
Modeling and detecting localized nonlinearity in continuum systems with a multistage transform

Paul H. Bryant*
BioCircuits Institute (formerly Institute for Nonlinear Science), University of California, San Diego, La Jolla, California 92093, USA

J. M. Nichols†

Naval Research Laboratory, Code 5673, Washington, DC 20375, USA
�Received 19 August 2009; revised manuscript received 24 November 2009; published 19 February 2010�

A general method is presented for modeling spatially extended systems that may contain a localized source
of nonlinearity. It has direct applications to structural health monitoring �SHM� where physical damage may
cause such nonlinearity and also communications channels which may exhibit localized nonlinearity due to bad
electrical contacts or component nonlinearity. The method uses a multistage nonlinear transform in order to
model the system dynamics. We discuss the application to SHM and provide a preliminary test of the method
with experimental data from a randomly shaken beam with loose bolts. We discuss the application to telecom-
munications, provide an experimental observation of symmetric nonlinearity in a “bad” electrical contact, and
provide a preliminary test of using this method to remove nonlinear echo �and thereby improve data rate� on
a telephone line used for data transmission.
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I. INTRODUCTION

A. Purpose and potential applications

The modeling and analysis of a nonlinear system possess-
ing memory is, in general, an extremely challenging task. In
this work, we present a technique for modeling spatially ex-
tended dynamical systems that are primarily linear but may
contain a localized nonlinear region. Modeling the response
of these types of systems is of importance to a number of
fields of research. In telecommunications, for example, a lo-
calized nonlinearity in a transmission line could be caused by
bad electrical contacts or by the �slight� nonlinearity of elec-
tronic components. In this case the generated nonlinear
model itself is of critical importance as it might be used not
just to detect nonlinearity but also to correct signals for the
resulting nonlinear distortion or nonlinear echo, leading to an
improvement in data rate. In structural health monitoring
�SHM�, localized physical damage to a structure, such as a
ship’s hull, is often modeled as a localized nonlinearity �1,2�.
Forecasting the evolution of the damage is predicated on
one’s ability to reliably detect and characterize the nonlinear-
ity. In aeroelasticity, localized free-play nonlinearities can
cause instabilities that result in degraded performance or
even system failure �3�. There are likely to be other applica-
tions as well. In addition to presenting the theory, we give
experimental results for a simple structural test system, a
shaken beam with loose connecting bolts. The method is
demonstrated to be a reliable detector of bolt loosening. Fol-
lowing the SHM results, more details are provided on how
the method can be applied to improve the data rate of tele-
communication systems, and some experimental results are
given demonstrating the removal of nonlinear echo in a
transmission line. We also provide an experimental observa-
tion of symmetric nonlinearity in a bad electrical contact and

briefly discuss the physics involved. Based on these example
systems, it should be straightforward to apply the method to
other cases that may be of interest to the reader.

B. Background for the application to damage detection

Structural systems are often subjected to an input �driv-
ing� sequence described by a random process, i.e., are sub-
ject to random vibrations. SHM is a field of study that seeks
to measure these response vibrations and use them to infer
something about the “health” of the structure �e.g., damaged
vs undamaged�. Because structural damage will often mani-
fest as a nonlinearity, any approach that can detect nonlin-
earity using response vibration data is an excellent candidate
for damage detection. Researchers in the SHM field have
increasingly relied on the linear or nonlinear distinction in
designing damage detection strategy �2,4–6�.

Most nonlinearity detection strategies focus on the funda-
mentally different ways in which linear and nonlinear sys-
tems act on an input. For nonlinear systems, a stationary
jointly Gaussian input will typically result in a highly non-
Gaussian response, thus any proposed modeling technique
must be capable of capturing this effect. Linear systems, on
the other hand, are unable to generate statistical moments in
the response that are not already present in the input. They
will, however, frequently introduce “memory” or autocorre-
lation to an input signal. These basic properties of linear and
nonlinear systems are the basis for much of the literature in
“nonlinearity detection” when analyzing random processes.
The surrogate data method, for example, tests whether the
data are consistent with the response of a linear system to a
stationary input characterized by an autocorrelation function
and a possibly non-Gaussian marginal distribution �7–10�.
All other detected statistical properties are assumed to result
from nonlinearity acting on the input and their presence is
therefore an indicator of nonlinearity.

