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Mechanism of nonlinear flow pattern selection in moderately non-Boussinesq mixed convection
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Nonlinear (non-Boussinesq) variations in fluid’s density, viscosity, and thermal conductivity caused by a
large temperature gradient in a flow domain lead to a wide variety of instability phenomena in mixed convec-
tion channel flow of a simple gas such as air. It is known that in strongly nonisothermal flows, the instabilities
and the resulting flow patterns are caused by competing buoyancy and shear effects [see S. A. Suslov and S.
Paolucci, J. Fluid Mech. 302, 91 (1995)]. However, as is the case in the Boussinesq limit of small temperature
gradients, in moderately non-Boussinesq regimes, only a shear instability mechanism is active. Yet in contrast
to Boussinesq flows, multiple instability modes are still detected. By reducing the system of full governing
Navier-Stokes equations to a dynamical system of coupled Landau-type disturbance amplitude equations we
compute a comprehensive parametric map of various shear-driven instabilities observed in a representative
moderately non-Boussinesq regime. Subsequently, we analyze nonlinear interaction of unstable modes and

reveal physical reasons for their appearance.
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I. INTRODUCTION

Natural or mixed convection in a tall differentially heated
channel is one of the most studied classical convection prob-
lems. The literature available on this subject is extensive: its
volume is second only to that of the Rayleigh-Bénard con-
figuration. A review of related early studies can be found, for
example, in [1,2] and will not be repeated here for the sake
of keeping the paper balanced and brief. Despite the fact that
this problem has been the subject of active research over the
last half a century, the number of authors dealing with its
various modifications keeps increasing every year, see, for
example, [3,4] for a review of more recent research. This
popularity is due to the large number of engineering and
industrial applications where mixed convection flows occur,
as well as the relative simplicity of analysis which takes
advantage of straightforward geometry. Typically, Bouss-
inesq approximation for nonisothermal Navier-Stokes equa-
tions is used (e.g., [5]). However the accuracy of the Bouss-
inesq treatment, where all fluid’s transport properties are
assumed to be constant, deteriorates rapidly in strongly
nonisothermal flows [1] such as those existing, for example,
in thermal insulation systems or chemical vapor deposition
reactors [6,7]. This is due to the essential fluid properties
dependence on the temperature which is ignored under the
Boussinesq assumption. Accounting for such a dependence
using experimentally established constitutive laws renders
the governing equations strongly nonlinear and thus difficult
for analytical studies. This prompted various recent authors
to employ purely numerical investigation of high-
temperature flows, see, for example, [8], and references
therein. Despite the sophisticated nature of such computa-
tions, typically, they can only provide quantitative flow in-
formation for a (small) number of points in the governing
parameter space. Thus they cannot serve as a tool for the
systematic identification of qualitative physical features
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which drastically distinguish realistic non-Boussinesq flows
from their oversimplified Boussinesq counterparts. There-
fore, here we employ an asymptotic analysis and a dynami-
cal system approach to classify various patterns arising in
essentially nonisothermal mixed convection.

A comprehensive study of flow pattern selection and the
subsequent nonlinear interaction between them in strongly
non-Boussinesq natural convection of air in a tall vertical
enclosure was previously undertaken in [9,10]. It was found
that at large temperature differences (above 300 K) across
the flow domain, emerging flow patterns resulted from an
interplay between the shear- and buoyancy-driven instability
mechanisms. This is in contrast to classical low-temperature
regimes where parallel convection flow becomes unstable
due to the flow shear alone. The influence of the pressure
gradient applied along a tall vertical channel was subse-
quently investigated under non-Boussinesq conditions in
[11]. It was found that the physical nature of flow instability
in both Boussinesq and strongly non-Boussinesq mixed con-
vection regimes remains similar to that found for natural
convection flows. However, a different physical effect was
detected for moderately non-Boussinesq flows (with the tem-
perature difference in the range of 150-250 K): it was re-
ported that, similar to a strongly non-Boussinesq case, the
flow instability in these condition is caused by two compet-
ing instability modes both of which however have the same
physical (shear-driven) nature as the instability observed in
the Boussinesq limit. The goal of the current work is to iden-
tify the physical reasons for the transition between these
shear-driven instabilities as they have not been pinpointed to
date.

