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Stability of rotating stratified shear flow: An analytical study
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We study the stability problem of unbounded shear flow, with velocity U;=Sx36;;, subjected to a uniform
vertical density stratification, with Brunt-Viisild frequency N, and system rotation of rate () about an axis
aligned with the spanwise (x,) direction. The evolution of plane-wave disturbances in this shear flow is
governed by a nonhomogeneous second-order differential equation with time-dependent coefficients. An ana-
Iytical solution is found to be described by Legendre functions in terms of the nondimensional parameter
o‘i:R(R+ 1)sin®> @+R;, where R=(2(/5) is the rotation number, ¢ is the angle between the horizontal wave
vector and the streamwise axis, and R;=N?/S? is the Richardson number. The long-time behavior of the
solution is analyzed using the asymptotic representations of the Legendre functions. On the one hand, linear
stability is analyzed in terms of exponential growth, as in a normal-mode analysis: the rotating stratified shear
flow is stable if R;>1/4, or if 0<R;<1/4 and R(R+1)>0, or if R(R+1)<O<R(R+1)+R; and O<R;
<1/4. It is unstable if R;<0 and R(R+1)+R;<0. On the other hand, different behaviors for the “exponen-
tially stable” case can coexist in different wave-space regions: some modes undergo a power-law growth or a
power-law decay, while other exhibit damped oscillatory behavior. For geophysical and astrophysical applica-
tions, stability diagrams are shown for all values of R; and R and an arbitrary orientation of the wave vector.
Crucial contributions to spectral energies are shown to come from the k;=0 mode, which corresponds to an
infinite streamwise wavelength. Accordingly, two-dimensional contributions to both kinetic and potential en-

ergies are calculated analytically in this streamwise direction.

DOI: 10.1103/PhysRevE.81.026302

I. INTRODUCTION

This study contributes to a general approach to turbulent
flows subjected to mean, velocity and/or density, gradients
and/or body forces. The mean flow studied here is a combi-
nation of pure plane shear of constant rate S, rotating along
its spanwise direction with angular velocity (). An additional
“stabilizing” vertical mean gradient of density, which results
in a constant Brunt-Viisild frequency N, is considered. The
mean flow is schematically shown in Fig. 1.

If one accepts the simplification of no confinement, or no
explicit effects of solid boundaries, this flow can be seen as a
model for geophysical applications. At mesoscales, the local
Coriolis parameter f, which replaces the system vorticity 2(),
is almost constant, and usually small, but not negligible, with
respect to the frequency N which quantifies the local stable
stratification. Stable stratification can be transient (inversion
zone) or durable (tropopause, low stratosphere) in the atmo-
sphere. It is durable in the ocean, at least near the ther-
mocline and near the “deep pycnocline” (see, e.g., Pedlowski
[1]). It can be shown that stably stratified zones mainly con-
trol the vertical turbulent mixing in atmosphere and ocean.

Without mean shear, the ‘“vortex-wave” dynamics of
three-dimensional (3D) rotating stratified flows is well docu-
mented, but its pure linear dynamic is poor, with essentially
neutral modes, inertia-gravity wave modes, and nonpropa-
gating quasigeostrophic mode. The presence of a mean shear,
such as thermal wind, jet stream in tropopause, and horizon-
tal current in ocean, can dramatically alter vortex-wave dy-
namics, resulting in stabilizing more or in destabilizing the
turbulent flow. Accordingly, the three external parameters S,

1539-3755/2010/81(2)/026302(15)

026302-1

PACS number(s): 47.27.W—, 47.20.Cq, 47.32.Ef, 47.15.Fe

f, and N are all important in our dynamical study, with di-
mensionless combination such as R™'=R,=S/f (Rossby
number) or R;=N?/S? (Richardson number). Another impor-
tant instance of the model with all three (rotation, stratifica-
tion, and shear) ingredients is the case of thin radially strati-
fied accretion discs in astrophysics, where the angular
momentum transport is central to their evolution. For in-
stance, Johnson and Gammie [2] considered the nonaxisym-
metric linear theory of radially stratified disks. They “worked
in a shearing-sheet-like approximation, in which the vertical
structure of the disk is neglected, and developed equations
for the time evolution of a plane-wave perturbation co-
moving with the shear flow.” They resolved analytically
these equations considering an infinite wavelength in the
spanwise direction (denoted here by k,=0), for which the
wave amplitudes are affected by shear and stratification but
not by rotation.

In the present study, we propose a complete linear-
stability analysis for the above base flow considering plane-
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FIG. 1. Rotating stratified shear flow: U;=Sx36;; (shear), €);
=6, (rotation), and B=N’x5 (vertical stratification).
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wave disturbances with time-dependent wave vector k(r)
[3,4]. We determine an analytical solution for the determin-
istic Green’s function, in terms of a minimum number (2) of
solenoidal components for the velocity disturbance field. We
study its long-time behavior for an arbitrary orientation of
the disturbance wave vector, not just for a special orientation
that leads to a considerable simplification [2]. This allows us
to compute stability diagrams for all values of the rotation
and Richardson numbers. Such stability diagrams are rel-
evant for several geophysical and astrophysical applications.
A sufficient condition for stability in bounded nonrotating
stratified flows was demonstrated by Miles [5] to be Ri
>1/4 (see also Drazin and Reid [6]). In that analysis, the
role of the inflectional point is essential, so that the stability
of a rectilinear velocity profile, as in our present study, is a
different problem; the value of R;=1/4, however, is recov-
ered as a threshold value, as we will show further.

A short overview of the previous work which addresses
the formalism of linear theory, which underlies both RDT
and related stability analysis, is given in Sec. II C. The es-
sential common basis of these approaches, but also of non-
linear developments using them, is the deterministic Green’s
function, denoted g;; here. The pure kinematic case (without
buoyancy) is briefly discussed as follows: The equation for
the disturbance in terms of a minimal number of solenoidal
components can be written in Fourier space as

u(k(2),1) + maﬁ(k(t))uﬁ(k,t) =f%k,), a=1,2,

B=12,
(1)

in which the right-hand side (r.h.s.) contains all nonlinear
and/or forcing terms. Discarding the r.h.s. in Eq. (1), the
linear solution calls into play the reduced Green’s function,
which links any realization of the fluctuating (or disturbance)
field at time 7 to its initial counterpart at time 7, so that

O k(1),1) = g.pUe(t), NP k(10), 1) ()

This Green’s function is deterministic because randomness is
only possibly introduced by the initial data u(()'g) in Eq. (2). It
is the unique ingredient needed to give a complete stability
analysis, for instance, via a Floquet analysis of its eigenval-
ues when the time-dependent wave vector k(r) is periodic
(e.g., [3.4,7-11]). In addition, linear operators are not sys-
tematically considered as dominant over the nonlinear ones,
as in conventional rapid distortion theory (RDT hereinafter),
and the linear response is involved with stochastic nonlinear
modeling (see, e.g., [12]). It is possible to incorporate the
Green’s function as a building block in fully nonlinear mod-
els and theories, in which nonlinear terms, more or less re-
lated to stochastic stirring forces, are treated as a source [f,
in the Eq. (1)] in the right-hand side of linearized equations,
or

K (1), 1) = g,k (1), )P (k(tg),t0) + - -

+ f Sapk(t), ) fP(K(t"), )t . (3)

0

Simple instances of treating the “impulsional response” in-
stead of the “initial-value response” of turbulence are given
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by Leprovost and Kim [13], in which the Reynolds stress
tensor (u;u;)(t) resulting from a stirring term f; with oversim-
plified (isotropic, white noise) spectrum is expanded in order
to extract an effective viscous tensor. A similar “beta” term is
sought in magnetohydrodynamics, after the “alpha” one
which is generally zero in the purely “hydro” case. A more
sophisticated approach, in which the nonlinearity can be
strong, is addressed by Rogachevskii [12].