C. Outline of the method (for all applications)

Rather than focus on detecting deviations from linear sys-
tem behavior, this work is aimed at creating a generic non-
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linear model of the system response. The model we propose
for this type of system takes the form of a multistage time-
domain �TD� transform �11� approximated as a multistage
map �MSM�, configured as shown in Fig. 1. The linear stages
are “memoried,” i.e., they have dependence on previous time
steps, while the nonlinear stage has little or no memory. Un-
less stated otherwise, we will assume in the following analy-
sis that the nonlinear stage is memoryless and one dimen-
sional. In some cases, the “self-interaction” or “feedback”
stage B4 may be small and therefore omitted from the model,
at least in first approximation. Note that these maps are just
discrete time approximations to linear and nonlinear TD
transforms and the theory could just as easily be presented in
that form. The discrete form, however, is what is needed in
practice since data from a real physical system will be in the
form of time series sampled at some finite time step. As will
be discussed in more detail below, we typically choose to
represent the linear stages in the form of a finite impulse
response �FIR� filter, and the nonlinear stage as a simple
power series.

II. THEORY (FOR ALL APPLICATIONS)

A. Derivation of the model

We will now show how the model of Fig. 1 can be derived
if we know in precise detail all characteristics of the system.
The purpose of this exercise is to show that the system can
be represented by a model with the indicated structure. In
practice we will not need to know these characteristics but
rather we will start with the general model and use an opti-
mization procedure to fit it to data from a particular system.

We will assume that the nonlinear element has some char-
acteristic, a nonlinear function, that typically relates an ap-
plied “force” F�t� to a “response” R�t�. The response, for
example, could be the �reversible� bending of metal in the
vicinity of a crack, or the amount of current flowing through
a bad electrical contact. We will also assume that this ele-
ment is embedded in an extended system that is otherwise
linear and that the system is driven by one or more, known or

measured, input signals. We will also assume that we are
monitoring the system dynamics at some location to produce
what we call the target signal.

To obtain the model, the first step is to freeze the nonlin-
ear element, i.e., set R�t�=0 for all forcing values. In the case
of the bad contact, this would mean breaking the connection
at that point so that no current would flow. The system would
then be entirely linear, and if we have complete knowledge
of the system we should be able to determine the exact ex-
pressions for two particular linear TD transforms �11�. The
first transform generates the signal arriving at the target site
as a function of the input signal�s�. This transform is stage A
in the model. The second generates the applied force that
appears at the nonlinear site as a function of the input sig-
nal�s�. This transform is stage B1 in the model. It is sufficient
for our purposes to know that these linear transforms exist.

The second step is to set all inputs to zero amplitude and
also to force the response of the nonlinear element to follow
any function of time R�t� that we wish �regardless of the
force F�t� actually applied to it�. As before, we have a driven
linear system but with the drive signal now coming from the
site of the nonlinear element. Again we can calculate two
linear transforms of the drive. The first again generates the
signal arriving at the target site. This transform is stage B3 in
the model. The second is a self-interaction, which generates
the applied forcing F�t� at the nonlinear site. This can be
broken into two components. The first is an “immediate”
self-interaction that is directly proportional to the drive sig-
nal. The second component is a “delayed” self-interaction,
which in some cases might be thought of as the response
signal traveling �as a wave� away from the site of the non-
linear element and then being reflected back to it by some
interaction with the linear environment. This delayed self-
interaction is the feedback stage B4.

What remains is to understand how the nonlinear element
is modeled by stage B2. We assume that we explicitly know
how the net forcing FN is related to the response R as some
function g� �, i.e., FN=g�R�. In responding to an applied
force F there may be an additional force from the immediate
self-interaction which, since it is linear, can be expressed as
�R, where � is some constant. �We will show this explicitly
when discussing the telecommunications application.� Thus
the applied force is related to the response by the function
h� � defined as

F = h�R� = g�R� − �R . �1�

Letting h−1� � represent the inverse of the function h� �, we
can express the response as a function of the applied force:

R = h−1�F� . �2�

The function h−1� � defines the nonlinear stage B2.
In our analysis, we have treated the nonlinear element as

though it was an active component, i.e., as though it moni-
tors the input forcing F�t� and then uses a nonlinear function
to calculate an output R�t� with which to drive the system.
But, there is no difference in effect between the actual non-
linear element and this imagined active version. The analysis
is also valid for a true active element, one which might be
capable of generating interesting dynamics including chaos.