In Sec. II, we use a Low-Mach-Number approximation of
full Navier-Stokes equations [12], complemented by consti-
tutive laws describing the realistic fluid (air) properties varia-
tions, to formulate a moderately non-Boussinesq mixed con-
vection problem. Subsequently, in Sec. III, we present the
results of a weakly nonlinear stability study which shows
that even in moderately nonisothermal regimes characterized
by the temperature variation on the order of 100 K the flow
of a common fluid, such as air, reveals a very rich behavior
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with fine transitions between various patterns. The appear-
ance of these patterns sensitively depends on flow param-
eters. A direct link between the governing physical param-
eters and model dynamical system coefficients is established
and discussed in Sec. III also. Finally, the physical nature of
the arising patterns and their interactions is discussed in Sec.
Iv.

II. PROBLEM FORMULATION

Consider a fluid flow confined by two isothermal vertical
plates separated by a gap of width H and maintained at dif-
ferent temperatures 7}, and T,, 7),>T,. The driving pressure
gradient 11, is applied along the channel (in the y direction).
The fluid (air) has the average (reference) temperature T,
=(T,+T,)/2=300 K, density p, dynamic viscosity w, ther-
mal conductivity k, and specific heat c,,, all nondimensional-
ized using their values at 7, and varying with nondimen-
sional temperature 7' according to the ideal gas law and
Sutherland formulas [13]

pT=1, c,=1, (1)
e 1368, 1648 o
T+0.368 T+ 0.648

As discussed in [2], such a flow is accurately described by
the Low-Mach-Number equations [12]. which, upon nondi-
mensionalization using the gap width H, viscous speed u,
=u,/(pH), characteristic time t,=H/u, and characteristic
pressure I1,=p,u?, are given as

J dpu;
Ly, (3)
ot ﬁxi
dpu; dpuu; Jll  Gr aT;
P R T - @)
ot Ix; ox; 2e ox;
JT aT 1 9 aT
pep\ —Hu— | =———\k—|, (5)

where x;=(x,y), u;=(u,v), n;=(0,-1),

Tij = M(% + i - 251';%>,

xj  dx; 3 T ox
o, is Kronecker delta and summation convention is used.
System of equations (1)-(5) is subject to the no-slip/no-
penetration velocity conditions and isothermal boundary
conditions 7=1*¢€ at x=0 and x=1, respectively. The
Grashof, Reynolds, and Prandtl numbers and nondimen-
sional temperature difference between the walls governing
the problem are defined using the reference values (denoted
by subscript r) as

_ pg(Ty = T)H’

Gr 3
T,
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FIG. 1. (a) Basic flow velocity and (b) temperature profiles at
the codimension-2 point (Re.,Gr,)=(-5179.405,526921.8).
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They characterize the buoyancy force, the strength of the
applied pressure gradient entering the mathematical formula-
tion through inlet/outlet boundary conditions, the ratio of vis-
cous and thermal properties of the fluid (air), and the devia-
tion from Boussinesq model (which can be recovered by
considering the limit é—0 in the governing equations, see
[2]), respectively. Here we investigate in detail flow patterns
arising in the representative moderately non-Boussinesq
mixed convection regime in the parametric vicinity of
(Re,,Gr,, €)=(-5179.405,526921.8,0.3). The reason for
choosing these values will become apparent below. The
steady y-independent parallel basic flow profiles satisfying
Eqgs. (1)—(5) are shown in Fig. 1: downward (as emphasized
by the negative value of Reynolds number) flow caused by
the applied pressure gradient is opposed by the buoyancy
force near the hot wall. The temperature difference between
the walls in this regime is 180 K and the fluid thermal dif-
fusivity vary significantly across the channel (up to 15%) so
that the temperature deviates from a classical Boussinesq lin-
ear profile.