Linearization of Eq. (1), considered as an assumption
(conventional RDT) or not [4], is discussed in Sec. II C.
Going back to the purely linear initial-value problem, from
now on in this paper, identification of the Green’s function
once and for all (e.g., [14]) allows us to predict second-order
statistics, as in conventional RDT, but also gives access to
higher order statistics, such as cubic moments [15,16]. As
mentioned before, in the linear case, randomness is only in-
troduced by the initial data u(()'B), so that any nth order mo-
ment at time 7 (in terms of velocity modes) can be derived
from its initial counterpart using a tensorial product of n
basic Green’s function. As a first example, the history of
turbulent kinetic energy K(¢) can be found as

K@)/ K(t) = f J lg|*d’k (1),
[k(tg)|=1

starting from isotropic initial data, so that the turbulent ki-
netic energy growth rate is directly linked to the norm of g
(see, e.g., [8]). Considering the importance of elongated
structures in the streamwise direction, such as streaks in the
pure plane shear, and the importance of the two-dimensional
Taylor-Proudman limit along the axis of rotation, we will
restrict here the analytical calculation to statistical quantities
that only involve the k;=0 and k,=0 modes. The related
“two-dimensional energy components,” defined below, were
shown to play an important role in the dynamics of large-
scale motion in rotating (or) stratified sheared turbulence (see
[17-19]). They correspond to the limit at k;=0 (or at k,=0)
of the one-dimensional spectrum in term of the streamwise
(spanwise) wave number, or equivalently, are the product of
the integral length scales separated in the streamwise (or
spanwise) direction Ll(;) (or Lff)) by associated Reynolds
stress components (u;u;),

’ ky=0 '

g =m f Ryj(k,0)d%k = LY (uuy), (4)
ky=0

in which R, (k1) (ﬁjﬁ,) denotes the three-dimensional spec-
tral tensor and there is no summation on #,;j. The dominance
of the spectral components of |k;|<1 in the energy spectra
and in the Reynolds stresses at large times has been dis-
cussed by Moffatt [14] for viscous pure shear flow and by
Hanazaki and Hunt [18] for stably stratified shear flow. The
spanwise two-dimensional energy components Egjg) are also
of interest, because L(lzl) gives the length scale for streaks
spacing in the spanwise direction in pure plane shear,
whereas the ratio L(]ll)/ L(12])=5(121)/5(111) gives the aspect ratio of
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streaklike structures in the pure plane shear flow, rotating or
not [16,17]. These spanwise two-dimensional energy compo-
nents are not affected by system rotation, and correspond to
the two-dimensional limit (Taylor-Proudman) with respect to
the rotation axis, aligned with the spanwise direction of the
mean shear here. As mentioned before, the analysis of
Johnson and Gammie [2] focuses on these spectral contribu-
tions at k,=0.

The paper is organized as follows. The basic equations for
the base flow and the disturbances are given in Sec. II. Con-
ditions for validity of the linearization are addressed at the
end of Sec. II. Equations for the Fourier components of the
disturbances in a local frame attached to the wave vector are
given in Sec. IIl. An analytical solution for the matrix g;; at
an arbitrary orientation of the wave vector is derived in Sec.
IV. Section V deals with an exponential-growth stability
analysis based on the long-time behavior of the Tr of the
matrix g. In Sec. VI, some stability diagrams are presented,
together with the long-time behavior of some modes, such as
the ones associated to the pressure disturbance, and the
streamwise and spanwise two-dimensional energy compo-
nents. Section VII presents our concluding remarks.

II. BASIC EQUATIONS

The fluid is assumed to be inviscid and nondiffusive. In
the Boussinesq approximation, velocity and buoyancy fields

i and b are described by the following equations:

V.i=0, (0,+a-V)ii=-Vp-2QXia+bn, (5

(0, +@-V)b=0, (6)

where pis a modified pressure (which includes the centrifu-
gal acceleration potential divided by the fixed reference den-
sity @, and n denotes an upward vertical unit vector). The
buoyancy term is proportional to the gravitational accelera-
tion and to a density (for a liquid) or to a potential tempera-
ture (for a gas), and even to a scalar concentration (salt).
More general formulation is obtained in terms of it, indepen-
dently of the choice of the stratifying agent (temperature,
salt) which allows the density to vary.

By taking the curl of the velocity equation in Eq. (5), we
obtain the equation of the absolute vorticity @=V X#+20
(see, e.g., Greenspan [20]),

0, +i@-VYd=&- Vi +V X (bn), (7)

and we recover that, for inviscid and nondiffusive fluid, the
Ertel (absolute) potential vorticity [T=@- Vb (see, e.g., Ped-
lowski [1]) is a Lagrangian invariant, i.e.,

(6,+@-V)IT=0. (8)

As will be shown later, the above relation allows us to de-
duce a constant of motion for the disturbances to the base
flow.

A. Base, or mean, flow
Decomposing the flow into a basic state and a distur-
bance, as u=U+u, p=P+p, and b=B+b, the basic state
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U, P,B consists of pure plane shear, with spanwise rotation
and vertical stratification

Ui=5x381, B=Nx3, ;=Q6, )
where N is the Brunt-Viisild frequency and &; is the Kro-
necker “delta” symbol. This frequency characterizes the
strength of a stabilizing density gradient, with N
=\—(g/0¢)(do/ x3) for instance in a liquid of mean density
p varying linearly around a reference density ©,. It follows
that the basic absolute vorticity aligns with the spanwise
axis, W=[0,5+2Q,0]", and remains perpendicular to the
buoyancy gradient, and hence, the base-flow Ertel potential
vorticity is zero, [1=0. Here, the superscript T denotes trans-
pose.

B. Disturbances to the base flow

The above “linear” (velocity with respect to spatial coor-
dinates) base flow is a particular solution of the Euler/
Boussinesq Egs. (5) and (6), so that it is admissible accord-
ing to Craik [4]. The equations for the disturbances to the
base flow (9), in physical space are

ui _
&xi_ ’
P
(9x1
u 0 0 —-(S+2Q) 0 u; P
dl u 00 0 0l [ u &L
- = . - &xz
dt us ZQ 0 O 1 M3
2 p
b 0 0 -N 0 b —
L?.x:;
0
Uy
|l u
—ui_ : ) (10)
&xi M3
b
where
d 9 d a(du,-> s
—=—+85—, —|—|=S—".
dt ot dx;  ox;\ dt ax;

Due to the incompressibility constraint, the divergence of the
above linear system of velocity equations yields the follow-
ing Poisson equation for the pressure disturbance p:

du dusz  du db du; du;
—V2p=25—3+29(—3——1>—— S (1)

(?.X] é’xl F7X3 (9.X3 (9xl- (9)(:]

— ~— _— [—)

linear part nonlinear part

Because I1=IT+w with I1=0 as noted previously, Eq. (8)
implies that
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du,, db
imn
ﬁxm ﬁxi
. J
Y
nonlinear part

ob Jd Jd
m:(S+ZQ)a—+N2(£—ﬂ>+e (12)

X2 (9X1 (9X2
_J

linearized part

is also a Lagrangian invariant, for inviscid and nondiffusive
fluid, or dw/dt=0 along trajectories. Here, ¢, is the per-
mutation tensor.

C. Conditions for validity of linearization

Before examining conditions for validity of linearization
it is perhaps useful to give a short overview of the commu-
nities which address the formalism of linear theory.

First, in the turbulence community, the linear theory, or
rapid distortion theory (RDT) began with Batchelor and
Proudman [21], with a focus on mean distortion induced by
irrotational mean flows (linear flow with hyperbolic stream-
lines in the language of stability). Moffatt [ 14] was probably
the first to concentrate on the pure plane shear (rectilinear
streamlines), which presents much more interest for the
whole theory of turbulent shear flow. This way was followed
by Townsend, in the revised version of his book [22]. Finally
efforts were made towards RDT studies for rotating shear
[17,23] and stratified shear [18], but separately considered.

Second, a new impulse to the theory arose when Pierre-
humbert [24] characterized the elliptical flow instability by a
classical normal-mode analysis, whereas Bayly [3] used in
the same year a simpler and more elegant method which was
nothing other than the base of RDT. The general case of
RDT applied to elliptical, rectilinear, and hyperbolic flows in
a rotating frame is addressed in [8], reconciling RDT and
stability analysis. Many studies followed the Bayly’s one in
the hydrodynamic community, using “exact solutions for dis-
turbances to linear flows in terms of Kelvin modes,” or in
terms of advected Fourier modes with time-dependent wave
vector.

A third community can be identified, with main applica-
tions in astrophysics. The linear response of turbulence to
various effects of shear, density stratification, and rotation is
used for a better modelization of the turbulence in accretion
disks, mainly (see, e.g., [2,13]). Analogies and partial bal-
ance between (self)-gravitational, centrifugal, and buoyancy
forces are studied, not to mention the Lorentz force in the
important context of the magnetorotational instability.

