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We investigate the influence of Dirichlet boundary conditions on various types of localized solutions of the
cubic-quintic complex Ginzburg-Landau equation as it arises as an envelope equation near the weakly inverted
onset of traveling waves. We find that various types of nonmoving pulses and holes can accommodate Dirichlet
boundary conditions by having, for holes, two halves of a 7 hole at each end of the box. Moving pulses of
fixed shape as they arise for periodic boundary conditions are replaced by a nonmoving asymmetric pulse,
which has half a 7 hole at the end of the box in the original moving direction to guarantee that Dirichlet
boundary conditions are met. Moving breathing pulses as they arise for periodic boundary conditions propagate
toward one end of the container and stop moving while the breathing persists indefinitely. Finally breathing and
moving holes are replaced by two (nonbreathing) half 7 holes at each end of the container and one hump in the

bulk.

DOI: 10.1103/PhysRevE.81.026210

I. INTRODUCTION AND MOTIVATION

Particle and holelike solutions have been observed experi-
mentally for a number of pattern-forming systems with dis-
sipation and dispersion [1-11]. These include various sys-
tems in nonlinear optics [10], binary fluid convection [2,3]
and the Faraday instability in various complex fluids [11], as
well as various chemical reactions [9], in particular on sur-
faces [1]. Such dissipative localized solutions have also been
obtained from macroscopic equations (including hydrody-
namic equations [12], model equations relevant in nonlinear
optics [13-16] and reaction-diffusion systems [17-27]) as
well as for order parameter equations [28-31] and phase
equations [32-35], the analog of hydrodynamic equations for
large aspect ratio pattern forming systems [36].

The cubic-quintic complex Ginzburg-Landau (CGL)
equation is a prototype equation applicable near the weakly
hysteretic onset of an oscillatory instability to traveling or
standing waves [37]. We emphasize that the analysis pre-
sented in the following is also relevant for systems described
by macroscopic basic equations and order parameter equa-
tions. Macroscopic basic equations, such as hydrodynamic
equations, for example, for simple fluids, binary fluid mix-
tures or nematic liquid crystals, as well as reaction-diffusion
equations used to describe chemical reactions in spatially
extended systems, can be reduced near the onset of an insta-
bility systematically to an envelope equation, like the cubic-
quintic CGL equation, via a reduced perturbation expansion
in the distance from instability onset as a small parameter
[38-40]. Sometimes, as for example for convection in binary
fluid mixtures, envelope equations can only be used for
qualitative comparisons, since boundary layers arise. Order
parameter equations or Swift-Hohenberg equations [40,41]
are constructed to contain near the onset of an instability the
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appropriate envelope equations, while incorporating simulta-
neously the correct symmetry of the pattern-forming system
to be described as well as the nonlinearities, which are
thought to be most important.

For the cubic-quintic CGL equations many different types
of stable pulse [42—65] and holelike [59-62,66,67] solutions
have been found and analyzed starting with the fixed shape
pulse described first by Thual and Fauve [42]. Depending on
the localized solutions in question they stably exist over a
larger or smaller parameter range. They always coexist with
either zero amplitude or a finite amplitude spatially homoge-
neous solution, which are also at least locally stable. Starting
in the field on nonlinear optics these various types of local-
ized solutions have been called dissipative solitons [63] in
order to express the fact that they arise for strongly driven
dissipative systems in contrast to classical solitons for which
driving and damping is typically taken into account only
perturbatively [39]. In contrast to the cubic-quintic CGL
equation, for the cubic CGL equation no stable dissipative
solitons are known, but one can have spatiotemporal chaos
[68] and hole solutions, which are, however, not generically
stable [40,61].

In most experimentally accessible systems one has Neu-
mann or Dirichlet boundary conditions or a mixture thereof.
To realize periodic boundary conditions (PBCs), as they are
frequently used for numerical calculations, one can construct
experimentally in one spatial dimension annular geometries
[2,3]. In two dimensions PBCs are not realizable experimen-
tally, because PBCs in two dimensions correspond to a torus,
the surface of which is rather impractical to do, for example,
well controlled convection experiments on.

Neumann boundary conditions correspond physically to
zero flux boundary conditions, for example for the concen-
tration in mixtures. Dirichlet boundary conditions correspond
for an envelope equation to a vanishing value of the enve-
lope, A, at the end of a quasi-one-dimensional box, as they
will be discussed in the following: A=0. This is, for ex-
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ample, in many cases the appropriate boundary condition for
the velocity of a fluid, simple or complex, at the end of the
container.