Comprehensive linear stability analysis of such a flow un-
dertaken in [2] revealed a number of remarkable features
seen in Fig. 2. First, in contrast to results obtained in low-
temperature Boussinesq limit e—0 the marginal stability
curve Gr(Re) obtained for €=0.3 has a kink singularity at
this set of parameters. Second, both critical wave number «

s — ) —7 o7
2.5
6 00 -2
1(5 P
¢ 4 5] 1.5 2 —4
[=] X
— Q
1.0
2 -6
0.5
Q L L L 0.0 L I L — L | |
-8 -6 -4 -2 0 -8 -6 -4 -2 0 -8 -6 -4 -2 0
10 'Re 10 'Re 10 'Re

FIG. 2. Linear stability diagram for mixed convection in a ver-
tical channel for e=0.3: (a) stability boundary (basic parallel flow is
unstable above the solid line); (b) neutral disturbance wavenumber
and (c) wavespeed.
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FIG. 3. Leading disturbance amplification rates at the
codimension-2 point in non-Boussinesq mixed convection. Symbols
mark the amplification rates of the first two decaying modes.

and critical disturbance wave speed ¢ are discontinuous at
this point. This situation was previously identified in [2] as a
switch between two distinct shear-driven instabilities, but no
further analysis has been developed to date. Given that such
a phenomenon has never been detected in Boussinesq flows
in a similar geometry, investigating the non-Boussinesq flow
patterns arising near the “switch” point is a valuable exercise
that sheds light on qualitatively different physical mecha-
nisms activated in common fluids by large temperature gra-
dients. In the next section, we present a systematic pattern
classification study using a model dynamical system consis-
tently derived from full governing Egs. (1)—(5).

III. MODEL DYNAMICAL SYSTEM AND CODIMENSION-
2 UNFOLDINGS

In this section, we report the major analytical results ob-
tained using linear and weakly nonlinear analyses of the
physical problem under consideration. To keep focus on ma-
jor findings, we intentionally leave routine and somewhat
lengthy derivation details outside of the paper. The interested
reader can find these details along with the information on
numerical implementation in references provided below.

Linear stability analysis of basic flow solutions depicted
in Fig. 1 shows that infinitesimal disturbance quantities can
be found in a normal form proportional to exp(ot+iay), o
=c®+iol. The leading real disturbance amplification rate
curve o®(a) obtained for (Re,,Gr,) using the numerical pro-
cedure described in detail in [2] is shown by the plain solid
line in Fig. 3. It has a peculiar shape: it possesses two zero
maxima at wavenumbers a;=0.0795 and a,=1.1804. This is
the so-called codimension-2 point. Depending on the values
of physical parameters in the vicinity of (Re,,Gr,), left or/
and right maxima cross the zero level. The resulting flow
pattern depends on a nonlinear interaction between two dis-
turbance wave envelopes centered at wavenumbers «; and
a, shown by vertical dotted lines in Fig. 3. Both disturbance
wave envelopes belong to the same branch of the problem
dispersion relation. Hence, they have the same physical na-
ture, namely, the shear which is maximal near the inflection
point of the basic flow velocity profile. This is consistent
with conclusions made in [2], but there it was overlooked
that the instability is caused by the same shear mode (switch-
ing the wavenumber) rather than by two distinct modes. The
asymptotic behavior of the system is determined by rela-
tively narrow neighborhoods of a; and a, for which the
temporal amplification rate o® is positive. Since «; and a,
are well separated from each other, in the context of further
derivation, we consider the corresponding wave envelopes as
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independent objects subject to weakly nonlinear interaction.
Systematic disturbance amplitude expansion about the basic
flow solution detailed in [9,11] and adapted to the
codimension-2 analysis in [10] is truncated to the third order
in amplitudes A,(7) and A,(z) which correspond to the distur-
bances with wavenumbers «; and a,, respectively. The ex-
pansion then reads [22]