It is important to stress that these communities often pub-
lish in different journals and use different parlance and jar-
gons. For instance, the basic Fourier mode with time-
dependent wave vector is called a “Kelvin mode” in the
second community and a “shear wave” or “shwave” in the
third one.

From the viewpoint of Craik [4], for instance, lineariza-
tion is not even considered as an assumption: The admissible
base flow is shown to be compatible with the wavelike form
(13) for the disturbance flow, and the superposition of both is
called “a class of exact solutions” for Euler equations. As
said before, this is nothing other than a formal rediscovery of
RDT, but one in which nonlinearity is rigorously excluded in
the equations for the disturbance flow: Only single-mode per-
turbation is considered and nonlinearity is zero for a single
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Fourier mode in the incompressible case. We think that it is
more physical to consider an actual disturbance field as a
superposition of many Fourier modes, so that the initial con-
dition is characterized by a dense energy spectrum. Predic-
tion of statistics from the RDT solution for the initial-value
problem reintroduces the problem of evaluating nonlinear
terms mediated by interacting Fourier modes. The fact that
the mean (or base) flow is only characterized by spatial gra-
dients (e.g., of magnitude S) has important consequences.
First, it is not possible to define a length scale and a velocity
scale for the base flow, but only a time scale (e.g. S7!). This
explains why linearization is not justified, as in conventional
linear-stability analysis, by a small ratio of disturbance-to-
base-velocity scale, but by an assumption of small elapsed
time. The linear solution is expected to hold for small St
only, but the maximum Sz at which it is valid depends cru-
cially on the initial shear-rapidity factor SL/u’, where L and
u' are typical length and velocity scales for the disturbance
flow: SL/u’ gives a rough statistical estimate of the ratio of
linear term to nonlinear one. Previous direct numerical simu-
lations (DNSs) studies of homogeneous rotating or stratified
sheared turbulence with sufficiently strong shear rate show
that the mean-shear turbulence interactions dominate the
turbulence-turbulence interactions and the linear theory well
predicts ratios of energies and normalized fluxes that charac-
terize the anisotropy of the large-scale motion [17,18,25-27].
However, in some extreme unsheared flow cases, like rotat-
ing turbulence with angular velocity () and low Rossby num-
ber Ro=u'/(2€QL), the nonlinearity becomes significant only
after a very long time, such as Q¢=Ro~2. This is essentially
explained by the depletion of nonlinearity that is due to
phase mixing by dispersive inertial waves at small Rossby
number. Another example is the case of stably stratified tur-
bulence: Linearity is expected to be valid at low Froude
number for reasonable values of Nt. This is wrong because a
part of the motion, the toroidal velocity component, does not
scale with the Froude number at small Froude number, as the
poloidal component does, so that an important nonlinear
term restricted to the toroidal flow is present, even at short
time. In short, only a refined evaluation of the nonlinear
term, and/or a comparison between RDT and DNS, can de-
lineate the parametric domain in which the linear assumption
is relevant.

III. PLANE WAVES DISTURBANCES

A. Equations for the Fourier components
As the starting point of RDT-like stability analysis, indi-
vidual modes are expressed in terms of Fourier modes with
time-dependent wave vector,
[u(x.1).p(x,0),b(x,0)] = [d@(r), (), b(r) lexpluk(r) - x].
(13)

The wave vector k satisfies the (eikonal-type) equation :
dk;/ dt=—(dU,/ dx;)k;, with solution [14]

k=K, ky=K,, ki(t)=K;—kSt, (14)

in which the capital letter denotes initial value [k(zy) in Eq.
(2)]. Accordingly, from the Poisson equation [Eq. (11)], we
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deduce the expression of the Fourier mode p,
1 A~
ﬁ = ?[Z(S + Q)k1ﬁ3 - 29k3ﬁ1 - k3b], (15)

and the differential system (10) is transformed as follows:

i 0 0 -(5+2Q) 0 i ky

d| i 0 0 0 ol @] |k
dil 45 | 7|20 o 0 U as [T ks |

i 00 N ol \} 0
(16)

with the incompressibility constraint #-k=0 implied. In ad-
dition, the fact that the disturbance of the Ertel potential
vorticity w [see Eq. (12)] is a Lagrangian invariant, dw/dt
=0, implies that the Fourier mode @ is a constant of motion,
or

—15(t) = — 1w (x,r)exp[— tk(z) - x]

= N2(kyity — koti;) + (S + 2Q)k,b = constant.
(17)

Discarding a priori the simple case of purely vertical wave
vector (k;=k,=0), in which a simple algebraic growth (linear
in 7) is found, we consider in the following that the squared
amplitude of the wave number in the horizontal plane, k;
=k%+k%, is not zero and we set k;=kjcos ¢ and k,
=k, sin ¢. Therefore in view of Egs. (15) and (17) and the
incompressibility constraint, the system (16) reduces to a
rank 2 differential system.

B. Poloidal, toroidal, and potential modes

An alternative way which reduces the number of compo-
nents is to use a local frame in which the incompressibility
constraint is satisfied by construction. In addition, effects of
shear, rotation, and stratification are more physically re-
flected in this frame, in which dispersion frequencies directly
appear (see [16] and subsequent Egs. (20)—(22)). This frame
coincides with the horizontal fixed frame if k is vertical
(klln), and otherwise is defined by

eV =Fk % n/||k X nll, e® =k x e(l)/k, e® =k/k,

so that 7 has only two components, #=u"eV+u?e®. Here,
n is the upward vertical unit vector (n;=j3), and hence,

eV =[sin ¢,— cos ¢,0]", e® = ky cos @ lﬁsm ©,— K '
9 b b k b k 9 k 9
ky=kj cos @, ky=k,sin ¢ (18)

so that eV is a time-independent unit vector, whereas k3, k,
and therefore e remain time-dependent via Eq. (14). If &,
=|k X n|#0, the two components u'" and u® correspond to
toroidal and poloidal velocity components in physical space
[16]. On the other hand, the limit of pure vertical wave vec-
tors gives the vertically sheared horizontal flow (VSHF, see
[16,28]) a particular mode of motion, which is very impor-
tant in the stratified flow case. Finally and for consistency,
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the third dependent variable b is scaled to have the same
dimension as the velocity modes, or

b
N

u =

: (19)

so that the spectral density of total (kinetic+potential) en-
ergy is uDV*uD+u@*4@ 14343 where the asterix denotes
complex conjugate. As shown in Appendix Sec. 1, the trans-
formation of system (16) into the local frame yields

0 Slz 0
. e Tr=o7 u
—u® |+ ksk, u® =0, (20)
dt 4O o, =S 2 -0y e
0 T, 0
in which
ky ky
=20—=20—sin 21
o, . P (21)
and
k
aszN;h (22)

are the dispersion frequency of inertial and gravity waves,
respectively. All the characteristic frequencies and typical
coupling of the physical system are then displayed in the
matrix. As for the constant of motion in Eq. (17), it can be
rewritten as

kouV + (ko, + k;,S sin ¢)u'® = constant, (23)

and can be also recovered by combining the first and the
third lines in system (20). Relation (23) generalizes the con-
servation of the toroidal velocity component, sometimes
called the “purely vortex mode,” without shear and without
rotation. The first term in the left-hand side of Eq. (23) cor-
responds to vertical vorticity (fluctuating vorticity projected
on the direction of the mean gradient of buoyancy), whereas
the second term corresponds to the scalar product of mean
absolute vorticity by the gradient of fluctuating buoyancy.

IV. REDUCED GREEN’S FUNCTION

In this section we will derive a complete solution for the
reduced Green’s function. In term of this three-mode (toroi-
dal, poloidal, and potential) vector, the reduced Green’s func-
tion g;(i,j=1,2,3) such that

is introduced, as its pure kinematic counterpart in Eq. (2). It
is governed by the same equation as ' is, but with universal
initial condition g(0) =15, where I is the 3 X 3 unit matrix. In
order to display the minimum of nondimensional terms, gs;
is substituted to (S/N)gs;, and 7=St is a nondimensional
time. This amounts to replace Eq. (19) by
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u® =-—b, (25)

and therefore to recover a R;-weighted potential energy. For
the sake of clarity, we give here the differential system for

8ij>

d.
—g+m-g=0, (26)
dr
where
k k
0 —0,-S—2 0 0 -(1+R)=2 0
k k
1 kik N k kik k
my==|o, -5—3° -—o|=|R7* =32 R}
S k k k k
s k,
0 o 0 0 h 0
N k
(27)

which displays the two important nondimensional numbers
R=2Q/S, R,=N*S$? (28)

namely the rotation number and the Richardson number, re-
spectively.

