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Spherical Couette flow involves fluid sheared between concentric coaxially rotating spheres. Its scientific
relevance lies not only in the simplicity of the system but also in its applicability to astrophysical objects such
as atmospheres, oceans, and planetary cores. One common behavior in all rotating flows, including spherical
Couette flow, is the presence of inertial modes, which are linear wave modes restored by the Coriolis force.
Building on a previous identification of inertial modes in a laboratory spherical Couette cell, here we propose
selection mechanisms to explain the presence of the particular modes we have observed. Mode selection
depends on both amplification and damping. Our experimental observations are consistent with amplification
and selection by over-reflection at a shear layer, and we would expect other spherical Couette devices to
behave similarly. Damping effects, due in part to the presence of an inner sphere, add further constraints which
are likely to play a role in mode selection in planetary atmospheres and cores, including the core of earth.
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I. INTRODUCTION

Comprised of fluid contained between an inner sphere and
a concentric outer spherical shell, spherical Couette flow has
a simple geometry in which inertia, viscosity, rotation, and
shear interact to yield an intricate set of linear and nonlinear
instabilities. Spherical Couette flow bears further relevance
because of its broad geophysical applications—planetary
cores and atmospheres are well modeled as spherical shells.
Its behaviors, however, are not as well understood as those of
its cousin, Taylor-Couette flow, and theoretical predictions
are more difficult to make since a spherical shell of appre-
ciable thickness cannot be approximated as two dimensional.

One behavior nearly universal in fluids with global rota-
tion is inertial waves. Their occurrence can be explained by
writing the Navier-Stokes equation, which governs fluid mo-
mentum, in a frame rotating with the fluid,

�u

�t
+ �u · ��u = −

1

�
� P + ��2u − 2� � u , �1�

where u is the fluid velocity, t is time, � is the fluid density,
P is the reduced pressure �which includes both the usual
pressure forces and the centrifugal forces�, � is the kinematic
viscosity of the fluid, and � is the bulk rotation rate vector.
The last term accounts for the Coriolis force that arises be-
cause of rotation and has primary importance when rotation
is rapid. Considering a fluid that is incompressible �� ·u
=0� and seeking small-amplitude motions for which viscos-
ity is unimportant �30�, we can reduce Eq. �1� to

�

�t
� � u = 2�� · ��u , �2�

which admits wave solutions of the form u= ũ exp i�k ·r
+�t�, provided that the waves are transverse and that they
obey the peculiar dispersion relation �e.g., see �1��

� = 2k̂ · � . �3�

Here ũ is a vector constant, k is the wave vector, k̂=k / �k� is
the unit wave vector, r is the position vector, and � is the
wave frequency in the rotating frame. Being the solutions to
Eq. �2�, inertial waves are the linear eigenmodes of any rap-
idly rotating, inviscid ��=0� fluid, and likely to arise in any
system well approximated as such.

In an infinite body of rotating fluid, inertial waves exist at
all frequencies �up to twice the bulk rotation rate� as plane
waves in space, constrained only by Eq. �3�. Adding bound-
aries imposes a further constraint and yields a set of inertial
modes. In a full sphere of inviscid fluid �31�, those modes are
known analytically �2–4� and are countably infinite, with dis-
crete frequencies and rotational symmetries. Each mode can
be uniquely identified by three quantities; we shall use spa-
tial degree, spatial order, and normalized temporal frequency
�l ,m ,� /��, respectively. Here �= ���, and the degree l and
order m are symmetry numbers having the same meaning as
in spherical harmonic notation. Though the inertial modes in
a sphere are not spherical harmonics, they have common
boundary requirements �periodicity� and can thus be charac-
terized with the same nomenclature.