W =Wooo + |A] |2W(2{))0 + |A2|2W(2%))0 +{[A (w0 + |A1|2ngl)o
+ |A2|2W(321)0)E1 ‘*'142""220E2 +A1A;w21—1E1E51 +Ay(Wyg
+|A W0, + (AW Ey + ASWagoE3 + A Ay W, E B, ]
+c.c.}, (6)

where w=(u,v,T,II)7, the first index corresponds to the or-
der of amplitude, the second and the third to the powers of
E,=exp(ia;y) and E,=exp(ia,y). The asterisk and c.c. de-
note complex conjugate. Vectors wy;o and wy; are eigenvec-
tors of the linearized problem which we normalize so that
maxxe[0,1]|U110|=maxxe[0,l]|v101|=maxxe[0,1]|l)000|' Such a
normalization ensures that amplitudes A; and A, measure
directly the size of disturbances relative to the basic flow
velocity. In order for Eq. (6) to satisfy Egs. (1)—(5) in the
absence of resonances (as confirmed below) the evolution of
disturbance amplitudes should be governed by a system of
coupled Landau equations

da;

;tlzaj(af+Kla] Kfzag), (7)
do,
E‘l 0‘1+K11a1+K12a2, (8)

where A;=|A [exp(i6;)=a; exp(i6;) and 0']=of+io§ are ei-
genvalues of the linearized problem. The complex Landau
coefficients K; k—KJk+z e Jok=1,2, are determined by the
orthogonality conditions [9]

(1) 2
K (Wi wii0) =0, Kpp(wiih,wie) =0,

Ky (wWSg,wio) =0, )

where the angle brackets denote an inner product. These con-
ditions ensure that any new hierarchically added higher order
terms are orthogonal to terms with similar y periodicity,
which are already present in the expansion. As shown in [9],
this amplitude normalization approach reduces to a conven-
tional solvability condition at the bifurcation point. At the
same time, when the parametric distance from the bifurcation
point is finite, this method allows us to project the solution of
the full problem onto a space spanned by eigenfunctions
from the linearized problem (computed at a given set of pa-
rameters rather than at a bifurcation point) in such a way that
the desired physical characteristics of the solution (e.g., the
kinetic energy [14] or heat transfer rate [15] of a disturbed
flow) are captured most efficiently by the leading expansion
terms. Which exactly flow feature is emphasized in the ex-
pansion is determined by the choice of the (weighted) inner
product [14]. Since in this study we do not focus on any
specific flow characteristics but are interested in general clas-

K21:<ng())l’W101>:O’
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TABLE 1. Numerical values for model coefficients for representative points in Fig. 4.

Point Re Gr o o, Ky X107 KX 1077 Ky X 107 Ky X 1077
(1) Re. Gr, 0+379.9i 0+6197.0i -1.203+0.689i  -0.590+1.050; 8.058+1.613i —0.637-1.230i
) Re. 525000  —-0.574+377.6i —4.802+6159.8i -1.037+0.376i —-1.933+4.392i 6.023+3.621i —10.26+50.46i
3) =5100 519000 0.047+380.1i -4.396+6111.2i —-1.214+0.703i —-0.815+2.144i 5.799+3.333i -3.685+15.78i
(4) =5100 520000 0.352+381.4i -1.906+6130.6i —1.279+0.817i —0.415+1.006i 6.794+2.462i —-0.533+1.976i
(5) -5100 521000 0.657+382.6i 0.588+6149.3i -1.336+0.912i -0.603+0.992i 7.486+1.280i —0.621+1.121{
(6) Re, 530000 0.924+383.7i 7.714+6255.4i -1.381+0.982i -0.936+0.649i 7.916-2.528i —0.586—0.875i
(7) -5250 533000 -0.337+378.5i 1.392+6253.7i -1.112+0.519¢  -0.717+1.032i  8.890+0.914i —0.645-1.095{

sification of flow patterns near the double-Hopf bifurcation
in moderately non-Boussinesq convection all results reported
in this paper are produced using a standard inner product for
complex vectors: (q,r)=q*7-r.

Note that all coefficients in equations (7) and (8) depend
on physical governing parameters. Due to this fact the analy-
sis of the codimension-2 dynamics is a nontrivial and nu-
merically involved task. Yet the computational time required
to obtain a complete and accurate parametric map corre-
sponding to various physical solutions is several orders of
magnitude smaller than that of direct numerical simulation.
This justifies the current analytical effort. The implemented
computational procedure first identifies the wavenumbers «;
and a, of the fastest growing disturbances for each param-
eter pair (Re, Gr) in the vicinity of (Re,,Gr,). Once this is
done the hierarchy of differential equations for w;;, arising at
various orders of disturbance amplitude is solved. Subse-
quently, the orthogonality conditions (9) are applied to deter-
mine the Landau coefficients defining equations (7) and (8),
which is analyzed next. The numerical values for model co-
efficients for representative parameter values near the
codimension-2 point are given in Table L.