FIG. 1. Multistage map consisting of a linear map A in parallel
with a nonlinear map B, which is itself made up of four stages.
Inputs and outputs are assumed to be scalar time series except for
rn, which could optionally have more than one dimension, possibly
sampled at more than one location. The linear stages have memory
and therefore depend on previous time steps, while the nonlinear
stage, B2, is either memoryless or has very limited memory. The
combination of A and B is a model for a localized nonlinearity in a
spatially extended linear system. The multistage map is an approxi-
mation to a multistage TD transform �11�.
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B. Applying the method

In order to utilize this method, it is necessary to have
available at least two time series data sets sampled simulta-
neously at different locations on the system of interest. These
could be the measurements of some physical property or
properties, such as the strain, acceleration, pressure, voltage,
etc. Optionally some of these time series could represent the
undistorted ambient or applied vibrations. The method in-
volves the generation of both linear and nonlinear TD trans-
forms �approximated as memoried maps�, using one �or pos-
sibly more� time series, rn, as input�s� and optimizing these
mappings to minimize the difference between the map output
and a measured time series, sn, which we will call the target.
An error measure M is needed to quantify the fit of the
mapping output zn to the target series. The mapping will be a
function of a large number of parameters �to be described
shortly� and can therefore be written zn����. Defining qn����
=zn����−sn, our typical choice of error measure �or cost func-
tion� is the error variance �12�:

M���� =
1

N − 1��
k=0

N−1

qk+kS
����2 −

1

N
��

k=0

N−1

qk+kS
�����2	 , �3�

where kS is the starting index and N is the number of points
to be included. Under the assumption that the corrupting
noise on the measurements is independent and identically
distributed �iid� Gaussian, minimization of Eq. �3� gives a
maximum likelihood estimate of the mapping parameters �� .
The optimization problem to be solved can be stated

min
��

M���� . �4�

Note that M���� could be expressed as a mean square error
rather than an error variance, but use of the variance will, in
many cases, eliminate the need for constant coefficients in
the mapping stages. Also in many cases, the data can be
“demeaned” provided that the mean value is not subject to
change since such change could lead to a rebiasing of the
nonlinear element. If desired, an appropriate constant param-
eter can be added to the combined map output after optimi-
zation is completed so that the mean of the output will match
the mean value of the target. The available data may be bro-
ken up into training data and testing data, with different start-
ing indices.

When used to detect nonlinearity, there must be a way to
compare accuracy of the fit of the linear mapping with that of
the nonlinear mapping. Our preferred form for the linear
mapping �map A� is that of a FIR filter:

un = �
i=1

NI

�
k=0

DAi−1

ai,kri,n−k+kAi
, �5�

where NI is the number of input data sets being used �the
sum over i may be omitted if NI=1�, ai,k is set of adjustable
coefficients, and kAi is an offset for the index of the input
time series ri,n. The number of terms in the sum over k is
often called the number of taps of the filter, which in this
case is DAi. We want to optimize the values of the coeffi-
cients to generate a map which minimizes our error measure

M���� �with zn=un when optimizing the linear mapping by
itself, i.e., with map B turned off�. The resulting map pos-
sesses memory in the sense that each output value depends
on more than one input time step. If any of the offsets kAi are
positive, the mapping will be acausal, which may be accept-
able if ri,n is not a true input to the system �as discussed
below�. When optimizing just over the coefficients ai,k, the
problem has an exact solution and can be reduced to a set of
n linear equations in n unknowns where n is the total number
of filter taps �i.e., n=�i

NIDAi�. Thus we can be sure that there
is no linear mapping �for equivalent inputs� that can do bet-
ter.

For the application to damage detection, the essence of
the method is to run a nonlinear memoried mapping in par-
allel with the linear mapping so determined, which acts on
the same set or a subset of these index values, and see if we
can achieve any improvement in the error measure. The com-
bined output of the linear and nonlinear maps is now used to
calculate the error measure. If we can achieve any significant
improvement through the addition of the nonlinear mapping,
we then have strong evidence of a nonlinear process in the
structure which, for this application, is indicative of struc-
tural damage.

Note that the nonlinear mapping �map B� could be imple-
mented as a discrete Volterra series expansion, but the num-
ber of adjustable coefficients in such an expansion can in
some cases be extremely large �see Sec. III�. Instead we may
choose to use the multistage map of Fig. 1, which results in
a much smaller number of coefficients, and is much faster to
implement.