Since Eq. �3� still applies, each mode has a characteristic
angle that relates simply to its frequency,
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�c = arccos��/2�� . �4�

The characteristic angle is an important geometrical descrip-
tion of the mode. At latitudes equal to �c, the Coriolis accel-
eration equals the modal acceleration, and a sort of resonance
occurs �5�. In the inviscid limit, the local velocity scales as
1 /�d, where d is the distance to the characteristic latitude
�6�. With viscosity, the singularities �7� become “eruptions”
in the viscous boundary layer, causing it to detach and form
a conical, free shear layer at an angle �c with respect to the
axis of rotation �6,8,9�. A pressure singularity appears at �c in
calculations that neglect the nonlinear terms �10�, which be-
come essential at that latitude. Our discussion will return to
�c below.

We have previously identified inertial modes in spherical
Couette flow �11� using an experimental apparatus similar to
the one shown in Fig. 1. In it, fluid is contained between an
outer, spherical shell with diameter b=60 cm, rotating at the
rate �o; and an inner, solid sphere with diameter a=20 cm,
rotating at the rate �i. Each of these two boundaries is driven
by a 7.5 kW, ac induction motor. The test fluid is liquid
sodium, which we choose for its excellent electrical conduc-
tivity, advantageous for studying hydromagnetic effects. We
apply an axial steady magnetic field and use Hall probes �in
the laboratory frame� to observe magnetic induction that
arises from interactions between the imposed field and the
flowing, conductive fluid. To be precise, the induced field is
governed by the induction equation

�B

�t
= ��2B + � � �u � B� , �5�

which quickly follows from Maxwell’s equations and Ohm’s
law, J=��E+u�B�. Here B is the magnetic field, �
= �	��−1 is the magnetic diffusivity of the fluid, J is the
current density, � is the conductivity of the fluid, and 	 is the
magnetic constant. Only one approximation is necessary: we
have neglected Maxwell’s displacement current, which is
nearly zero as long as the fluid speed is not relativistic.

In this discussion we consider the case of a steady applied
field B0 and the resulting induction B1, where �B1�
 �B0� and
the flow amplitude is again small. Linearizing Eq. �5� ac-
cordingly, we can write

�B1

�t
= ��2B1 + � � �u � B0� . �6�

Thus the measured magnetic induction B1 gives information
about the flow; in particular, a known applied field B0 and a
known flow u give rise to a known induction. According to
the selection rules established in �12�, a flow with degree l
and order m, in the presence of an axial field such as ours,
gives rise to an induction pattern with degree l�1 and order
m. Our 30 Hall probes are positioned to allow us to project
the observed magnetic induction onto the vector spherical
harmonics up to degree and order four; thus the degree l and
order m of the velocity field are immediately available. Like-
wise � is readily obtained via Fourier transformation, and so
we are able to identify inertial modes uniquely as they arise
in the flow.

One goal of the device is to model earth’s core, where the
swirling flow of liquid iron is thought to self-organize and
give rise to earth’s magnetic field in a process known as the
dynamo effect �e.g., see �13��. The radius ratio a /b=0.33 of
our apparatus approximates the ratio of the radius of earth’s
inner core to the radius of its mantle �14�, and the small
magnetic diffusivity � of sodium intensifies hydromagnetic
effects. The present discussion, however, will focus on
purely hydrodynamic behaviors; here we use magnetic in-
duction only as a passive probe, as in Eq. �6�.

For reference we mention in passing that in the experi-
ments described here, the Ekman number was on the order
E�10−7 and the Rossby number lay in the range −2�Ro
�0.75. Both are defined below.

II. OBSERVATIONS OF INERTIAL MODES

When the rotation rate of the outer boundary is large
��o /2�10 Hz�, differential rotation produces magnetic
fields that are strongly oscillatory. One example is given in
Fig. 2, which shows both the spectrum of such a signal and
its time series. The field is dominated by a single temporal
frequency �lab /2=23.25 Hz, which displays roughly four
orders of magnitude more spectral power than any other fre-
quency. Knowing this frequency and knowing the degree and
order of the induction from our array of Hall probes, we can
show that this intense oscillatory behavior is consistent with
the presence of a �l ,m ,� /��= �3,2 ,0.667� inertial mode.
Moreover our colleague Tilgner has numerically calculated