In order to analyze models (7) and (8), we follow the
relevant discussions found in two popular texts on dynamical
systems [16,17]. First, we consider two amplitude Egs. (7)
since they are completely decoupled from the phase Egs. (8).
We apply transformations

R R
ri=aN|Ky |, r=a[Ky,
M1=—011e7 M2=—0“§’
R R R
K, K5 K>
=—TRp ="k d=-Tgs 1ot
K>, K7 K3,

suggested in [16] to reduce Egs. (7) to the canonical form

Fr=r(u + 1 +br3), F=ryus+cri+dr3).  (10)

As seen from Table I, both KF, and K%, are negative in the
vicinity of (Re,,Gr,) so that both modes bifurcate supercriti-
cally. Therefore, the third-order amplitude expansion (6) is
sufficient to estimate the saturation disturbance amplitudes.
Numerical evaluation of the system coefficients at (Re,., Gr,)
results in 5=0.925, ¢=-67.340, d=1, u,=u,=0, which cor-
responds to Type 2a case II of the fixed point with three
invariant lines (r;=0, r,=0, r,=v(1-c)/(d-b)) according

to the classification given in Tables 7.5.1 and 7.5.2 in [16]. In
order to unfold this bifurcation, note that the four types of
equilibria (r;,,r,,) are possible in system (10): (a) linearly
stable basic flow, (0,0); (b), and c) individually bifurcating
modes (V=x,0) and (0,V—u,/d); and d) interacting modes
(N(buy—duy) I (d—bc) N(cpy—ps)/ (d—bc)). Stability of the
above fixed points is determined by the eigenvalues \, , of a
problem obtained by linearizing Eqgs. (10) about the equilib-
rium (ry,,r,,). The stability conditions then is )\’1{,2>0 (be-
cause of the time reversion), where

Cii+Cp = \"/16bCV%e”%e +(Cyy = Cp)?
2 9’

)\1,22 (11)

2 2 2 2
Cii=p+3r,+bry,  Cy=uy+3dr, +cry,.

More specifically, for d=1 equilibria (a)—(c) are stable if,
respectively: (a) py, po>0; (b) > cuy; (€) g >bu,y; equi-
librium (d) is always stable if it exists. Consequently, unfold-
ings of the codimension-2 point are determined by lines wu;
=0, u,=0, wry=cuy, and u;=bu,. All topologically distinct
amplitude flow diagrams near the considered codimension-2
point are presented in Fig. 4. Straight lines a;=0, a,=0 and
ay=aN(K¥ =K )/ (K, —K® ) =1.319a,in plot (1) are the in-
variant lines at the codimension-2 point (Re,., Gr,). The third
of these lines is algebraically attractive so that the distance
between it and the trajectories decreases asymptotically as
32 while the evolution along the invariant line toward the
origin is a;~a,~1t"". Plots (2)—(7) show all possible un-
foldings of a fixed point for case II in [16]. The middle plot
in Fig. 4 relates unfoldings to the physical parameter space
for non-Boussinesq mixed convection.

Note that unfoldings shown in Fig. 4 are not discussed in
[16], but given in ([17], Chapter 8.6) [23] as case IIT of
“Simple” Hopf-Hopf bifurcation. According to Fig. 8.25 in
[17], the amplitude flow diagrams (2)—(7) shown in Fig. 4
correspond to phase portraits @, @, ®, ®, @3, and @ in Fig.
8.26 in [17], respectively. Diagrams (4) and (6), however,
appear different from their counterparts ® and @ in [17].
More specifically, phase portrait ® in [17] indicates the pres-
ence of a stable node, while the computed amplitude flow
diagram (4) contains a stable focus. The eigenvalues (11) in
this case can be written as
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FIG. 4. Amplitude flow diagrams and trajectories near the
codimension-2 point. Squares and empty and filled circles represent
initial conditions and unstable and stable equilibria, respectively.

