the
solution, see Figs. 8 and 9�d�.

Regarding the existence of negative dispersion due to in-
terparticle correlations, we should note that the comparison
of simulations results obtained in Refs. �3,10� is not conclu-
sive at this point, since both show quantitatively different
trends at large values of �. But even in the case of �3�, we
observe that the correlational energy term amounts to com-
pensate the Vlasov thermal dispersion contribution at the
highest value of the coupling. Nonetheless, we should out-
line here the good agreement achieved in any case by our
theoretical approach, once the static characteristics have been
computed through numerical simulations. We should also
mention that the accuracy of our calculations for the disper-
sion in Fig. 10�c� might be affected by the fact that the maxi-
mum frequency available in the simulated spectra in �3� only
reaches a value of 2.8 �compared to 6.5 for the other two
cases�. This might be applicable especially for the circles line
in Fig. 10�c�.

Within our approach we can also compute the effects of
damping processes on the collective mode, which is given by
the imaginary part of the zeros of the dispersion equation
��k ,��=0. Our results show an increment of the modulus of
the imaginary part of those zeros, as a function of k. This
behavior is expected due to the existence of the well-known
Landau damping mechanism, which dominates at those
higher values of the wave vector. There are two additional
main damping mechanisms, namely, collisional damping and
diffusional damping. The latter is more relevant at small val-
ues of k. Figure 11 points out the fact that there is a certain
nonmonotonic behavior of the damping as a function of k,
which could be explained by a cancellation of those damping
mechanisms at intermediate values of the wave number. In
addition, we observe that higher values of the coupling pa-
rameter tend to counteract damping effects, probably due to
the higher particle localization. Finally, it is evident that the
usage of the VEA tends to underestimate notably the impor-
tance of damping processes. Again, this is not surprising, as
this approximation does not describe dynamical screening
adequately at intermediate frequencies. Finally, for the refer-
ence, we present the values of the static parameter
S�q=ka ,0� we used in the present work, see Tables I and II.

VI. CONCLUSIONS

In conclusion, a fairly good agreement is obtained with
numerous simulation data on the dynamic properties of

TABLE II. The values of S�q=ka ,0� taken from �3�.

q=0.34725 q=0.8750 q=1.3835 q=1.8562 q=1.8562

�=0.5 0.007897 0.025195 0.040043 0.055783 0.145137

�=1 0.002741 0.005957 0.022131 0.029141 0.097899

�=2 0.001305 0.002572 0.013369 0.018699 0.059578

�=4 0.000665 0.001557 0.011154 0.015553 0.036259

�=8 0.000256 0.000509 0.001203 0.001343 0.009562

ARKHIPOV et al. PHYSICAL REVIEW E 81, 026402 �2010�

026402-8



strongly coupled one-component plasmas. The model ex-
pressions for the DSF or the DLFC characteristic for the
VEA or the recurrence relation approach are incorporated
into the moment scheme. This allows us to determine the
abstract component of our approach based on phenomeno-
logically sounded properties. Our results on the collective
modes and their damping complement those found with
other approaches. A more systematic set of simulation of this
system could be interesting with the aim of studying the
onset of negative dispersion and quantitative damping prop-
erties at long wavelengths. Our methods can be used to

model dynamic properties of more complex Coulomb sys-
tems with high density of energy.
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