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Discrete solitons in electromechanical resonators
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We consider a particular type of parametrically driven discrete Klein-Gordon system describing microde-
vices and nanodevices, with integrated electrical and mechanical functionality. Using a multiscale expansion
method we reduce the system to a discrete nonlinear Schrodinger equation. Analytical and numerical calcula-
tions are performed to determine the existence and stability of fundamental bright and dark discrete solitons
admitted by the Klein-Gordon system through the discrete Schrodinger equation. We show that a parametric
driving can not only destabilize onsite bright solitons, but also stabilize intersite bright discrete solitons and
onsite and intersite dark solitons. Most importantly, we show that there is a range of values of the driving
coefficient for which dark solitons are stable, for any value of the coupling constant, i.e., oscillatory instabili-
ties are totally suppressed. Stability windows of all the fundamental solitons are presented and approximations
to the onset of instability are derived using perturbation theory, with accompanying numerical results. Numeri-
cal integrations of the Klein-Gordon equation are performed, confirming the relevance of our analysis.
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I. INTRODUCTION

Current advances in the fabrication and control of electro-
mechanical systems on microscale and nanoscale bring many
technological promises [1]. These include efficient and
highly sensitive sensors to detect stresses, vibrations, and
forces at the atomic level; to detect chemical signals; and to
perform signal processing [2]. As a particular example, a
nanoelectromechanical system (NEMS) can detect the mass
of a single atom due to its own very small mass [3,4].

On a fundamental level, NEMS with high frequency will
allow research on quantum-mechanical effects. This is be-
cause NEMS, as a miniaturization of microelectromechanical
systems (MEMS), can contain a macroscopic number of at-
oms, yet still require quantum mechanics for their proper
description. Thus, NEMS can be considered as a natural
playground for a study of mechanical systems at the quantum
limit and quantum-to-classical transitions (see, e.g., Ref. [5]
and references therein).

Typically, nanoelectromechanical devices comprise an
electronic device coupled to an extremely high-frequency
nanoresonator. A large number of arrays of MEMS and
NEMS resonators have recently been fabricated experimen-
tally (see, e.g., Ref. [6]). One direction of research in the
study of such arrays has focused on intrinsic localized modes
(ILMs) or discrete breathers. ILMs can be present due to
parametric instabilities in an array of oscillators [7]. ILMs in
driven arrays of MEMS have been observed experimentally
[8-10].

Motivated by a recent experiment of Buks and Roukes [6]
that succeeded in fabricating and exciting an array of MEMS
and measuring oscillations of the resonators, here we con-
sider the equation [11]
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(2% =DA2(Pn - [1 -H COS(Z&),,I)]QDH * (pr (1)

which governs the oscillation amplitude of such an array.
Equation (1) is a simplified model of that discussed in Ref.
[12], subject to an assumption that the piezoelectric paramet-
ric drive is applied directly to each oscillator [13]. The vari-
able ¢, represents the oscillation amplitude of the nth oscil-
lator from its equilibrium position, D is a dc electrostatic
nearest-neighbor coupling term, H is a small ac component
with frequency 2w, responsible for the parametric driving,
Aso,= @01 —20,+¢,_; is the discrete Laplacian, the overdot
denotes the derivative with respect to ¢, and the “plus” and
“minus” signs of the cubic term correspond to “softening”
and “stiffening” nonlinearities, respectively. Here, we as-
sume ideal oscillators, so there is no damping present. The
creation, stability, and interactions of ILMs in Eq. (1) with
low damping and in the strong-coupling limit have been in-
vestigated in Ref. [11]. Here, we extend that study to the case
of small coupling parameter D.

In performing our analysis of the governing Eq. (1), we
introduce a small parameter e<<1 and assume that the fol-
lowing scalings hold:

D=€3C, H= 7% €3y, w,=17% e€3A/2.

We then expand each ¢, in powers of €, with the leading-
order term being of the form

Oy~ 6[%(T2, T3’ .. ')e_iTO + lzZn(TZ’T37 .. -)eiTO], (2)

where T,=€"t. Then the terms at O(€e70) in Eq. (1) yield
the following equation for ¢, (see Refs. [14,15] for a related
reduction method):

= 2igh, =3CAyp, ¥ 3yhe P2 3|y 2y, (3)

where the overdot now denotes the derivative with
respect to T,. Correction terms in Eq. (2) are
O(ee™k+1To éei’(k DTo) with k e Z*. A justification of this
rotating-wave-type approximation can be obtained in, e.g.,
Ref. [16].
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Writing ,(T5) = ¢,(T,)e=3*?"2, we find that Eq. (3) be-
comes