It is important to point out that the solution for g cannot
be derived from diagonalizing m and using exponentiation,
because the coefficients are time dependent via k;(¢) and k(z)
in Eq. (27) from Eq. (14), so that eigenvectors of m are time
dependent, as well. Only in the case k;=0, diagonalizing the
matrix is sufficient for solving the problem.

Similarly, the constant of motion in Eq. (23) can be re-
written in terms of the reduced Green’s function as

g1+ [(1 +R)sin ¢lgz;= 6;+ [(1 + R)sin ¢]55;, (29)
and the relation

ldk  kks
—— ==, 30
kdr K2 (30)

is deduced from the Eq. (14). Using Egs. (26), (27), (29), and

(30), the equations for g,; and g5;(j=1,2,3) can be rewritten
as

d . .
E_[(k/kh)ng] = o(ng3j_ [81;+ &,(R + 1)sin ¢]R sin ¢,

(1)

d
(K1) g3 == (kIKi)ga,, (32)
where

oL=R(R+1)sin> +R;, oi(m= @) =05(). (33)

Given the symmetries of sin? ¢, we only consider the modes
O=p=m/2.
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A. Case where O‘i=0
When 0@:0, or equivalently, R(R+1)sin?> ¢+R,;=0, the
integration of Eq. (31) with the initial conditions g,;(0)
=6y, yields

83 =- (kh/k)(R sin QD) T, 8»n~= K/k, 823 = Rl(kh/k)T

(34)

Substituting the above solution into Eq. (32) and integrating,
we obtain

K; R, [K3< ks Kg) K}
g33=1———-—| —| arctan— — arctan— | + log— |,

kycos @ ky\" kg knl Tk
_ M = E(arctanl3 - arctan&>
ST R+ Dsing]” 527k, h k)

(35)

Also, the substitution of the later solution into relation (29)
allows us to deduce the expression of g;(j=1,2,3). For in-
stance,

g =1-[(R+1)sin ¢]gs; =2 - g33. (36)

The above solutions show that all components g;; do not
have the same long-time behavior. For instance, at k; 0, g5,
approaches zero for long times, while g,; approaches a non-
zero constant value. On the other hand, it will be shown in
Sec. V that the exponential growth is only characterized by
the first invariant, or the Tr of g. Accordingly, we will per-
form the stability analysis in the next section in term of
exponential growth firstly, as in a normal-mode stability
analysis, putting aside the multifold “componentality” of g
which characterizes the exponentially “stable” case.

B. Case where o‘i#()

When o"zp?ﬁ 0, the second-order differential equations that
can be derived from Egs. (31) and (32) are

d2
P[(k/kh)ng] +07,8=0, (37)

d [ K*dgs; . .
E’(k_izl +aﬁg3j:R sin @[ 8; + 9;3(R + 1)sin ¢].

(38)

While, in the present study, we resolve Eq. (38) for any
orientation of the wave vector, Eq. (37) is reported here in
order to note similarities between the present study and pre-
vious work by Johnson and Gammie [2]. The vertical mode
ii; and the poloidal mode u® are related by

iiy= u(z)e(32) =— (ky/ku? = - (kh/k)gzju(()j). (39)

Accordingly, the equation for #i5 is derived from Eq. (31) as

d* X X
d—Tz[(kz/ki)uﬂ + Uiu3 =0, (40)
which is the same as Eq. (56) in Johnson and Gammie [2],
up to a different notation. As indicated previously, Johnson
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and Gammie resolved the latter equation for an infinite span-
wise wavelength, or k,=0, ¢=0. For this particular orienta-
tion of the wave vector, the coefficient ofo reduces to the
Richardson number, oi:Ri, and the reduced Green’s func-
tion does not depend on rotation number. Of course k,=0 is
also the two-dimensional manifold for which the Coriolis
effect vanishes, as the dispersion frequency of inertial waves
in Egs. (21) and (22) vanishes.
The particular solution of Eq. (38) is time independent,
» R sin ¢
83;= T2
®

[5j1 + 5]'3(R+ I)Sin ()D], (j= 1,2,3)

(41)

In order to resolve the associated homogeneous equation, we
first consider the case where k;=0 (i.e., o=17/2).

1. k{=0 mode

At k;=0 or ¢=/2, the wave vector is no longer time
dependent with k,=K, and k;=Kj3, and hence, the coefficient
K%/ k,21 in Eq. (38) becomes constant as well. In that case, all
the elements of the matrix g have the same behavior (for the
sake of clarity, the expression of the solution at k;=0 is
reported in the Appendix),

g expl =1l o) = expl =k )RR+ 1+ K
(42)

indicating exponential growth when R(R+1)+R;<0 and an
oscillatory behavior when R(R+1)+R;>0. In the later case,
there are inertia-gravity-shear waves propagating in the k;
=0 plane [~exp i(kyx,+ksx;—wr)] with frequency, o
=S(k;/k)VR(R+1)+R;. The phase velocity V , and the group
velocity V,=V,w (see, e.g., [20]) are perpendicular (V,-V,
=0) and have the same modulus, Ve=V4=w/ k.

2. Case where k¥ 0

When k; #0, the use of the pure imaginary variable, z
=1ks/k,=1(K5/k,)—17cos ¢, transforms the homogeneous
equation [associated to Eq. (38)] as

d d
d_z{(l —Zz)d_zgsj} +u(l+u)gs3=0, (43)
where the coefficient u takes the form
1 | 2, o2
n= 5[— 1+\1-40 /cos” ¢], (44)

depending on the parameter R and R; and on the azimuthal
angle ¢, or equivalently, on the horizontal wave vector k,
=k—kse;. The role of the coefficient w in characterizing the
flow stability will be addressed in the next section. For in-
stance, we note that Eq. (43) has two linearly independent
solutions: P ,(z) and Q,,(z) that are called Legendre functions
of the first and second kind, respectively (see [29,30]). The
expression of the components g;; in terms of Legendre func-
tions are given in the Appendix for the sake of clarity. We
note that the solutions found by Hanazaki and Hunt [18] in
the nonrotating stratified shear case (R=0) and those by
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Salhi [23] in the nonstratified rotating shear (R;=0) are re-
covered. Furthermore, because the Legendre functions can
be expressed in terms of hypergeometric functions (see, e.g.,
[29,30]), the solutions found by Johnson and Gammie [2] for
an infinite spanwise wavelength (i.e., ¢=0) in the case of
radially stratified shearing disks [see their Egs. (66)—(69)]
and those found by Salhi and Cambon [17] for the rotating
shear case (see their Appendix) can also be recovered.

V. STABILITY ANALYSIS

In this section, we demonstrate that, in terms of exponen-
tial growth, as for a normal-mode analysis, there is instability
when o2 <0. The modes ¢ for which 0,=0 are neutral,
while those for which o‘2<p>0 are stable.

A. Characteristic invariants for the reduced Green’s function

It is demonstrated that the stability problem can be char-
acterized by the unique unknow Tr g=g;+ g5, +g33 which is
the first invariant of g. The reduced Green’s function has
three eigenvalues, say \;, N,, and \5;. Because there is a
constant of motion, in Eq. (23), which can be rewritten as
g’ =1 where =[1,0,(1+R)sin ¢]7, one of the eigenval-
ues of g is therefore equal to 1, say A;=1. Accordingly, the
invariants of g are only characterized by N\, and Aj: the Tr is
equal to the sum of eigenvalues, and the determinant is equal

to their product, so that
Trg=1+N,+N\3, Detg=»N\;. (45)

The link of A, and A5 to the Tr eventually comes from the
analytical derivation of the determinant

K
Detg= ;, (46)

which is a classical result for shear flows [8,10]. Because the
sum of the two nontrivial eigenvalues is Tr g—1 and their
product is K/k, they are the roots of the algebraic equation
A\2—(Tr g—1)A+K/k=0, and therefore are given by

>\2=%{(Trg—1)+ \/(Trg—1)2—4ﬂ,

N3 = (K/k)(1/\,), (47)
in which the only unknown is the Tr of g. The proof of Eq.
(46) is easily reminded as follows. From Egs. (26) and (27),

d
—Det g = m;; Det N
di g g

with m;;=k,ks/k*. Because

dk  dk; aU;
—=k—=- k,-—‘kj =— Skk,,
dt dt ox;

m;=—(1/k)dk/dt and d/di(k Det g)=0 with Det g(k,0)=1.