50 cm

B0

FIG. 1. �Color online� Our experimental device. Liquid sodium
fills the gap between the inner solid sphere and the outer spherical
shell. Driven by separate ac motors, the two boundaries rotate in-
dependently. A steady axial magnetic field B0 is imposed externally.
Each dot marks the location of a Hall probe, 30 of which are
mounted on four axial rings in an arrangement favorable for pro-
jection onto the vector spherical harmonics. The probes are oriented
in the direction of the cylindrical radius �horizontal and toward the
axis�.
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the magnetic induction pattern to be expected from that ana-
lytically known mode, showing good agreement with our
experimental observations. In past work we have identified
seven such modes using these techniques �11�; they are listed
in Table I. A question left open in the past work, which forms
the core of the current discussion, is mode selection: of the
infinite number of inertial modes possible in a sphere, why
do these seven arise?

Each observed mode is repeatable, appearing at different
outer rotation rates �o as long as the Rossby number Ro
=�i /�o−1, a dimensionless measure of the differential ro-
tation, remains the same; to first order, Ro controls inertial
mode behavior. We can summarize that behavior with a spec-

trogram, shown in Fig. 3, in which each column of pixels is
composed of one power spectrum like the one in Fig. 2. As
we vary Ro, the spectral content of the observed signal var-
ies, often indicating inertial modes, which appear as in-
tensely shaded regions, narrow in � /�o and persistent in Ro.
Also plotted in Fig. 3 is the normalized deviation of the
signal, reiterating the dominant role of inertial modes. The
black lines plotted over the spectrogram will be discussed
below. No inertial modes appear at Ro=0; they draw their
power from shear imposed by differential rotation.

III. MODE AMPLIFICATION BY OVER-REFLECTION

In fact, our observations suggest that inertial modes draw
their power from the shear via over-reflection—a claim to be
explained presently. In the simplest case, when two layers of
fluid flow past each other, forming a shear layer, pressure
waves impinging on that shear layer can be reflected and/or
transmitted, depending on the angle of wave incidence � �as
measured with respect to the normal� and the normalized
shear rate M =ushear /cp �where ushear is the velocity difference
between the two layers and cp is the wave speed�. As has
long been known �15�, the normalized intensity of a wave
reflected by a shear layer is
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FIG. 2. Power spectral density �PSD� of the magnetic field near
the equator, with �o /2=18.0 Hz, �i /2=5.0 Hz, and B0

=120 G. This spectrum is calculated from 32 s of data without
averaging; a portion of the corresponding time series �with its mean
removed� is shown in the inset.

TABLE I. Experimentally identified inertial modes. Each has a
unique combination of degree l, order m, and normalized frequency
� /�. The characteristic angle �c �see Eq. �4�� and squared flux �
�see Eq. �11�� of each is also listed. The symmetry numbers l and m
describe the velocity field; modes whose velocity field has degree l
produce magnetic fields with degree l−1, consistent with theoretical
selection rules �12�. Modes whose velocity field has degree l=6
were detected with a probe array different from the one shown in
Fig. 1, which allowed for the identification of modes of higher
degree through an indirect process but was ill-suited for direct pro-
jection onto the vector spherical harmonics.

l m � /� �c �

3 2 0.667 1.231 0

4 1 0.612 1.260 2.81�10−2

4 3 0.500 1.318 0

5 2 0.467 1.335 2.90�10−3

5 4 0.400 1.369 0

6 1 0.440 1.349 1.07�10−1

6 3 0.378 1.381 3.08�10−4

FIG. 3. �Color online� Magnetic field data taken from an equa-
torial Hall probe with �o /2=18.0 Hz. The lower plot is a spec-
trogram, with its vertical axis showing the normalized signal fre-
quency �lab /�o as measured in the laboratory frame, and its
horizontal axis showing the dimensionless differential rotation Ro.
Each column of pixels is a power spectrum of 32 s of data, with
power indicated by the varying shades. The black central region lies
at low speeds inaccessible with our ac motors. The upper plot
shows the standard deviation �B of the same data normalized by the
applied magnetic field B0.
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R2 = �1 − Z