Previous work on dissipative solitons in the cubic-quintic
CGL equation has concentrated mostly on PBCs and, to
some degree, on Neumann boundary conditions [66,69,70].
Significant changes have been found for the properties of
dissipative solitons when going from PBCs to Neumann
boundary conditions, in particular for propagating pulse und
holelike solutions.

For binary fluid convection there has been a considerable
amount of work by Cross for a combination of Neumann and
Dirichlet boundary conditions to capture the reflection of
waves at the end of the container for binary fluid mixtures
thus allowing for the stabilization of localized patches of
convection in the vicinity of either boundary [71].

The paper is organized as follows. In the next section we
describe the model and the numerical technique used. In Sec.
III, we describe our results followed in Sec. IV by a discus-
sion and conclusions.

II. MODEL

We investigate the complex subcritical cubic-quintic
Ginzburg-Landau equation in one spatial dimension,

IA = pA + (B, +iB)IAIPA + (v, + iv)|Al*A + (D, +iD))d, A,
(1)

where A(x,?) is a complex field. In writing down this equa-
tion we have already transformed into the moving frame. To
guarantee saturation to quintic order, 7, is taken to be nega-
tive, while 3,>0 to have a weakly inverted bifurcation. The
diffusion coefficient, D, is assumed to be positive. In the
spirit of an envelope equation, the fast spatial and temporal
variations have already been split off when writing down the
envelope equation. To compare with measurable quantities
such as, for example, temperature variations in fluid dynam-
ics, these rapid variations must be taken into account
[37,38,40,72,73].

While there have been quite a few investigations of the
cubic-quintic CGL equation for periodic boundary conditions
and some for Neumann boundary conditions including a re-
cent one by the authors for Neumann boundary conditions
[70], we are not aware of any work using Dirichlet boundary
conditions. This type of boundary conditions can be expected
to be relevant experimentally, because it corresponds to the
case of vanishing modulus of the amplitude, A.

We have carried out most of our numerical studies (except
for the ones for breathing pulses, compare further below) for
the following values of the parameters [58], which we kept
fixed for the present purposes, B,.=1, 5;=0.2, y,=-1, ¥
=0.15, D,=1, and D;=-0.1. We note that these parameter
values have also been used in previous studies [58,59,62].
Thus, the only parameter value that is varied in most of the
results described in the following is the distance from linear
onset, 4. As a numerical method we used fourth order
Runge-Kutta finite differencing. Typically we used N=600
points and a grid spacing dx=0.4. This corresponds to a box
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FIG. 1. (Color online) The figures show a breathing pulse in the
asymptotic regime starting with in phase localized initial condi-
tions. (a) snapshot and (b) x—¢ plot for 4000 iterations. The param-
eter values used are given in the main text.

size L=Ndx=240. The typical time step was d¢t=0.1 for non-
breathing pulses and holes and dr=0.05 for breathing pulses
and holes. For Dirichlet boundary conditions we have A(0)
=0 and A(L)=0. We will compare our results obtained for
Dirichlet boundary conditions with the ones found previ-
ously for periodic and Neumann boundary conditions.

III. RESULTS
A. Pulses

First we investigated how various types of pulselike solu-
tions are affected by Dirichlet boundary conditions when
compared to periodic or Neumann boundary conditions. It
turns out that classical fixed shape pulses, which are well
documented to exist over a large parameter interval, are
hardly affected at all by the type of boundary conditions as
long as their width is small compared to the box size chosen.