B. Unstable, neutral, and stable modes

When o’izO, we deduce from the solutions (34)—(36) in
Sec. IV A that
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Trg=g“+g22+g33=2+K/k. (48)

The substitution of the later expression into the first equation
in Eq. (47) yields \,=1, so that A;=K/k, where \;=1. Be-
cause lim,_,,, K/k=0, the modes ¢ for which 0‘1:0 are then
neutral in terms of a normal-mode analysis.

When 0,#0 and k=0 (i.e.. ¢=7/2), one has \ =1,
N, Ns=exp[Ei(k,/k)TVR(R+1)+R;] [see Eq. (42)], and
hence, there is an exponential instability for ai:R(R+1)
+R;<0.

When Ufpi 0 and k; #0, the expression of Tr g is found
as (see the Appendix)

Trg=1+(1- zﬁ){Q;(zO)Pﬂ(z) - P (20)0,(2)

1=z2 "
—{ 2} [0.(20)P,(2) = P(z0)Q}(2)] |,

-z
(49)

where the prime denotes differentiation with respect to the
complex variable z and zy=z(0)=K3/kj,=1 cot 6. In order to
analyze the long-time behavior of Tr g we use the asymptotic
representations of the Legendre functions (see [29], p. 1011,
Eq. (8.776)),

.y Vo T(u+1)
26D P (4 32)°

24T (u + 1/2)
Vm Tlu+ 1 °

—u—1

[l

P,(z)=

Vo T(u+1)

— !
2D (1 + 3/2)

s

0,(z)=

where 2u# *=1,+2,+3,... and I'(z) denotes the gamma
function. The substitution of the later relations into Eq. (49)
yields

Trg=1+D;z*+Dyz7'"*, 2u+ +1,+2, ...,

(50)
where

2_”F(;L +1/2)

" m D(e+1)

(1- Zé)lQ;(Zo) + I/L—ZQM(ZO):| >
V1 -2y

Var Mu+1)
T 26D (w4 3/2)

P € Zo)[ w(20) = P (20)

1
+l%<gﬂ<za—mzw}
V1 - 20

In view of Eq. (45) it is useful to calculate |Tr g—1|?
ITr g = 1] = [Dy P[4 + D, Pl 4 + 2R[ D, D3zH(™#)*].
(51)

When ofo<0, the coefficient u [see Eq. (44)] is real of posi-
tive sign, u>0. In that case, the modulus of the eigenvalues
of N\, and A5 behave like
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I\of ~ (7 cos @) > N5 ~ (7cos @)™, (52)

since —(1+u)<-1/2<u and K/k~(7cos ¢)~! for long
times. This signifies that, when o-fp<0, there is an algebraic
growth for k; # 0 and an exponential growth at k;=0.

When 0'2 >0, we d1st1ngu1sh two cases. The first case is
characterlzed by 0< 02 < (cos <p)/ 4. In that case, the coef-

, which are also described by Eq (52), undergo a power-
law decay. The second case is characterized by o,
> (cos? ¢)/4. In that case, the coefficient w is complex, wu
=-1/2+1Ju, where

2
\1'402 —CoS
_.‘ﬁ—(p (53)

Ju=
H 2 cos ¢

and Eq. (51) can be rewritten as follows:
|Tr g — 1> =[7cos @] '[A + ry cos(Tu log( cos @) + B)],
(54)
where
A=|D|>e™™* +|D,|*e™*, 2D,D;=repe'.

This implies that |\,| (respectively, |\;|) behaves like
(7cos @)™ [respectively, (7cos ¢)~>?]. Furthermore, by
setting y=log(7 cos ¢), Eq. (54) becomes

ITrg—1>=e™[A + ry cos(Tuy + B)].

Therefore, versus y exhibits a damped oscillatory
behavior with period Y=2#/Ju. For this, the modes for
which ofp>(cos2 ¢@)/4 can be called the modes with
“damped oscillatory” behavior.

VI. DISCUSSION

In this section, we compute stability diagrams for all val-
ues of the rotation and Richardson numbers. These diagrams
would be relevant for several geophysical, astrophysical, and
industrial applications. For instance, the stability condition of
Keplerian disks with modest radial gradients is expected to
be |[R,| <1 [2]. In addition, we give the long-time behavior of
Fourier modes associated to the velocity, pressure, and den-
sity disturbances. Because in sheared flows with or without
rotation or stratification, the mode k;=0, which corresponds
to an infinite wavelength in the streamwise direction, plays
an important role in the dynamics of large-scale motion
[14,17-19,25], the related streamwise “two-dimensional en-
ergy components” are addressed at the end of this section.

A. Stability diagrams

In the (R(R+1),R;) plane, the relation 0'<2p=0, which char-
acterizes the neutral modes,

R(R +1)sin> ¢+ R, =0,

defines straight lines that intersect at the point O(0,0). Each
one of these straight lines divides the [R(R+1),R;] plane into
two regions. The upper region characterizes stability while
the lower one characterizes instability as will be shown now.
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1/4

Tl Stable (a)
~1/4 R(1+R)
O - T~a
Stable (b) *\(dl)
d2
Unstable @

FIG. 2. Stability diagram in the [R(R+1),R;] plane for given
values of ¢, [see Eq. (55)] and ¢,,< ¢, [see Eq. (56)]. (d1): R;=
—R(R+1)sin? ¢,,+(cos? @,5)/4. (d2): R;=—R(R+1)sin’ ¢,. Stable
(a): damped oscillatory behavior, |[\,|*>~e™[A+r,cos(Tuy+B)]
with y=log(7cos ¢). Stable (b): power law decay, |\,
~(7cos )" with =1/2< u<0.

Two of these straight lines are represented in Fig. 2. The first
one corresponds to a zero value of the azimuthal angle [i.e.,
=0, or equivalently, the R(1+R) axis], while the second
one, which is labeled by (d,), corresponds to an arbitrary
value of the azimuthal angle (i.e., 0< o <mw/2).

When ¢ varies between 0 and 7r/2, there are domains in
the [R(R+1),R;] plane for which modes with different be-
haviors can coexist as explained as follows. For the region
defined by [i.e., the region (IV) in Fig. 3]

@ @

1/4

V) (I (an

_1/4 R(R+1)

\%) \%) (111

FIG. 3. Stability diagram in the [R(R+1),R;] plane. (I): R;
>1/4. Region with stable modes exhibiting a damped oscillatory
behavior. (II): 0<R;<1/4 and R(R+1)>0 or R(R+1)<0<R(R
+1)+R; and 0<R;<1/4. Region with stable modes in which
modes with damped oscillatory behavior and modes with power-
law decay can coexist. (III): R;<O<R(R+1)+R;. Stable [(a) and
(b)] and unstable modes can coexist. (IV): 0<R;<1/4 and R(R
+1)<R(R+1)+R;<0. Stable (b) and unstable modes can coexist.
(V): R;<0 and R(R+1)+R;<0. Region with unstable modes.
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ky
i Stab. (b)

(2) Region an

(b)  Region (1) (C)  Region 1v)

FIG. 4. Stability diagram in the (k;,k,) plane. (a) Region (II);
(b) Region (ITI); (c) Region (IV) defined in Fig. 2. ¢, and ¢, are
defined by Egs. (55) and (56), respectively.