1 + Z
	2

, �7�

where

Z = −
�csc2 � + M2 − 2M csc � − 1

sin 2��csc2 � + M2 − 2M csc ��
. �8�

Though Eq. �7� was derived for acoustic waves, the neces-
sary assumptions are few, and the results below give some
support for applying it to inertial waves as well. Over-
reflection is also known to exist in Rossby waves �16�
�which in physical terms are essentially the same as inertial
waves� and in internal gravity waves �17� �whose dispersion
relation is mathematically identical to that of inertial waves,
Eq. �3��.

For certain angles �, it follows from Eq. �7� that R2�1,
implying over-reflection, in which energy is transferred from
the shear to the reflected wave. Perhaps more interestingly,
the theory predicts the existence of angles � for which R2

=�, as long as M �2. In any physical system, additional
effects not accounted for by over-reflection would cause the
gain to saturate at a finite value, but we would expect large
amplification nonetheless.

The physical system of our most direct interest is, of
course, the one sketched in Fig. 1. We hypothesize that
within it, some region of fluid rotates with the outer bound-
ary at rate �o, while some other region rotates with the inner
boundary at rate �i. Thus a shear layer separates the two
regions. Most likely it forms on a cylinder coaxial with the
rotation axis and tangent to the inner sphere at its equator, as
first described by Stewartson �18� and consistent with later
work in hydromagnetic flow �19�. Since we do not have di-
rect velocity measurements, the location of the shear layer
may remain a matter of speculation; even still, we can use
experimental control parameters to write its normalized shear
rate,

M = − m
�o

�
Ro. �9�

To do so we have used the azimuthal propagation speed of
inertial modes, cp=� /m. Since our Hall probes are mounted
in the laboratory frame, signals with frequency � in the ro-
tating frame appear to the probes as signals with frequency
�lab=m�o−�. Using this mapping and rearranging Eq. �9�,
we can write

�lab

�o
=

m

M
Ro + m , �10�

which, keeping the normalized shear rate M and order m
fixed, specifies that the observed frequency of a hypothetical
inertial mode, excited by over-reflection, has a linear rela-
tionship to Ro. Since angles with R2=� first appear at M
=2, we use that value as an onset condition and plot a family
of lines, one for each m, on the spectrogram in Fig. 3. These
boundary lines correctly predict the onset of inertial modes
as observed in our experiments. Again, no induction is pos-
sible at Ro=0, where neither shear nor relative motion is
imposed upon the fluid. For Ro�0, large amplification of

inertial modes by over-reflection is possible only on the left
side of the boundaries—that is, on the side opposite Ro=0.
Consistent with this condition, we observe strong inertial
modes immediately left of the boundaries and broadband in-
duction throughout the entire region left of the boundaries.
From this result we have previously asserted �11� that the
inertial modes we observe draw their power from shear via
over-reflection.

But Eq. �7� asserts that the normalized intensity R2 de-
pends not only on the normalized shear rate M but also on
the angle of incidence �. Though the geometry of an inertial
mode is complicated, here we shall postulate that the appro-
priate angle of incidence is the characteristic angle of the
mode ��=�c� and shall show that such a hypothesis has im-
plications for inertial mode selection which are consistent
with our experimental observations.

Combining Eqs. �4� and �7�, we can relate the amplifica-
tion of an inertial mode by over-reflection to the normalized
shear M and the frequency �. The relationship is quantified
by the plot in Fig. 4, which shows the frequencies of large
�nominally infinite� gain, which we shall refer to as “critical
frequencies.” The original work �15� noted that infinite gain
is possible but did not precisely locate it. In Table II we
tabulate the normalized shear speeds where critical frequen-
cies exist, as calculated from Eqs. �4� and �7�. New critical
frequencies appear in pairs reminiscent of a period doubling
bifurcation. A prominent region of large gain exists at low
frequencies � /��0.6. Accordingly, the modes we have ob-
served experimentally have frequencies in the same range
�see Table I�, giving preliminary support to our hypothesis
�=�c.