Next we investigated the case of breathing pulses as they
have been studied before for periodic boundary conditions
[49] and for Neumann boundary conditions [70]. In order to
obtain breathing pulses the linear dispersion (~D,) has to be
large enough in magnitude compared to linear diffusion
(~D,). Specifically we chose for our investigations of
breathing pulses the same parameter values as for the case of
Neumann boundary conditions: B,=3, B;=1, v,=-2.75, vy
=1, D,=0.9, D;=-1.1, ©u=-0.19, and L=240, dx=0.4, (N
=600), and the time step dr=0.05. Using in phase boundary
conditions (ICP) in the spirit of [58], we obtain asymptoti-
cally in time a breathing pulse shown as a snapshot in Fig.
1(a) and as an x—1 plot in Fig. 1(b) for 7=200 (correspond-
ing to 4-103 iterations). We note that in the case of ICP both
sides of the breathing pulse are oscillating in phase. Using
antiphase boundary conditions (ICA) in the spirit of [58], we
obtain asymptotically in time a breathing pulse shown as a
snapshot in Fig. 2(a) and as an x—¢ plot in Fig. 2(b) for
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FIG. 2. (Color online) The figures show a breathing pulse in the
asymptotic regime starting with antiphase localized initial condi-
tions. (a) snapshot and (b) x—t plot for 4000 iterations. The param-
eter values used are given in the main text.

T=200 (corresponding to 4-10° iterations). We note that in
the case of ICA both sides of the breathing pulse are oscil-
lating in antiphase. The solid thin (red) lines shown in the
snapshots for the modulus, R(x), in Figs. 1 and 2 as well as
in all the following figures correspond to the real part of the
complex field, A.

To investigate the influence of Dirichlet boundary condi-
tions on moving pulses of fixed shape it is most convenient
to start with antiphase initial conditions. Using the standard
parameter values discussed in the last section and
pn=-0.113 55 we obtain first moving fixed shape pulses of
the type shown in Fig. 3, where we present the modulus
along with the local wave vector.

Once the fixed shape pulse reaches the boundary (in the
case shown the left boundary), a static asymmetric pulse lo-
cated near the left boundary results (Fig. 4). Both, the modu-
lus and the wave vector, are static. We emphasize that a pulse
moving to the right generates a static pulse located near the
right boundary thus underscoring the preservation of the
symmetry of the deterministic equation.

To close the section on pulses, we study the influence of
Dirichlet boundary conditions on breathing moving pulses as
they have been investigated quite recently [65]. They are
generated from ICA as initial conditions and using the same
parameter values as above for breathing nonmoving pulses.
Using u=-0.0872 we obtain a moving breathing pulse as
shown in Fig. 5.

Asymptotically in time a breathing pulse near the right
boundary is obtained when the moving breathing pulse is
originally moving to the right as in Fig. 6.

B. Holes

As it was shown in [69,70], Neumann boundary condi-
tions lead to rather drastic changes for hole-type solutions, in
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FIG. 3. (Color online) The figures show a moving fixed shape
pulse starting with antiphase localized initial conditions. (a) snap-
shot of the modulus and (b) the local wave vector. The parameter
values used are given in the main text.

particular for propagating holes, when compared to periodic
boundary conditions. To investigate the case of the influence
of Dirichlet boundary conditions, which might appear to be
even more restrictive to be satisfied, we have started with
two types of localized initial conditions, namely, (ICP-ICP)
and (ICA-ICP) as plotted in Fig. 7. We note the combination
(ICA-ICA) leads to the same results as (ICA-ICP).
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FIG. 4. (Color online) The figures show the final result after a
moving fixed shape pulse reaches the boundary (in the case shown
the left boundary) giving rise to a static modulus and a static dis-
tribution of the wave vector. (a) snapshot of the modulus and (b) the
local wave vector.

026210-3



ORAZIO DESCALZI AND HELMUT R. BRAND

R(x) N
| \
05 /W
50 00" L‘Vg 200 X
05 U
-1 (@)
200

t
0

847 X (b) 184

FIG. 5. (Color online) The figures show a breathing moving
pulse prepared from ICA initial conditions. (a) snapshot and
(b) x—1 plot for 4000 iterations. We note that the x—¢ plot shows
strong subharmonic contents, in particular f/3 with f the fundamen-
tal frequency. The parameter values used are given in the main text.

To investigate by what type of an object a nonbreathing 7=
hole is replaced, we start with (ICP-ICP) initial conditions
(for the range of w for which 7 holes are generated for
periodic boundary conditions and ICP) and with (ICA-ICP)
initial conditions (for the range of w for which 7 holes are
generated for periodic boundary conditions and ICA). As a
result we obtain a compound object with a 7 hole in the
middle of the box, half of a 7-hole at each end and, in
between the 7 hole and each of the two half 7-holes at either
end, a hump. Figure 8 shows the modulus, the local wave
vector, ¢,, and the phase, ¢, for ©=-0.09. We note the sin-
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FIG. 6. (Color online) The figures show a breathing pulse near
the right boundary of the box asymptotically in time prepared from
ICA initial conditions and resulting from a moving breathing pulse.
(a) snapshot and (b) x—r plot for 4000 iterations. The parameter
values used are given in the main text.
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FIG. 7. The figures show the two initial conditions used to gen-
erate and to study hole-type solutions. (a) (ICP-ICP) initial condi-
tions and (b) (ICA-ICP) initial conditions.

gularity associated with the local wave vector for the com-
pound object containing a 7 hole.