0<R;<1/4 and R(R+1)+R;<0,

some modes undergo a power law growth, while other un-
dergo a power-law decay. When considering one-quarter of
circle of radius k;, in the (k;,k,) plane, the modes with a
power-law growth are characterized by ¢, = ¢= /2, while
those with a power-law decay are characterized by 0= ¢
< @,, [see Fig. 4(c)], where

-R;

12
0, = arcsin<m> . (55)

For the stable region defined by
O0<R;<1/4 and R(R+1)>0
or

RR+1)<O<R(R+1)+R; and O<R;<1/4,

[i.e., the region (IT) in Fig. 3], some modes undergo a power-
law decay and other exhibit a “damped oscillatory” behavior.
In Fig. 4(a) the former modes are characterized by 0=¢
< ¢@,;, while the later ones are characterized by ¢, <¢
=m/2, where

1 —4R. 172
' ) , (56)

s = arcsin| —————
rs ((2R+ 12

i.e., the angle for which u=-1/2, or equivalently, ofp
=(cos® ¢)/4.
For the region defined by

R;<0 and R(R+1)+R;>0,

[i.e., the region (L) in Fig. 3], some modes undergo a
power-law growth, while other undergo a power-law decay
or exhibit a damped oscillatory behavior. The modes with a
power-law growth are characterized by ¢,<¢@=m/2 and
those with a power-law decay are characterized by ¢, <¢
<¢,, and those with a “damped oscillatory” behavior are
characterized by 0= ¢ < ¢,, [Fig. 4(b)].

For the region defined by R;<<0 and R(R+1) <0 [i.e., the
region (V) in Fig. 3] there is an algebraic instability for 0
= @<m/2 and an exponential instability at ¢=7/2.

When R;>1/4 [this corresponds to the region (I) in Fig.
\,| exhibits a damped oscillatory behavior.

Figure 5 shows the neutral curves, which are described by
Eq. (55), in the (R, ¢) plane for R;= *=0.10. The results for
R;=0.1 are reported in Fig. 5(a), while those with R;=-0.1
are reported in Fig. 5(b). The case R;=0, i.e., without strati-
fication, is shown in Fig. 5(c) for comparison. The curve ¢,

3],
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R; =0.1
™ T T
______ Stable
(b)
3r/4 ) \ o
o \:
b
v /2 F Stable ‘ Unstable ; Stable *
(@) A f: (@)
s /o
w/4 \\d/ |
Stable
o by e
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T T T T T
e —
) )
3n/4 N // . _
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b 1
() w
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FIG. 5. Stability diagram in the (R, ¢) plane. ¢,; given by Eq.
(56) is represented by doted lines. (a) R;=0.1, (b) R;==0.1, and (c)
R;=0.

1

which is described by Eq. (56), is represented by doted lines.
As it can expected, the domain for which rotation is destabi-
lizing (i.e., -1 <R<O0 and 0<@=1/2) in the absence of
stratification (see, e.g., Salhi [23]) is reduced in the presence
of stable stratification (0<<R;<1/4, this corresponds to the
domain delineated by the concave side of the neutral curve)
and completely disappears for R;>1/4. At R;=1/4, the
curve ¢, reduces to the point (—1/2,7/2) and the curve ¢,
reduces to the straight line ¢,,=0. The domain for which
rotation is stabilizing (—o<R<-1 or 0<R<+o and 0
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<@=/2) is reduced in the presence of unstable stratifica-
tion (R;<<0). In other words, unstable stratification acts to
partially destabilize the stabilizing effects of rotation [see
Fig. 5(b)].

On the other hand, from the analysis of exponential
growth presented in the latter section, one may easily deduce
the dominant contribution for each Fourier mode at late
times. When a'i:R(R+l)sin2 ©+R;>0 with 0=p<m/2,
both |ii5| (vertical mode) and |p| (pressure mode) behave like

IN3| ~ (Tcos @)™ F—1/2< <0,
while [u?] (poloidal mode) behaves like

Ny ~ (Tcos p)*—1/2< u<0,

and the horizontal |i;/(i=1,2), toroidal |[uV)|, and buoyancy
|u®| modes approach a nonzero constant value for long
times. This is due to the fact that the expression of these
modes involves the particular solution g/ which is constant
[see Eq. (41)]. This behavior cannot exist when rotation and
stratification are not simultaneously present or when the
wave vector lies in the plane of the basic shear flow (i.e.,
k,=0, as in the study by Johnson and Gammie [2]).

When o,=R(R+1)sin? 9+R;<0 with 0=¢</2, the
modes |ii5| and |p| behave like

N3] ~ (rcos @) >0,
while the other modes behave like

[Ny| ~ (7cos @)  u>0.

This implies that, when 0<u <1, both |is| and |p| decay
with time while the other components grow with time. Note
that this situation can occur in the case of Keplerian disks
with modest radial gradients for which |R;| < 1. Indeed, when
0<u<1I, one has R(1+R)<-R;<2 cos? ¢, and hence, —R;
is small for cos p<<1.

B. Prediction for some statistics, with “two-dimensional”
energy components

As stressed in Sec. I, the formalism used for the stability
analysis is directly applicable, with a second-order statistical
quantity connected to its initial counterpart via a twofold
product of basic Green’s function. Our main purpose is to
compute the evolution of the streamwise “two-dimensional”
energy components, which can characterize the role of the
k1=0 mode in the dynamics of large-scale motion, as already
indicated.

1. Three-dimensional spectra

Initial velocity fluctuations are chosen as a sum of Fourier
modes, with a given dense energy spectrum, say E(k), and
generally isotropic conditions,

E(K)

_ 2
a2l Pu= 08— KK/K, (57)

where R;; > R0 ;) is the second-order velocity correlations,
P;; is the conventional transverse projection operator, and (- )
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denotes ensemble averaging. In addition, we assume that the
initial density fluxes and the initial potential energy are zero,
or

Rul) u(()3)> = R u(()3)> =0, <u(()3) uff)} =0.

Accordingly, the spectral densities of the toroidal and poloi-
dal contributions to kinetic energy, and the spectral density
of the potential energy take the form

E(K)

A~ 1 *

R, (k1) = 5(14(1) uly = " K2(|811|2 + g1,
) . E(K)

R,y (k1) = E<M(2) u?y = s K2(|g21|2 + g2,

E(K)

. (|g31|2 +g3%). (58)

A Ri ®
Ryole) = =/ u) =

The spectral density of total kinetic energy, ﬁkin=(1 /2)1%,-,', is
the sum of poloidal and toroidal ones, or equivalently, the
sum of horizontal and vertical ones,

Rignlk,1) = Ry (k1) + Ry (e, 1) = Ry, (k) + R (1),

where

. P
Rver(kat) <I23u3>_ k2 pol(k’t)9 (59)

since iiy=—(ky/k)u'®
2. Streamwise “two-dimensional” kinetic and potential energies

These quantities have been defined in the introduction,
Eq. (4). The product of the integral length scale Lf-f) by re-
lated Reynolds stresses represents the limit at k,=0 of the
one-dimensional spectrum with respect to the wave number
k¢, up to a factor 7 [17]. We will not consider the compo-
nentality of El(f) here, but only its contribution to kinetic en-
ergy, summing up the indices i and j. Accordingly

KLO = 7 f Ryin(ke = 0.0)d%. (60)
k¢=0

Similarly, the two-dimensional potential energy in the x, di-
rection takes the form

KLy =m f Rporlke=0,0d%k, (61)
k=0

where Kp=/[ Iél,ot(k,t)d3k and Lg) is its associated integral
length scales in the x, direction.

Johnson and Gammie [2] considered the spanwise “two-
dimensional” energies, and showed analytically that, at large
time, KL®+KpL?) increases with time for R;<3/16 and
decreases with time for R;>3/16 [see their Eq. (95)]. Such
an analytical result by [2] holds for the rotating stratified
shear case because, at k,=0 (so that ¢=0), the Fourier coef-
ficients do not depend on rotation, as already indicated.

Contrary to the spanwise two-dimensional energies, the
streamwise ones, which are related to the k;=0 mode, are
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sensitive to both rotation and stratification. The latter ones
grow exponentially with time for R;+R(R+ 1) <0 and exhibit
a damped oscillatory behavior around its limit as 7=St—
when R;+R(R+1)>0. For instance, in view of the RDT so-
lution for g;; at k;=0 (see the Appendix), one shows that

ICL(])(T) 1
KLO0) = 3620+ R+ (14 R0+ (R + 1)+ 2K;]

%2[02— (R*+ (1+R)?) +R(1

RR(1+R)

R 2m0) + TJQ(T\‘G’), (62)
where
E 5 3
KLM(0) = j ﬁdr r=\k3+k;3,
0

o=R(1+R)+R;, and JO(T\J';) is the Bessel function of the
first kind of order 0 [29,30]. In a similar manner, we deduce
the evolution of the streamwise two-dimensional potential
energy,

’CPLEF})(T) Ri 5 Ri ) —
/CL(—I)(O) = ﬁ(a'+ 3R%) + F(R -o)J]y(2m o)
R.R?