Consider the case where the �one or more� input data sets
are just measurements at certain locations and not true input
signals. This may be of importance in the SHM application,
where it may be difficult to measure the input signals di-
rectly. If these locations are relatively far from the site of the
nonlinear element, then one might argue that the true inputs
are approximately some linear transform of these proxy in-
puts. These transforms could therefore be incorporated into
the transforms of stages A and B1 and the resulting MSM
model would use these proxy input signals.

As will be demonstrated in a structural test system, the
above-described model is able to adequately capture and
quantify the influence of the nonlinearity acting on the input
signal and thereby deduce the presence and severity of dam-
age. Note that in cases where an input and/or target location
is very close to the site of the nonlinearity, the corresponding
linear stage may not be needed, but typically we would not
know in advance where the nonlinearity will appear. A likely
method for damage detection would be to continually pro-
cess data using various combinations of neighboring sensors
looking for a significant rise in nonlinearity above the back-
ground level.

The input stage �B1� can be approximated as an FIR map:

wn = �
i=1

NI

�
k=0

DB1i−1

bi,kri,n−k+kBi
, �6�

where bi,k is set of adjustable coefficients, DB1i is the number
of taps, and kBi is an index offset which may be different

MODELING AND DETECTING LOCALIZED NONLINEARITY… PHYSICAL REVIEW E 81, 026209 �2010�

026209-3



from kAi. We may choose nonlinear stage �B2� to be a memo-
ryless power series:

xn = �
k=1

P

ck�wn + vn�k, �7�

where ck is set of adjustable coefficients and vn is the output
of the optional feedback stage B4 �discussed below�. Note
that one could choose to include only certain powers, such as
odd or even �related to the symmetry of the nonlinearity�. In
some cases one might wish to use a weakly memoried non-
linear stage that depends on a small number of previous time
steps. Certain types of nonlinear stages, e.g., a bilinear func-
tion, might require an input biasing coefficient. The power
series �with no missing powers� will not need a bias, as such
a bias could be absorbed by suitable coefficient changes. The
output stage �B3� may be approximated as another FIR map:

yn = �
k=0

DB3−1

dkxn−k. �8�

In cases where delayed self-interaction of the nonlinear com-
ponent plays a significant role we may include the optional
linear feedback stage �B4�:

vn = �
k=1

DB4

ekxn−k. �9�

Note that we start the sum with k=1 to ensure that this stage
is strictly causal.

The combined structure with output zn=un+yn is shown
in Fig. 1 with rn representing the �one or more� input data
sets. The entire parameter vector for the nonlinear mapping
therefore includes bi,k, ck, dk, ek, and possibly the index off-
sets kBi. These parameters are adjusted in order to minimize
the cost function �3�. The sampling rate, the maximum power
of the nonlinear stage and the number of taps used in the
linear stages must also be chosen, but here one must consider
the trade-off between the complexity of the model and the
accuracy of the result. The coefficients of the parallel linear
stage �and hence its output set un� may be held fixed during
this process or they could be reoptimized simultaneously
with those of the nonlinear mapping. Simultaneous optimi-
zation may be more critical for applications where the model
itself is used, such as for telecommunications, than for appli-
cations where the main purpose is the detection of nonlinear-
ity, such as for SHM. Care should be taken to ensure that the
input to the nonlinear map �B� is restricted to the taps uti-
lized by the parallel linear map �A�. as this will make the
detection process immune to false positives for nonlinearity.

The full nonlinear map B depends nonlinearly on its co-
efficients and therefore requires the use of an optimization
algorithm. There are several good choices �13,14� including
the Powell “direction set method,” the Brent method �a vari-
ant of Powell� and the Broyden-Fletcher-Goldfarb-Shanno
�BFGS� “quasi-Newton method” with numerically deter-
mined derivatives. We have a slight preference for the Brent
method. Nonlinear optimization problems like this can be
susceptible to getting stuck in a local minimum although this
has not been a major problem. Note that the initial values for

the coefficients should be chosen so that the initial output yn

will be exactly zero. This will ensure that M���� will never be
larger that it was for map A alone.

When the purpose is nonlinearity detection, we note that
the error measure, being essentially a mean square ampli-
tude, may in some cases be considered to be a kind of mea-
sure of the vibrational power of the signal it is based upon.
�This would seem reasonable for the case of the strain mea-
surements which we give in our experimental results below.�
After first optimizing the linear mapping �A� and then the
parallel nonlinear mapping �B� we are immediately presented
with three quantities: the power, PO, of the original target
time series, the residual power, PL, after a linear correction
and the residual power, PN after both linear and nonlinear
corrections were applied. The fraction of the power removed
by the linear map A is

�L = �PO − PL�/PO, �10�

and the fraction of power removed by the addition of the
nonlinear map B is

�N = �PL − PN�/PO. �11�

Nonlinearity and possible damage is indicated when �N goes
up and/or �L goes down.