Thus we arrive at the conclusion that by adding half of a
a hole at either end of the container Dirichlet boundary con-
ditions are compatible with a compound object having a =
hole in the center. This leads naturally to the question
whether this is also possible for 27 holes. Starting with ei-
ther (ICP-ICP) initial conditions (for the ICP range of 27
holes) or with (ICA-ICP) initial conditions (for the ICA
range of 27 holes) we obtain indeed a compound object with
a 27t hole in the center, half a 7 hole at either end and two
humps in between, but close to either boundary. This com-
pound object is shown in Fig. 9 for ©=-0.105 including the
modulus and the local wave vector. Note the absence of a
singularity associated with the local wave vector for the
compound object containing a 27 hole.

Breathing hole solutions come for periodic boundary con-
ditions in two varieties, nonmoving and propagating. For the
nonmoving breathing holes we find—in analogy to the two
cases of nonbreathing 7 and 27 holes just discussed—the
possibility of a compound object involving the breathing
hole in the center, two humps near the ends of the container
and a half 7 hole at either end. This is demonstrated in Fig.
10 for the modulus, the local wave vector and in an x—1 plot
for u=-0.0878, where we have used (ICP-ICP) initial con-
ditions and where we have investigated the range, for which
ICP gave nonmoving breathing holes for periodic BCs.

When the influence of Neumann boundary conditions was
investigated for breathing moving holes as they exist for pe-
riodic BCs, we found that these were destroyed by Neumann
boundary conditions and replaced by the spatially homoge-
neous solution for the modulus. Here, we present the corre-
sponding results for the influence of Dirichlet boundary con-
ditions. We start with initial conditions of the (ICP-ICP) type
in the range, for which in phase boundary conditions give
moving breathing holes for periodic BCs. Interestingly we
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FIG. 8. (Color online) Compound object resulting for Dirichlet
boundary conditions instead of a 7 hole for periodic boundary con-
ditions (BCs). We note that both, the modulus and the local wave
vector, are static. (a) Modulus R(x), (b) local wave vector, ¢.(x),
and (c) phase, ¢(x).

obtain as a result of the influence of Dirichlet boundary con-
ditions for ©—0.087 97 a compound state with a half 7-hole
at either end and a hump located near one end of the con-
tainer (Fig. 11). The resulting state is static with respect to
modulus and wave vector.

IV. DISCUSSION AND CONCLUSIONS

Here, we have presented the results of our studies on the
influence of Dirichlet boundary conditions on various types
of pulse and holelike solutions of the cubic-quintic complex
Ginzburg-Landau equation as they are known to stably exist
for periodic boundary conditions. In comparison to the re-
sults described before for Neumann boundary conditions (no
flux), Dirichlet boundary conditions correspond to a pinning
(fixed value zero) of the amplitude at the boundaries of the
container. Depending on the type of solutions investigated
we used four different types of initial conditions, in-phase or
out of phase localized initial conditions for the various types
of pulse solutions and either a pair of in-phase localized ini-
tial conditions or a combination of in-phase and out of phase
initial conditions to obtain the various types of hole solutions
and to study the influence of Dirichlet boundary conditions
on those.
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FIG. 9. (Color online) Compound object resulting for Dirichlet
boundary conditions instead of a 277 hole for periodic BCs. We note
that both, the modulus and the local wave vector, are static. (a)
Modulus R(x) and (b) local wave vector ¢,(x)