FIG. 4. �Color online� Intensity of waves reflected from a shear
layer normalized by intensity of the incoming wave. Normalized
intensity R2 is plotted as a function of normalized frequency � /�
and normalized shear speed M. Angles at which R2=� first appear
at M =2, marked with a solid line; see Table II.
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Proceeding with this hypothesis, we can calculate the nor-
malized intensity R2 for any given inertial mode at any given
normalized shear rate M. Constructing a list of all low-order
�l�10� inertial modes, we have calculated R2 for each mode,
throughout the range 1�M �10. At each M, some particular
mode, which we will call the “strong mode,” is amplified
most strongly �i.e., has the largest R2�. The frequency � /�
of each strong mode is plotted as a function of M in Fig. 5.
We would expect the strong modes to have frequencies simi-
lar to the critical frequencies shown in Fig. 4—and they do.
What we could not have predicted, however, is the domi-
nance of the critical frequency nearest � /�=0. Though as
many as five critical frequencies exist over large ranges of
M, the strong modes almost always lie near the one with
lowest frequency. This unexpected theoretical result is con-
sistent with our experimental observations and gives further
support to our hypothesis �=�c.

In fact, the agreement between theory and experiment
goes further. Of the seven inertial modes we have identified

experimentally, five comprise the lowest-order strong modes
near M =2. All strong modes over the range 2�M �2.5 are
listed in Table III, along with the normalized shear rate Mmin
where each first appears. Since modes present in the flow
with large l or m would be invisible to our Hall probe array,
we have experimentally identified all the modes observable
to us that over-reflection theory would predict in this range.
Figure 5 also shows experimental measurements of identified
modes, whose onsets are not inconsistent with Mmin as pre-
dicted by over-reflection theory, giving further support to our
hypothesis �=�c and to the assertion that over-reflection af-
fects mode selection. That the observed frequencies exceed
the theoretical, inviscid ones by a few percent is no surprise;
rather, it is predicted by viscous corrections to the theory
�5,20�.

Shear giving rise to wave modes via over-reflection may
be related to the shear-induced oscillatory modes discussed
by Chandrasekhar �21� or to the Kelvin-Helmholtz shear in-
stability. The phenomenon also seems to bear close relation-
ship to recent numerical studies of tidal forcing of inertial

TABLE II. Count of critical frequencies. The first critical fre-
quency �where R2=�� appears at �� /� ,M�= �0,2�. Others arise in
pairs at �1.9359,2.36656� and �1.9332,5.22959�. No more than five
critical frequencies are present for M �100, and it seems unlikely
that more arise at any M.

Normalized shear rate Count of critical frequencies

0�M �2 0

2�M �2.36656 1

2.36656�M �5.22959 3

5.22959�M 5
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FIG. 5. �Color online� Prediction from over-reflection theory of
inertial mode selection. For each normalized shear speed M, the
plot shows �dotted� the normalized frequency � /� of the one iner-
tial mode with l�10 that is most strongly amplified, according to
Eq. �7�. The inset shows an expanded view of the region near M
=2, with dashed lines marking the frequencies of the seven modes
we have identified experimentally. Also plotted �as Xs� are the ex-
perimental parameters where the modes listed in Table I were iden-
tified, using the same data shown in Fig. 3.

TABLE III. Strong modes over the range 2�M �2.5, as calcu-
lated from over-reflection theory using Eq. �7�. The normalized
shear rate where each mode first appears, Mmin, is also listed. Ex-
perimentally identified modes, which are the lowest-order modes in
the list, are marked with �; compare to Table I.