C. Optimization in the frequency domain

In some cases there may be an interest in optimizing the
performance of the model for some particular range of fre-
quencies. One way to accomplish this is to divide zn, the
output of the MSM, into groups of consecutive time steps
and perform a Fourier transform on each group and compare
this to the corresponding transform for the target time series
sn. The error measure M����, previously defined by Eq. �3�,
can be redefined as the mean square difference between the
corresponding values obtained by discrete fast Fourier trans-
forms. The contributions to M���� can be limited to a fre-
quency band of interest or they can be weighted by fre-
quency according to the level of importance. Frequency
domain optimization is definitely an option for the telecom-
munications application �discussed below� because the trans-
mitted data for this case is typically coded into the signal in
the frequency domain. Thus it is critical for the model to
work well at those frequencies which are being used to trans-
mit data, at not so important at other frequencies.

III. EXPERIMENTAL RESULTS FOR DAMAGE
DETECTION

The experimental structure to which we applied the theory
is a composite beam measuring 1.219 m in length by 17.15
cm in width and 1.905 cm in thickness. The beam was bolted
at both ends to two steel plates using 4�1.9-cm-thick bolts
measuring 8.9 cm length. Each of the bolts are Strainsert
instrumented bolts capable of measuring axial force. The
composite material utilizes a quasi-isotropic layup consisting
of �0/90� and �+ /−45� 24 oz knit EGlass fabric. Excitation
was provided by means of a MB Dynamics �PM50a� elec-
trodynamic shaker, coupled to the mid-span of the beam
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through a thin aluminum rod. Between the rod and the beam
is an Sensotec Model 31 load cell for recording the input
signal. Note that the load cell interacts with the beam dynam-
ics and thus is not a pure input signal.

The vibrational response of the structure was measured at
five separate locations, as shown in Fig. 2, at a data rate of
1951 Hz. using a fiber optic strain sensing system with fiber
Bragg gratings �FBGs� as the sensing element.

In addition to the fully tightened state, we analyzed data
from three “damaged states” involving the loosening of both
bolts connecting one end of the composite to the steel: finger
tight, small gap �the nut holding the bolt in place is loose but
the bolt is still firmly held in the bolt holes�, and large gap
�the nut is loose and the bolts were loosened in the holes�.
The damage constitutes a localized nonlinearity in the fol-
lowing sense: at all other locations, the beam is characterized
by a stiffness parameter that is approximately constant over
the range of motion to which the system is subjected, but at
the site of the loose bolts, the stiffness is dependent on bend-
ing. When the beam is unbent at that site, the bolts will be in
a “slack” state and so the stiffness will be very small or zero.
But when the beam is significantly bent in either direction at
that site the bolts will engage and the stiffness will return to
near its normal value. Thus the governing equations will only
be nonlinear at that location.

In order to generate the response signals, we applied 30 s
of dynamic loading and recorded the structural response
from all five FBGs as well as the excitation �using a load
cell�. The dynamic loading was chosen to conform to a ran-
dom process described by the Pierson-Moskowitz frequency
distribution for wave height in order to mimic the type of
loading this component would be subject to on a ship struc-
ture.

We used 38400 data points as training data and 6400 as
testing data. We tried a variety of input and target combina-
tions and also a variety of control parameters. In virtually all
cases we could strongly detect the nonlinearity produced by
the “big gap” and “small gap.” For most combinations we
were also able to reliably detect the “finger tight” case. We
ran some tests with kA=kB=0, DA=39, DB1=DB3=20, and
P=3 �which requires a total of 82 adjustable coefficients
compared to 11479 for the equivalent Volterra map �15��.
Results are shown in Table I. In the first case, we used the

load cell as the input and sensor 1 as the target. The dramatic
increases in �N compared to the fully tight result clearly
identifies all of the loose bolt trials, including finger tight, as
nonlinear and therefore as probably damaged. Switching the
input and target we again can clearly identify the nonlinear-
ity including the difficult finger tight case. Note that some
configurations have a higher background nonlinearity �the
tight result� than others—this does not appear to be noise,
but rather an unknown source of nonlinearity, possibly some
slight beam damage or a defect in the sensors. The last two
cases, which use sensor 2 as the target, show a smaller re-
sponse to the big gap than to the small gap. One possible
explanation is that the nonlinear signal is weak at some lo-
cations and strong at others and that these locations change
with gap size. The ability to detect the damaged state appears
to be at least comparable to the surrogate method used in
Ref. �5� which examined data from the same experimental
system. We plan to make more detailed comparisons in fu-
ture studies.