2,2 2 22 2 2
No=ri,+135, * \/(rle—rk) +4bcry,rs,, (12)

where bc <0. Thus, depending on the values of the equilib-
rium amplitudes 7, ,, and coefficients b and c the expression
under the square root could be either positive or negative.
The former would correspond to phase portrait ® while the
latter results in amplitude diagram (4). However, according
to the definitions given in [17], both situations are topologi-
cally equivalent.

The discrepancy between the amplitude flow diagram (6)
in Fig. 4 and the phase portrait @3 given for this case in [17]
is however topologically essential. Indeed it is suggested in
[17] that a stable fixed point of type (d) identified previously
in this section should exist. However, a simple analysis
shows that in region (6) of the middle plot in Fig. 4, the
expression (bu,—du,)/(d—bc) is always negative and thus
cannot represent a square of a disturbance amplitude. This
means that fixed point of type (d) cannot be present in this
parametric region and the amplitude flow diagram (6) [24]
should be considered as the true representation of amplitude
dynamics.

In order to complete the analysis, the phase evolution
given by Egs. (8) has to be considered and in particular the
possibility of phase locking and resonances has to be exam-
ined. The phase locking condition is

0'{ _0'§+ (K{I _K£1)a%+ (K112_K§2)a%=0- (13)

Differentiating this equation with respect to time and using
(7) after some algebra, we conclude that (13) may be satis-
fied only if both amplitudes are constant, i.e., at the stable
mixed fixed points a;,a,,# 0 existing in between the dash-
dotted lines in Fig. 4 [see plots (4) and (5) for the flow
topography]. Condition (13) then becomes

PHYSICAL REVIEW E 81, 026301 (2010)

(Kln - K&)(UI;K@ - 0']1?K§2) + (qu - Kéz)(o'fK; - UgKﬁ)
K\ K3 = K15K,

=0’12—OJ,

but it is not satisfied anywhere in Fig. 4. Finally, the ratios
oh/ o} and a,/a; remain between 16 and 17 and 14 and 15,
respectively, for all points in Fig. 4. Hence, no strong reso-
nances occur and the performed analysis based on the third-
order expansion (6), accounting for the evolution of ampli-
tude modulus only, is sufficient.

IV. PHYSICAL INTERPRETATION OF DYNAMICAL
SYSTEM RESULTS

Next, we relate the results reported in the previous section
to the physical flow under consideration. It has been men-
tioned in Sec. II that the flow between the plates is deter-
mined by two competing mechanisms: the buoyancy force
and the pressure gradient applied along the channel. The par-
allel basic flow becomes unstable due to the action of shear,
which is maximum near the inflection point of the basic flow
velocity profile, see Fig. 1(a). This is indeed confirmed by
plots (a) and (b) in Fig. 5 where the weakly nonlinear distur-
bance fields given by Eq. (6) are reconstructed: the distur-
bance structures are most profound in the middle of the
channel near the inflection point. Since the inflection point
appears due to the action of the buoyancy force characterized
by Grashof number it is only present if the ratio Gr/|Re| is
sufficiently large. For this reason the critical Grashof number
increases rapidly with |Re| as seen from Fig. 2(a). At the
nearly zero values of |Re| (small pressure gradient), the in-
stability is characterized by almost stationary secondary rolls
[which have nearly zero wavespeed, see Fig. 2(c)] with the
wavelength N\=27H/a=~2.3H [Fig. 2(b)]. As the driving
pressure gradient increases, these rolls start drifting down-
ward with the primary flow and elongate. Thus, the pressure
gradient has a stretching effect on the flow instability struc-
tures. This effect is evident from comparing plots (a) and (b)
in Fig. 5. Shear-stretching of instability cells continues until
the size of the rolls becomes so large that they start blocking
the primary flow strongly. At the codimension-2 point, these
large aspect ratio instability rolls with N=79H break into
smaller ones with A=~5.3H which drift with a larger wave
speed [see Fig. 2(c)] so that their “blocking” effect is less
profound. Note that such a transition between the flow pat-
terns is not because of the secondary instability of the large
aspect ratio rolls, but rather due to a competition between the
two distinct flow structures one of which drains the energy
from another. This competition is illustrated in Fig. 4. For
any fixed Re>Re,, the basic flow [plot (2)] first becomes
unstable due to the long wave disturbances [plot (3)], which
trigger their own distortion at the slightly higher values of Gr
[plot (4)]. This distortion is supported by draining the energy
from the large instability rolls to finer structures (because the
coupling coefficients K&, >0 and K%,<0) via nonlinear in-
teraction. At even higher values of Gr the smaller rolls be-
come self-supporting by draining the energy from the basic
flow [0, becomes positive in plot (5)] and eventually destroy
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(d)