l m � /� �c Mmin

10 9 0.200 1.471 2.0228

10 7 0.214 1.463 2.0285

9 8 0.222 1.460 2.0319

10 5 0.232 1.454 2.0347

9 6 0.240 1.450 2.0378

8 7 0.250 1.446 2.0409

10 3 0.254 1.443 2.0434

9 4 0.263 1.439 2.0460

8 5 0.273 1.434 2.0499

10 1 0.282 1.429 2.0539

7 6 0.285 1.427 2.0565

9 2 0.292 1.424 2.0589

8 3 0.304 1.418 2.0632

7 4 0.317 1.411 2.0696

9 0 0.330 1.405 2.0768

6 5 0.333 1.403 2.0814

8 1 0.344 1.398 2.0854

7 2 0.359 1.390 2.0937

6 3 0.378 1.381 2.1056�

5 4 0.400 1.369 2.1216�

7 0 0.418 1.360 2.1402

6 1 0.440 1.349 2.1619�

5 2 0.467 1.335 2.1938�

9 1 1.935 0.254 2.2460

4 3 0.500 1.318 2.2547�

9 1 1.935 0.254 2.3215

10 1 1.94714 0.230 2.4252
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modes in a spherical shell, in which boundary eruptions at
the characteristic latitude lead to dramatic effects �22�. Using
algorithms developed for that work, Rieutord was able to
produce resonance curves whose highest peaks agree well
with the modal frequencies we have observed experimen-
tally. We look forward to future studies using additional pre-
dictions and/or new data that might distinguish the explana-
tion we have made using over-reflection from other possible
explanations—or might show them to be equivalent.

Meanwhile we suspect that over-reflection plays an im-
portant role in mode selection in other spherical Couette de-
vices, as it seems to do in ours. In particular, the wave mo-
tions recently observed in the Derviche Tourneur Sodium
�DTS� apparatus �23,24� may be selected by over-reflection.
Mode selection by over-reflection is not likely to be the pri-
mary selection mechanism in Earth’s core, however, since
differential rotation of the inner core is not more than
0.5° /yr �25,26�.

This discrepancy between nature and experiment is one
way in which spherical Couette devices are imperfect models
of planetary cores and deserves comment. As experimental-
ists we hope that many aspects of the essential physics of
planetary dynamos might be elucidated despite the discrep-
ancy but perhaps a rotating hydromagnetic spherical shell
that drives motion via convection would seem more faithful.
Such a device has been constructed and studied previously
by Shew et al. �27�. However, producing flow vigorous
enough to approximate the dimensionless parameters of
planetary cores—especially the magnetic Reynolds number,
important for magnetic behaviors such as the dynamo
effect—proved to be a great challenge. In terms of that di-
mensionless parameter, a spherical Couette device is a more
faithful model.

IV. MODE DAMPING BY BOUNDARIES

But over-reflection is not the sole selection mechanism for
selection of inertial modes in spherical Couette flow, as in-
dicated by a question we have not yet addressed: what about
the other two modes? As shown in Fig. 5 and Table III, five
of the seven modes we have identified experimentally are
strong modes according to over-reflection theory—but the
other two are not. Further detail is provided by Fig. 6, which
shows the predicted gain R2 of each identified mode as a
function of M. Five of the plots show cusps where R2 di-
verges, but the other two show no cusps and nearly always
have lower gain. Nonetheless our observations show that
these two modes are excited over wide ranges of M, as
shown in Figs. 3 and 5. Thus amplification alone provides an
incomplete picture of mode selection; damping must be con-
sidered as well. To say the same thing in a different way,
amplification and damping are not unique mechanisms but
different sides of the same coin. A similar complex interplay
between forcing and damping was noted in the results of a
linear stability analysis of tidal forcing �22�. Performing the
same sort of calculation for spherical Couette flow might
answer our questions about amplification and damping di-
rectly but that calculation is beyond the scope of the work
presented here.