IV. TELECOMMUNICATIONS APPLICATION

A. Bad electrical contacts

We now return to the telecommunication application. In
addition to the �slight� nonlinearity of electronic compo-
nents, a common source of nonlinearity in such systems is
bad electrical contacts, which may occur where there are
splices in a long transmission line. Since we do not know of
a good reference on this topic, we will discuss it briefly here.
There are at least two mechanisms that can result in such
“non-ohmic” behavior which are related to solid state de-
vices which have been extensively studied. Specifically,
these devices are metal oxide metal �MOM� diodes �16,17�
and metal-metal point contact diodes �18,19�. MOM diodes
are also referred to as metal insulator metal �MIM� and metal
barrier metal �MBM� diodes.

In MOM diodes the dominant conduction mechanism is
quantum tunneling of electrons through the thin oxide layer.
The oxide layer does not have to be very thick and thus
could form naturally in electrical contacts that are exposed to
the air. The expected nonlinear behavior in this tunneling
case is relatively high resistance at zero voltage, which de-

FIG. 2. �Color online� Composite beam, showing sensor
locations.

TABLE I. Nonlinear power fraction, �N, obtained for various
bolt conditions. Other than the fully tight case, these represent vary-
ing degrees of damage. Columns labeled input and target list the
sensor numbers from which the corresponding time series were
taken �with L used to represent the load cell output�. Note that all of
the “damaged” cases are significantly more nonlinear than the fully
tight case, i.e., the damage has been successfully detected by the
analysis.

Input Target
Fully tight

�%�
Finger tight

�%�
Small gap

�%�
Big gap

�%�

L 1 0.070 0.650 10.100 19.100

1 L 0.035 0.460 2.630 5.200

3 2 0.159 2.270 5.030 1.980

5 2 0.388 1.310 6.830 2.180
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creases somewhat as the voltage increases. In metal to metal
point contacts, the nonlinearity comes about when the diam-
eter of the contact area between the two bulk conductors is
comparable with or smaller than the mean free path of the
electrons in the metal. The nonlinearity in this case may be
due to an inelastic electron-phonon scattering mechanism
and is sometimes referred to as nonlinear spreading resis-
tance. The energy dependence of this effect leads the resis-
tance to exhibit the opposite type of nonlinear behavior, i.e.,
it increases as the voltage increases. Expansion and contrac-
tion due to thermal cycling of an electrical contact with the
weather can lead to a poor connection where these types of
nonlinear effects may occur.

In Fig. 3 we show a simple test system consisting of a
contact between a slightly tarnished alligator clip and a piece
of copper wire. As shown in Fig. 4 this simple system is
found to exhibit both kinds of nonlinear behavior depending
very sensitively on the exact positioning of the contact. Ini-
tial resistance in these nonlinear cases is typically in the
range of 5–80 �, with the higher values tending to be as-
sociated with the tunneling type of behavior. Wire to wire
contacts were also found to show such nonlinear effects.

B. Equalization and echo cancellation

There are at least two ways in which our method could be
used in telecommunications. In the first, it could be used as
an enhancement of the usual “equalization” process that is
applied to a transmitted data signal after it is received. This
would normally correct for memoried linear effects of the
line, using, for example, a FIR map such as that of the par-
allel linear stage A in Fig. 1. �Note that in this case the
desired coefficients for the map are actually those that effec-
tively invert the impulse response of the transmission line.�
The appropriate coefficients could be obtained by a training
process using a known test sequence transmitted on the line.
By adding the nonlinear map B, we now have the possibility
of also correcting for a nonlinear contact �or any other non-
linear element� in the line if one exists. Note that the correc-
tion does not have to be perfect, only good enough to result
in an improvement in the maximum data rate that the line
will support. A second way that the method can be used is to
improve what is known as echo cancellation. Often data are
transmitted simultaneously in both directions on one trans-
mission line. This is the case with digital subscriber line
�DSL�, which is the method commonly used to transmit data

at high speeds over ordinary telephone lines, which consist
of twisted pairs of wires. Telephone lines, which may be
quite old, will often contain nonlinear bad contacts. If there
are any reflections of the outgoing signal at some point in the
line, these will combine with the incoming signal and will
act as noise, reducing the maximum data rate that is possible
for that signal. The purpose of echo cancellation is to use the
known outgoing signal to drive a digital filter which has been
trained to generate a model of the expected echo. This is
done in real time and subtracted from the incoming signal to
remove the actual echo from it.