FIG. 5. (Color online) Selected disturbance thermal (left) and velocity (right) fields near the codimension-2 point at various values of
(Re, Gr): (a) (-2000,204000), (b) (-5100,519000), (¢) (=5100,520000), and (d) (-=5100,521000). Gray shades (color) visualize the
temperature (left plots) and kinetic energy (right plots) fields. Fields (b)—(d) correspond to plots (3)—(5) in Fig. 4, respectively.

the large rolls completely [plot (6)]. This sequence of events
is illustrated by the instantaneous disturbance fields shown in
plots (b)—(d) in Fig. 5. For Re <Re,, the small roll instability
structures always dominate and large rolls cannot be ob-
served [plots (2), (6), and (7) in Fig. 4].

V. CONCLUSIONS

It is demonstrated that consistent accounting of realistic
fluid property variations in strongly nonisothermal mixed
convection flows reveals a rich variety of possible flow pat-

terns even in the simplest geometric configurations. These
possible patterns result from an intricate interplay between
various nonlinearities brought about by realistic constitutive
laws. Such flows cannot be described using a standard
Boussinesq model which assumes constant fluid properties
or, at best, their linear variation with temperature. In fact,
complex multimode instability analyzed in this paper disap-
pears completely if conventional Boussinesq equations are
inconsistently used to model the flow. Using the Low—Mach-
Number approximation of Navier-Stokes equations instead,
we found that the shear-driven instability detected in moder-

026301-6



MECHANISM OF NONLINEAR FLOW PATTERN SELECTION ...

ately non-Boussinesq mixed convection is structurally differ-
ent from that observed in the Boussinesq limit, and that the
physical mechanism of the studied instability is qualitatively
different from that of its high-temperature counterpart inves-
tigated previously. The major technical result of the current
study is a detailed parametric map of various flow patterns
arising near a codimension-2 bifurcation point, which is de-
tected in moderately non-Boussinesq mixed convection flow
caused by the competing upward buoyancy force near the
heated surface and the applied opposing pressure gradient.
Physical reasons for the existence of the observed flow pat-
terns are also discussed.

Finally, we make several brief notes in order to put the
findings reported here in a wider context. The fact that fluid
properties variations with temperature quantitatively affect
flow characteristics is hardly surprising and is widely ac-
knowledged (e.g., [18]). For example, a large body of litera-
ture exists which is concerned with the influence of
temperature-dependent viscosity on incompressible convec-
tion flow parameters (e.g., [19]). However to simplify the
analysis many of such studies deal with hypothetical fluids
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exhibiting strong variation on one property (e.g., viscosity),
but not the others (i.e., density or thermal conductivity) (e.g.,
[20]). Inevitably, the results obtained for such artificial fluids
are not quantitatively fit for realistic flows. In contrast, in the
current work a flow of a very common fluid (air) was inves-
tigated and all its properties were consistently accounted for.
The other noteworthy point is that even when all fluid prop-
erties variations are carefully considered, the deviation of
flow patterns from a nearly isothermal case may be of an
incremental rather than qualitatively new nature. For ex-
ample, a comprehensive study of non-Boussinesq mixed
convection flow of air in a horizontal channel undertaken in
[21] did not reveal any features qualitatively different from
those found in constant fluid properties flows. Yet, similar
flows in a vertical channel detailed here do possess qualita-
tively distinct features. Therefore, we conclude that the bi-
furcations reported here are the consequences not only of
fluid property variations, but also of their interplay with ex-
ternal factors such as the gravity orientation relative to the
primary temperature gradient.
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