Short of that calculation, past work on damping of inertial
modes may provide some insight even if it cannot answer
our questions directly. For a full sphere with free-slip bound-
aries, inertial mode damping coefficients have been calcu-
lated both with and without a viscous correction by
Greenspan �5� and by Aldridge and Toomre �20� but only for
axisymmetric �m=0� modes without flow across the equator.
By contrast, the modes we have identified are nonaxisym-
metric, always have flow across the equator, and occur in a
spherical shell with no-slip boundaries. Aldridge later calcu-
lated damping coefficients in a spherical shell, using a varia-
tional approach �10�, but again only in the axisymmetric
case. Stergiopoulos and Aldridge used experimental ring-
down measurements to obtain empirical approximations of
the damping coefficients of a few m=1 modes in a sphere
with an inner boundary �28�, but the inner boundary was not
spherical, the modes do not match those we have identified,
and the modes were chosen by tuning to their resonant
frequencies—not by allowing the selected modes to domi-
nate. Finally, Rieutord calculated the linear eigenmodes of a
spherical shell with radius ratio a /b=0.35. Interested in
earth’s core, he included rotation, buoyancy, and viscosity,
but the inner and outer boundaries rotate at the same rate; he
did not consider spherical Couette flow.

We address damping in spherical Couette flow by begin-
ning with a simple assertion. No analytic solution to Eq. �2�
is known in a spherical shell geometry, but experiments and
variational calculations �10,28� tell us that many modes
which arise in a spherical shell closely resemble their coun-
terparts in the full sphere. In fact, modes with frequency
� /�=2 / �m+1� exist essentially unchanged in a spherical
shell �6�, and three of the modes we have
observed—�l ,m ,� /��= �3,2 ,0.667�, �4,3,0.500�, and
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FIG. 6. �Color online� Normalized intensity R2, calculated from
Eq. �7�, of the seven modes identified experimentally. Two have
finite gain for all M but dominate in some parameter regimes
nonetheless.
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�5,4,0.400�—are members of this group. Throughout this
work, the theoretical inertial modes to which we compare
observations are full-sphere modes. Our simple assertion is
that full-sphere modes with large flows through the region of
the inner sphere are unlikely to have a close counterpart in a
spherical shell. We quantify the flow through that region with
the normalized mean-square flux at the inner boundary,

� =

�

0

 

0

2

�u · r̂�2r2 sin �d�d��r=a



0

b 

0

 

0

2

u2r2 sin �d�d�dr

, �11�

where we use spherical coordinates �r ,� ,�� and r̂ is the unit
vector in the radial direction. Figure 7 shows � for all full-
sphere inertial modes with l�7, calculated using the analyti-
cal expression for each mode as given in �4�. Modes with
frequency 2 / �m+1� have �=0 identically. The normalized
mean-square flux of the seven modes identified in experi-
ments is listed in Table I, and those modes are also marked in
Fig. 7. All have small flux ���0.11�, and six of the seven
have lower flux than any other mode with the same degree l
and order m; the only exception is the mode with
�l ,m ,� /��= �6,1 ,0.440�, for which the flux is 0.107, while
the flux is 0.050 and 0.096 for the modes �6,1,1.306� and
�6,1 ,−1.404�, respectively. Thus our observations are con-
sistent with the assertion that full-sphere modes with large
flows through the region of the inner sphere are unlikely to
have a close counterpart in a spherical shell. This assertion
also explains the fact that all the modes we observe are an-
tisymmetric with respect to the equator. Though many of the
full-sphere modes are symmetric with respect to the equator,
their flux is consistently much higher than the antisymmetric
modes.

The condition imposed by small flux, like the condition
imposed by over-reflection, seems to be an important factor

in mode selection. Going further to postulate that small flux
is associated with small damping, we propose that the two
modes �3,2,0.667� and �4,1,0.612� appear experimentally
without ever being strong modes according to Eq. �7� be-
cause their damping is unusually low. Experimental measure-
ments of the damping of a few inertial modes in a full sphere
were obtained long ago �20� but only in the axisymmetric
case, which excludes the modes we have identified. The
aforementioned resonance curves, produced by Rieutord af-
ter this manuscript was first written, support our hypothesis;
the highest peak for any low frequency, m=1 mode appears
near 0.612, and the highest peak for any low frequency, m
=2 mode appears near 0.667. Future experimental measure-
ments of mode damping might add further support.