We now show explicitly, for the case of echo cancellation,
how to derive the multistage nonlinear model of Fig. 1, fol-
lowing the discussion of Sec. II A. As before, the purpose of
this exercise is to show that the system can be represented by
a model with the indicated structure.

Assume that there is a single nonlinear contact in one of
the wires of the twisted pair transmission line. The system
can be described by three parts: the transmission line up to
the contact, the contact itself, and the transmission line from
the contact to the end of the line. The contact will be treated
like a nonlinear resistance, RX. The voltage VX across RX

FIG. 3. �Color online� “Bad electrical contact” formed by touch-
ing a copper wire to the top of a slightly tarnished alligator clip
�20�.

FIG. 4. �Color online� Two nonlinear I-V characteristics ob-
tained from the contact of Fig. 3 by positioning the wire at different
locations on the clip. Note that the curves are highly symmetric.
The behavior is extremely sensitive to contact positioning or move-
ment. Other cases �not shown� yield “normal” �linear low resis-
tance� contacts as well as additional nonlinear cases. �a� The “anti-
saturating” type, where resistance decreases with voltage. This case
may be a result of tunneling through a thin oxide layer which is the
mechanism of a MOM diode. �b� The “saturating” type, where re-
sistance increases with voltage. This case may be exhibiting non-
linear spreading resistance associated with a metal-metal point con-
tact of very small cross section.
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corresponds to the “force” F discussed in Sec. II A and the
current IX through it corresponds to the “response” R. The
I-V characteristic of this element is the function g� �. We will
assume that the line can be characterized approximately by a
line resistance R0.

Following the first step in the discussion of Sec. II A, we
freeze the nonlinear element so that the current through it is
zero. If the line is otherwise ideal and nondissipative then the
incident signal Vi�t� arriving at RX is simply a delayed ver-
sion of that which entered the line at the source. In reality of
course, the line will have attenuation and other linear effects
and it is the function of stage B1 to model these effects.
Since the contact is frozen we know that an incoming signal
should be completely reflected at that point and the sum of
the incoming and reflected signals will have double the am-
plitude of the incoming signal alone. Thus the output of stage
B1 will be 2Vi as this is the effective contribution of this
incoming signal to the forcing of the nonlinear element. Any
linear “reflections” occurring within the first section of the
transmission line and returning to the input �including the
linear reflection occurring at the site of the nonlinear ele-
ment� are modeled by the parallel linear stage A, whose out-
put constitutes the linear contribution to the echo.

Since the response of the nonlinear element is a current,
the second step in the discussion of Sec. II A is to replace the
contact with a current source IX�t�. This current source is
effectively driving two transmission lines: one returning to
the input and the other going on to the far end of the line.
Due to the line resistance, a voltage drop of −2R0IX�t� will be
generated and this will be added to the voltage generated by
any incoming waves. This is the “immediate self-
interaction,” and therefore the coefficient � is given by

� = − 2R0. �12�

Using this value in Eq. �1� and taking the inverse, we can
obtain the function h−1� � that defines the nonlinear stage B2.

IX�t� also determines the transmitted wave Vt�t� and the
�nonlinear� reflected wave Vr�t�. In some cases, it may be
reasonable to assume that neither of these waves is reflected
back to the nonlinear element, in which case we can imme-
diately calculate the starting amplitude of these waves, i.e.,
IX�t�R0 and −IX�t�R0, respectively. For echo cancellation, the
reflected wave is the one of interest. It will pass backward
through the first section of the transmission line to reach the
input point. This is a linear process which is modeled by the
linear stage B3 and depends solely on the properties of this
section of the transmission line. The output of this stage
constitutes the nonlinear contribution to the echo.