- —(;2 Jo(m o). (63)
The above relations show that, when o=R;+R(1+R)>0,
both the streamwise two-dimensional kinetic and potential
energies exhibit a damped oscillatory behavior around the
following constant limit:

K:L(U(T) 1 2 2 2 2
H?CICL“ 0" 02[02+(R +(1+R)Ho+R¥(R+1)
+2R7], (64)
KpLp(1) R,

Ay — - 1 2
im 2700y ~ 202 73D (6)

because at large time 7=S7> 1, the Bessel function behaves

as [29],
1 —
Jo(ZT\/’;') ~ 4 /—r{cos<27\'0—7—r>] (66)
™o 4

In counterpart, when o=0, both L(7) and ICPLEDU(T)
grow with time.

3. Long-time behavior of the energy ratio nV=1CpLY"/ICL®D

As a preliminary analysis of the relevance of the later
analytical results, we consider the long-time limit of the en-
ergy ratio 1](1) K L(l)/ICL(l) in connection to its 3D coun-
terpart 7=~Kp/ K Wthh is computed numerically.

When o=R(1+R)+R;>0, the Bessel function involving
in Egs. (62) and (63) approaches zero for long times, and
hence, one easily deduces the long-time limit of the ratio

7,
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FIG. 6. Variation of the long-time limit of the “two-
dimensional” energy ratio, n(l)lepL;U/ KLY [Eq. (67)] and its 3D
counterpart 7=/C,/KC versus the rotation number R for a fixed posi-
tive value of o=R(1+R)+R;. (a) 0=0.1, (b) o=1.

A~ lim KpLy R(3R*+ o)
C e KLY T 0?4+ (R*+ (1 +R)) o+ RX(1+R)>+2R>
(67)

Figure 6(a) shows the variation of 7. versus -2<R=1 at
0=0.1, so that, —-19=R;=0.1-R(1+R)=0.35. The
numerical RDT results for the 3D energy ratio »=K,/K at
7=8t=50, 70 and 7=100 are also reported in Fig. 6(a). Ob-
viously, in view of the definition of the potential energy,
K,=(1/2)R{uPu®), the energy ratios 5! and 7 are posi-
tive when R;>0, take a zero value at R;=0, and become
negative when R;<0. As it can be seen, when the long-time
limit of 7 is positive [so that R;>0 and R ranges between
R ,=(-1%1.4)/2, i.e., the roots of the algebraic equation
R(R+1)=0=0.1], relation (67) constitutes a good approxi-
mation of the variation of 7 versus R [see also Fig. 6(b)
obtained at o=1]. Otherwise (i.e., when R;<0 with o>0),
the long-time limit of 7 do not exactly follow relation (67) as
also shown by Fig. 6(b). The difference between 7 and 7.
would be mainly due to the fact that the contribution to the
energy ratio 7 coming from the k;=0 mode does not
dominate the contribution of the other modes. Indeed, the
case where R;<0 and o=R(1+R)+R,>0, so that o>
=R(1+R)sin?> ¢+R,;>0, corresponds to the domain (III) in
Fig. 3 in which stable and unstable modes coexist and the
k=0 mode is rather stable.

When o=R(1+R)+R;=0, the k;=0 mode is the most un-
stable one and the important contribution to the energy ratio
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FIG. 7. Variation of the long-time limit of the “two-
dimensional” energy ratio, 77“)=ICI,L;1)/ KLY [Egs. (68) and (69)]
and its 3D counterpart =K,/ KC versus the rotation number R for a
fixed value of o=R(1+R)+R;. (a) 0=0.0, (b) 0=-0.1

n comes from this mode. This can explain the expected
agreement between 7 and 7;8), as shown in Figs. 7(a) and
7(b) displaying the variation of these parameters for =0
and o=-0.1, respectively. At c=R(1+R)+R;>0, the long-
time limit 178) is deduced from Egs. (62) and (63). Indeed, at
large time and when >0, the dominant term in the right-
hand side of Eq. (62) [respectively, Eq. (63)] is the term
involving J,(27/o), so that

M R(R*- o)
T 2 R+ (1+R)D) o+ R(1+R)?

(68)

At 0=0, the solution g;; exhibits an algebraic growth [see
Eq. (A4) in the Appendix], and one easily obtains the follow-
ing relation:

R

(1) _
7 (+R) (69)

which can be also deduced by setting 0=0 in relation (68).
Relation (69) indicates that at large time and when the abso-
lute vorticity vector becomes zero (i.e., R=—1 or §=-2()),
the streamwise two-dimensional kinetic energy remains very
small with respect to ICPLE,I). The numerical RDT results for
the energy ratio # at large time show that, near R=—1, one
also has |ICp| <K [see Fig. 7(a) obtained at 7=Sr=100].
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As mentioned in our introduction, and stressed by one of
the referees, flow “structures,” and particularly streaklike
structures, might be related to correlation lengths. The two-
dimensional ener; y components with detailed componental-
ity, or S(( =u,u; L ) (i not summed, €=1,2), are very useful
quantities for predlcting mean orientation and/or aspect ra-
tios for structures. Only the related invariant quantity /CL®
is addressed here for the sake of brevity. This linkage to
structures is kept for a further study using homogeneous
pseudospectral DNS in co-moving coordinates, touched upon
at the end of our conclusion, for comparison with RDT and
with nonlinear statistics. It is premature, however, to discuss
of structures without the help of visualizations of velocity
and vorticity snapshots.

VII. CONCLUDING REMARKS

We have analyzed, using linear theory in the Boussinesq
approximation, the stability of an unbounded sheared flow
with system rotation around the spanwise (x,) axis and ver-
tical (x3) stratification. The base flow is a particular solution
of the Euler equations and the base Ertel potential is zero.
The conservation of absolute potential vorticity—not
new—is considered, and gives here an invariant of the mo-
tion for the disturbance field, in which the mean-shear vor-
ticity is called into play, in addition to system vorticity: an
important result. Conditions for validity of linearization of
the equations for the perturbations were discussed. Plane-
wave disturbances with time-dependent wave vector were
considered and their governing equations were derived in a
local frame attached to the wave vector and in which the
incompressibility constraint is satisfied by construction. A
linear differential system (with time-dependent coefficients)
for the poloidal, toroidal, and potential modes is derived.
Due to the conservation of the Ertel potential, which leads to
a constant of motion relating the toroidal and the potential
modes, the rank-three differential system reduces to a rank-
two one. In order to consider arbitrary initial conditions and
solenoidal property for the velocity field, a reduced Green’s
function g has been introduced.

An alternative formulation of the rank-two differential
system of equations yields a nonhomogeneous second-order
differential equation with time-dependent coefficients. An
analytical solution has been derived for any orientation of the
wave vector and for all values of the rotation R and Richard-
son R; numbers. The solution indicates that, for certain cases,
all the components of the matrix g does not have the same
long-time behavior, so that an analysis in term of exponential
growth, as in normal-mode stability analysis, is necessary.
This analysis relies only on the invariants on the Green’s
function matrix. It is shown that one of the eigenvalues of
the matrix g is unity, reflecting the existence of the linearized
Ertel invariant, so that the sum of the two other ones is
Tr g—1 and their product is K/k, where k is the radial wave
number at time ¢ and K is its initial value. The determinant of
g is K/k for sheared flows, even for time-dependent sheared
flows [10] and with additional effect of rotation and stratifi-
cation. Therefore the normal-mode stability analysis lies on
Tr g as the unique unknown to be calculated, and its long-
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time behavior was analyzed in terms of the rotation number,
of the Richardson number, and of the azimutal angle ¢. It is
shown that the flow stability is governed by the parameter
o2 =R(1+R)sin’> ¢+R,. The modes for which ofp>0 are
stable those for which ofp 0 are neutral, while those for
which o2 <0 are unstable. In their linear-stability analysis of
accretion disks, Johnson and Gammie [2] have only consid-
ered the case where ¢=0 (i.e., the k,=0 mode) for which
rotation effects vanish.