Several general observations emerge as an essence from
our results immediately. First of all, all propagating pulses
and holes for periodic BCs are replaced by nonpropagating,
asymmetric pulses and holelike solutions for Dirichlet
boundary conditions. A rather similar conclusion could al-
ready be drawn for the Neumann case. A second, and rather
novel, feature is associated with all hole-type solutions in-
vestigated as well as with the final state of a moving, non-
breathing pulse. In all five cases one finds either one (in the
case of a moving, nonbreathing pulse being replaced by an
asymmetric pulse located at the end of the box in the original
direction of propagation) or two half 7 holes (for the case of
the nonbreathing analogs of 7 and 27 holes as well as for
the hole solutions, which are breathing and nonmoving or
moving before approaching the end of the container) at the
end of the container to accommodate Dirichlet boundary
conditions. Clearly the prediction of half 7-holes at the end
of container is suitable for experimental tests, which one
could perform, for example. in an annulus to prepare the
state, which has, in addition, an outlet followed by a straight
section similar in spirit to accelarators in particle physics.
Here, the analog of the particles to be investigated are dissi-
pative solitons.

While there are dissipative solitons, which can adjust to
all three types of boundary conditions (periodic, Neumann
and Dirichlet) rather easily including nonmoving pulses that
are either of fixed shape or breathing, other types of dissipa-
tive solitons change qualitatively when the boundary condi-
tions are changed. One example is breathing moving pulses
as they exist for periodic boundary conditions. Here we have
demonstrated that they are replaced by breathing pulses lo-
cated near the end of the container for Dirichlet BCs. An-
other outstanding example for qualitative changes is moving
breathing holes (periodic BCs). When changing to Neumann
conditions, they are wiped out [70] and replaced by the spa-
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FIG. 10. (Color online) Compound object resulting for Dirichlet
boundary conditions instead of a nonmoving breathing hole for pe-
riodic BCs. We note that both, the modulus and the local wave
vector, are breathing. This is clearly brought out in the x—¢ plot
shown in (c) for 8600 iterations. (a) Modulus R(x), (b) local wave
vector ¢,(x) and (c) x—1 plot.

tially homogeneous solution, while for Dirichlet boundary
conditions a compound state of two half 7-holes at the end
of the container and a hump near the end of the container in
the original direction of propagation arises. Clearly it is
highly desirable to see experimental tests of our predictions.
Possible systems include autocatalytic chemical reactions,
binary fluid convection and systems from nonlinear optics
for which the cubic-quintic complex Ginzburg-Landau equa-
tion applies.

In [74], it was discussed for static and standing wave
solutions of several types of partial differential equations
how one can find solutions for Neumann and Dirichlet
boundary conditions by dividing by two the interval of cer-
tain classes of solutions satisfying periodic boundary condi-
tions. As an additional important ingredient the authors of
ref. [74] assume smooth periodic solutions of a certain peri-
odicity as they can arise, for example, for reaction-diffusion
systems, for Taylor vortex flow and for Rayleigh-Bénard
convection. In the present paper we have discussed stable
localized solutions, which are all of traveling wave nature
(for the real and imaginary part of the envelope) and thus do
not satisfy the requirements of the solutions studied in [74].
Furthermore, all the stable solutions discussed in the present
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FIG. 11. (Color online) Compound object resulting for Dirichlet
boundary conditions instead of a moving breathing hole for periodic
BCs. We note that both, the modulus and the local wave vector, are
static. (a) Modulus R(x), (b) local wave vector, ¢,(x), and (c) local
phase, ¢(x).

paper involving a m-hole or half 7 holes are not smooth. In
particular in ref. [74] the treatment of Dirichlet boundary
conditions requires the symmetry u(—x)=-u(x). The types of
solutions we consider in the article do not satisfy this sym-
metry. We would like to emphasize, that in several cases the
structure and the symmetry of the stable localized solutions
found for periodic versus Dirichlet boundary conditions are
qualitatively different. For example, a moving fixed shape
solution for the modulus (for periodic boundary conditions)
is replaced for Dirichlet boundary conditions by a nonmov-
ing pulse of a different shape and with a static modulus and
a static distribution of the local wave vector near one end of
the container as it is shown in Figs. 3 and 4. In addition,
many of the stable localized solutions presented here for Di-
richlet boundary conditions have—to the best of our
knowledge—not been anticipated even qualitatively in pre-
vious work. This includes in particular all solutions having
one or two half 7 holes at the end of the box. Therefore, it
will be most interesting to see, to what extent it will be
possible to generalize the mathematical methods presented in
[74] to the stable, localized solutions of traveling wave na-
ture studied here for Dirichlet boundary conditions.
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