If we wish to include reflections of these waves which
arrive back at the contact point, i.e., Vtr�t� and Vrr�t� which
are the reflections of Vt�t� and Vr�t�, respectively, the prob-
lem becomes considerably more complicated because some
of the current IX�t� corresponds to contributions from these
incoming waves. However, it is still a linear problem, i.e., a
current source at the contact site driving a linear system.
Thus all of these waves �Vt�t�, Vr�t�, Vtr�t�, and Vrr�t�� must
be linear TD transforms �11� of IX�t�. They will depend on
the properties of the sections of the line through which they
pass. When these two extra waves are included, the model

will have a feedback stage B4, otherwise it will not. Since
waves incident at a current source will be reflected, their
amplitudes will be doubled, and since Vtr�t� approaches the
contact from the rear, the output of stage B4 will be
2Vrr�t�−2Vtr�t�. Note that after being re-reflected these
waves are incorporated into the waves Vt�t� and Vr�t� that are
leaving the contact site.

Now that we have shown that the MSM model is appro-
priate for this problem, we can proceed to optimize the
model. First transmit a known outgoing signal on the line
with no incoming signal present, and simultaneously capture
any resulting echo. Then find a set of coefficients for the
model such that when used to process the known output
signal it minimizes the error measure M���� in modeling the
echo. This model with the calculated coefficients is then the
desired echo canceller to be driven by the real transmitted
signal. The modeled echo would be subtracted in real time
from the real incoming signal.

C. Experimental results

In Fig. 5 are shown some preliminary echo canceller re-
sults. The data were taken from a test run on a working
telephone line with a suspected bad contact in the line. This
was a single ended test, run from the user’s end of the line.
An “upstream” signal was transmitted on the line, while si-
multaneously capturing any incoming reflected signal. The
signal generated was of the type used in asymmetric digital

FIG. 5. �Color online� Nonlinear echo of an ADSL signal in a
working telephone line with a suspected bad electrical contact. �a�
Uncorrected nonlinear echo. �b� Remaining echo after nonlinear
echo cancellation using the method described in this paper. �c�
Background noise level with no signal on the line. The upstream
signal is in channels 6 through 31 �not shown�. The echo has com-
ponents in the downstream band �channel 32 and above� due to
mixing of the upstream frequencies at a nonlinear contact in the
line. Linear echo cancellation has no effect on the nonlinear echo.
The frequency of a channel is obtained by multiplying channel
number by 4.3125 kHz. If implemented in a modem, this reduction
in echo would lead to an increase in the maximum data rate for this
line.
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subscriber line �ADSL� �21�, which has separated upstream
and downstream bands. The full spectrum of 1.104 MHz is
broken up into 256 channels each 4.3125 kHz wide. The
transmitted signal contained random data in upstream chan-
nels 6 through 31 and contained no signal in channels above
that. However, as is seen in Fig. 5, the echo does appear to
contain significant power in the range of channels shown, 32
through 96, all of which are in the downstream band. This is
easily explained as a result of the interaction of the signal
with a nonlinear element in the line. For a cubic nonlinearity,
new frequencies are generated that are the sums and differ-
ences of any combination of three frequencies found in the
original signal. Since that signal included frequencies
through channel 31, the echo might be expected to contain
frequencies through channel 93. By generating a model and
driving it with the transmitted upstream signal, it was pos-
sible to cancel a significant portion of the echo. The analysis
used 27200 points of training data and 27200 points of test-
ing data, with a sampling rate of 2.208�106 samples /s. For
the model, the linear stages B1 and B3 used 17 taps �DB1
=DB3=17� and the nonlinear stage B2 included up to power
P=3. This model was optimized in the frequency domain
over channels 32 through 96. Offsets kA and kB were set to
zero. The parallel linear stage A used DA=33 taps, and as
expected it had no effect on the nonlinear echo. Since the

echo would look like noise added to the “real” downstream
signal, any reduction in that noise for a particular channel
will allow a higher density of information to be transmitted
on that channel. For comparison, a test run on a normal line
�not shown� yielded no nonlinear echo and no improvement
could be obtained through use of the model.

V. CONCLUSION

We have described the method of using a multistage trans-
form as a means to model the response of general continuum
systems containing a localized nonlinearity. The stages are
configured as shown in Fig. 1 and may be approximated as
memoried mappings. This method may be a useful tool to
detect damage in physical systems such as bridges and ships
where the early detection of such damage may be of great
value. As a test of the method we analyzed data from a
shaken beam with loose bolts. We plan to follow this with a
more detailed study in the near future. We have also demon-
strated with experimental results that the method may be of
value for the detection and correction of nonlinear effects in
communication channels such as those caused by bad elec-
trical contacts or by the �slight� nonlinearity of electronic
components. Such improvements would lead to an increase
in the achievable data rate. Finally, there may be other appli-
cations of the method, yet to be discovered.
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