It is shown now that, when ai<0 (unstable case), the
particular value ¢=17/2 (i.e., the k;=0 mode) corresponds to
the most unstable mode for which the solution exhibits an
exponential growth, while the other unstable modes are char-
acterized by an algebraic growth. An algebraic growth is
found for the neutral modes (i.e., those characterized by
=0). The stable modes (i.e., those characterized by 0i>0
undergo a power-law decay if 0< 0‘2 < (cos ¢)/4 or exhibit
a damped oscillatory behavior if 0-2 > (cos? @)/ 4.

For geophysical and astrophyswal applications, stability
diagrams have been plotted for all values of the Richardson
and rotation numbers. For instance, in the [R(1+R),R;]
plane, five domains have been distinguished. In the R;
>1/4 domain [i.e., the domain (I) in Fig. 3], the modes are
stable exhibiting a damped oscillatory behavior. In the do-
main corresponding to R;<0 and R(1+R)<<0 or R(R+1)
<O0<R(R+1)+R; and 0<R;<1/4 [i.e., the domain (II) in
Fig. 3], the modes are also stable but there are ones exhibit-
ing a damped oscillatory behavior while the other undergo a
power-law decay. In the R; <0 and R(R+ 1) <0 domain [i.e.,
the domain (V) in Fig. 3], the modes are unstable. In the
other two domains [i.e., the domains (IIT) and (IV), see Fig.
3] stable and unstable modes can coexist.

Because previous DNS studies for sheared homogeneous
turbulence at high initial shear rate show that the linear
theory contains the essential mechanism responsible for de-
velopment of turbulence structures, and the region near the
k;=0 mode has an important implication on the dynamics of
large-scale motion, the formalism used for the RDT-like sta-
bility analysis is systematically applied to compute the evo-
lution of particular turbulence statistics: the streamwise
“two-dimensional” kinetic and potential energies. It is shown
that the long-time limit of the ratio, denoted by 778) of these
two-dimensional energies (potential over kinetic), depends
on both rotation and stratification. As a preliminary evalua-
tion of the relevance of the computation of the streamwise
two-dimensional energy components, the variation of 7/53)
versus R or R; for fixed values of o=R(1+R)+R; has been
compared to the long-time limit of that one of its three-
dimensional counterpart, denoted by 7, computed numeri-
cally. The conclusion that can be drawn from this compari-
son is that, when the couple {R[R(1+R),R;]} lies in the
domain (II) of the diagram shown in Fig. 3, the contribution
coming from the k;=0 is not a dominant one in the evolution
of energies. At least, this point shows the usefulness of a
complete stability analysis as the one presented in this study.

On the other hand, because in many accretion disks angu-
lar momentum is likely redistributed internally by magneto-
hydrodynamics turbulence driven by magnetorotational in-
stability (see Balbus and Hawley [31]), it appears very useful
for astrophysical applications to study, in a subsequent paper,
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the effects of a magnetic field on stratified rotating sheared
turbulence.

Finally, this linear study may pave the way for a fully
nonlinear one using pseudospectral DNS in terms of co-
moving deformed coordinates [32]. Constant mean strain can
be maintained in the corresponding nonlinear problem be-
cause there is no feedback from the fluctuating field, the
gradient of the Reynolds stress tensor being zero by virtue of
statistical homogeneity restricted to fluctuations. Accord-
ingly, the mean flow, which is not space invariant (only its
gradient is), must be a particular solution of Euler equations,
in agreement with the abovementioned “admissibility condi-
tions” [4]. The DNS study will allows us to evaluate the role
of nonlinearity and to quantify it, solving the Eq. (10). The
parameter range (Richardson, Rossby, and Reynolds num-
bers) will be chosen in agreement with both dedicated appli-
cations and present RDT results. Relevance of statistical in-
dicators for orientation and aspect ratios of structures will be
checked in connection with flow visualizations.

APPENDIX
1. Equations for the poloidal, toroidal, and potential modes

By using the expression of the pressure mode p given by

Eq. (15), the equations for the modes #; and b given by
system (16) can be rewritten as

di; R kiks\~ d -~ ” A R
E"‘Eij‘uj: 5[ —7 b, Eb=—N us, k[u,-=(),
(A1)
with
kiky kik,,
El]:S(éll —2?)5]34'20(5”’—?)6“2] (AZ)
The substitution of the relation ;= u@e!®  where

(i=1,2,3), (e=1,2), into the first equation in Eci (A1) im-
plies
du'®
dt

del?
+ M(a{é’,("g)d_lt} +¢7(88, 83+ 26, )l ul®

= Bel(ﬁ)éa-
Because the local frame (e(') ,e(z),e(3)) is an orthonormal one

and e is time independent, then

de”
Lt@ fllt ]:O (a.p=12) (i=12.3).

Therefore, the equations for u"), u® and u®=-b/N can be
rewritten as

du'® "
o +LeP(50,10 + 20) e T + [Nef 03JuY =0,

du®
dt

~[NeP 5P =0, (a.B=1.2), (i=1,2,3),

that are equivalent to system Eq. (20).
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2. Solution for the reduced Green’s function

When o #0, we consider the second-order differential
equation for gs; [see Eq. (38)], which has the particular so-
lution g§; given by Eq. (41). To resolve the associated homo-
geneous equation we distinguish the case where k;=0 (i.e.,
¢@=1r/2 and the case where k; # 0).

a. Case where k=0

When &=0(k;/k*) >0 with ky/k>0, the solution of Eq.
(38) is found as

R(1+R)

(1 —cos &7), g12=(

+ .
gnu=1- —=—sin 7,
No

R/(R+1)
813=
o

R .
(1 —COos 57-)’ 821=— ,’__SIH gT’
Vo
R . R
gn=c0s &7, gyy=—=sin 1, g3 =—(1-cos &7),
Vo o

83=" /——sin ér,

R.
gpn=1-—(1—-cos é7). (A3)
YO g

Recall that o=R(1+R)+R;. The solution corresponding to
§2=0'ki/ k*><0 can be deduced from the above one by using
the basic functional relations sinh x=—: sin(zx) and cosh x
=cos(ix). In that case, the solution exhibits an exponential
growth. As for the solution associated to the case where o
=R(1+R)+R;=0, it can also be deduced from the latter so-
lution that

k3 7 ky
811=1—R(1+R)p5» gl2=(1+R);T,
k3 7 ky
813=Ri(1+R)p3, 821=—R;T’ gn=1
823 = kT’ 831 = 22’
k K72
g32=—R;27', g33= 1 +R(1 +R)k_§3 (A4)

Therefore, at 0=0, the solution exhibits an algebraic growth.

b. Case where k{#0

At k; #0, the homogeneous equation associated to Eq.
(38) is transformed (by using the pure imaginary variable z
=1k3/ k) to Eq. (43) with solution g3;=C;P,(2)+C,;0,(z).
So that, the solution of the nonhomogeneous Eq. (38) can be
written

g3j = COjP,u,(Z) + Cle/.L(Z) + ggj (J = 1’253)’ (As)

and, in view of Eq. (32) that can be rewritten as
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J— dox;
g2j= (-T2 cos )22,
dz
we obtain
/_ ! !
2= (=1 cos @1 -2°[Cy;P,(2) + C1;Q,(2)],  (A6)
while, Eq. (29) allows us to determine g,
g1;= 6+ (R sin ¢)(&3; - g3)),
81j= 51]‘ + (R sin SD)[53_]' - COjP,u(Z) - C]_,‘Q;L(Z) - gﬁj]-
(A7)
Here, g5; is given by Eq. (41), and Cy; and C; are constants

that can be determined by using the initial conditions,
gif(z0)= 6. The result is
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—

l Q“(Zo) S
2792 |
Cos @1 -z

Coj=(1- Z%)[(53j - ggj)Q;L(ZO) +

1 Pulzo) ’
C=-(1 —Zg){®ﬁ5zj+(53]'—8@'_,-)})#(20)]-
)

It follows that
gn=1-g%{1- (1 -2)[Q(20)P () - P, (20) 0,2},

g33=(1-2)[0}(z0)P(2) = P}(20)Q,(2)] + {1 - (1 - 27)
X[0(20) P, (z) = P}(20)Q,.(2) 1} g5,

1-— Z2 172
-2 > [P.(20)Q,(2) = Q(20) P, (2)].
0

gn=_(1 —zﬁ)(

Therefore, Tr g is independent on the particular solution g‘,’-}.
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