For comparison, we turn to the past publication that most
directly addresses damping of inertial modes in spherical
shells that of Rieutord �29�, whose results are summarized in
Table IV. It lists the ten least damped modes and their eigen-
values, calculated numerically with linear stability theory,
using no-slip boundary conditions. One of the ten is the
�3,2,0.667� mode, which we observe experimentally, though
it is not a strong mode according to over-reflection theory.
Thus one past stability analysis suggests that this mode is
selected by small damping, not solely by large amplification,
consistent with our proposal above. Interestingly, however,
there are no modes that are both strong modes according to
over-reflection �Table III� and least-damped modes according
to that set of calculations �Table IV�.

None of the other modes predicted by �29� match the
modes we have identified experimentally �compare Tables I
and IV�. To explain the mismatch, we begin by pointing out
the different physics at work in each situation: our laboratory
experiment involves large rotational forces and excitation by
differential rotation, while the numerical calculations of �29�
incorporate no differential rotation, use smaller rotational
forces �32�, and incorporate buoyancy and viscosity. How-
ever, we must revisit our assertion that full-sphere modes
with large flow through the region of the inner sphere are
unlikely to have close counterparts in a spherical shell. A
number of the modes listed in Table IV have large flux �, as
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FIG. 7. �Color online� Listing of all inertial modes through
l=7, by degree l, order m, and frequency � /�, along with the
normalized squared flux � of each. Each mode we have observed
experimentally is marked with a circle, and each mode predicted in
�29� �see Table IV� is marked with an X.

TABLE IV. The most weakly damped inertial modes in a spheri-
cal shell as calculated in �29�. The eigenvalues �rr apply to no-slip
boundaries. The mode marked with � is one of the seven we have
identified experimentally; see Table I.

l m � /� �rr

3 1 1.5099 −5.977�10−3+0.74383i

5 0 1.5301 −6.095�10−3+0.75200i

2 1 1 −6.197�10−3+0.50079i

6 1 −1.4042 −6.744�10−3−0.69936i

4 0 1.3093 −7.190�10−3+0.66216i

5 2 1.4964 −7.331�10−3+0.74731i

6 0 1.6604 −7.463�10−3+0.81736i

6 2 1.6434 −7.593�10−3+0.81308i

3 2 0.6667 −8.224�10−3+0.33355i �

8 0 1.3544 −8.714�10−3+0.68559i
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plotted in Fig. 7. Though their damping rates may be low in
a linear stability calculation, where by definition all pertur-
bations have vanishing amplitude, large flow through the in-
ner boundary cannot be sustained. We would not expect the
�3,1,1.510� mode or other modes with large � to appear in
experimental devices, in direct simulations, or in physical
systems such as earth’s core. The resonant curves mentioned
above, calculated by Rieutord more recently than the results
of �29�, incorporate shear imposed by rigid boundaries and
agree more closely with our experimental observations. They
also show that the �4,1,0.612� mode is also damped quite
weakly, as we would have expected.

V. SUMMARY

Being the linear eigenmodes of any rapidly rotating invis-
cid fluid inertial modes arise commonly in geophysical, as-
trophysical, industrial, and laboratory flows, often dominat-
ing the power spectra and flow dynamics. Theoretical
methods to predict which particular modes arise could give
leading-order information about those flows. We have pro-
posed two such methods, one based on mode amplification
by over-reflection and one based on damping by boundary

conditions. We have compared these methods to experimen-
tal observations, showing that either method is usually con-
sistent with our observations and that a combination of the
two gives a reasonable explanation for all we have observed.
Future experimental measurements of modal damping rates
may shed further light on mode selection, and a recent the-
oretical study �22� seems to offer insights as well. Our pre-
dictions based on damping apply directly to atmospheres,
planetary cores, and experiments designed to model those
flows, in which rotating fluid is bounded by a spherical shell.
Our predictions based on over-reflection apply to spherical
Couette devices and to astrophysical objects in which differ-
ential rotation is present.
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