~ 2= CAyb, 7 A, T ¥y £ |0 (4)

Then, taking T2=§f, we find that the equation above be-
comes the parametrically driven discrete nonlinear
Schrodinger (DNLS) equation

i(.ﬁn == CA2¢n * A¢n * ’yasn + |¢n|2¢n' (5)

Here, the overdot denotes the derivative with respect to f.
The softening and stiffening nonlinearities of Eq. (1) corre-
spond, respectively, to the so-called focusing and defocusing
nonlinearities in the DNLS (5). The continuum limit of Eq.
(5), ie., ¢,~d,~CAyp,~3p, was derived in Ref. [11]
from Eq. (1) and in Ref. [17] from a parametrically driven
sine-Gordon equation.

In the absence of parametric driving, i.e., for y=0, Eq. (5)
is known to admit bright and dark solitons in the system with
focusing and defocusing nonlinearities, respectively. Discrete
bright solitons in such a system have been discussed before,
e.g., in Refs. [18-20], where it was shown that one-excited-
site (onsite) solitons are stable and two-excited-site (inter-
site) solitons are unstable, for any coupling constant C. Un-
driven discrete dark solitons have also been examined
[21-25]; it is known that intersite dark solitons are always
unstable, for any C, and onsite dark solitons are stable only
in a small window in C. Furthermore, an onsite dark soliton
is unstable due to the presence of a quartet of complex ei-
genvalues, i.e., it suffers oscillatory instability.

The parametrically driven DNLS (5) with a focusing non-
linearity and finite C has been considered briefly in Ref. [26],
where it was shown that an onsite bright discrete soliton can
be destabilized by parametric driving. Localized excitations
of the continuous limit of the parametrically driven DNLS,
i.e., Eq. (5) with C— o, have been considered by Barashen-
kov and co-workers in a different context of applications
[27-35]. The same equation also applies to the study of
Bose-Einstein condensates, describing the so-called long
bosonic Josephson junctions [36,37].

In this paper, we consider Eq. (1) with either softening or
stiffening nonlinearities, which admit bright or dark discrete
solitons, respectively. The existence and stability of the fun-
damental onsite and intersite excitations are discussed
through the reduced equation (5). Equation (5) and a corre-
sponding eigenvalue problem are solved numerically for a
range of values of the coupling and driving constants, C and
v, giving stability windows in the (C,7y) plane. Analytical
approximations to the boundaries of the numerically ob-
tained stability windows are determined through a perturba-
tion analysis for small C. From this analysis, we show,
complementing the result of Ref. [26], that parametric driv-
ing can stabilize intersite discrete bright solitons. We also
show that parametric driving can even stabilize dark solitons,
for any coupling constant C. These findings, which are ob-
tained from the reduced equation (5), are then confirmed by
direct numerical integrations of the original governing equa-
tion (1).
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The present paper is organized as follows. In Sec. II we
present the existence and stability analysis of onsite and in-
tersite bright solitons. Analysis of dark solitons is presented
in Sec. III. Confirmation of this analysis, through numerical
simulations of the Klein-Gordon system (1), is given in Sec.
IV. Finally, we give conclusions in Sec. V.

II. BRIGHT SOLITONS IN THE FOCUSING DNLS

In this section we first consider the existence and stability
of bright solitons in the focusing DNLS equation. For a static
solution of Eq. (5) of the form ¢,=u,, where u, is real val-
ued and time independent, it follows that

— CAyuy, — 12 + Au,, + yu, = 0. (6)

Once such discrete solitary-wave solutions of Eq. (5) have
been found, their linear stability is determined by solving a
corresponding eigenvalue problem. To do so, we introduce
the linearization ansatz

d)l‘l = un + 56}1’

where 8<<1, and substitute this into Eq. (5) to yield the fol-
lowing linearized equation at O(6):

i€,=— CAse, - 2|u,|’€, — u’€, + A€, + E,. (7)

Writing €,(1)=7,+i&,, we then obtain from Eq. (7) the ei-

genvalue problem
77" T )
. |=H , (8)
( &, ) ( &

H_( 0 £+(C))
S\ o )

and the operators £_(C) and £,(C) are defined by
L(C)=-CA-(Bul-A-),

where

LA(C)==-CAy=(u;—A+7).

The stability of the solution u, is then determined by the
eigenvalues of Eq. (8). If we denote these eigenvalues by iw,
then the solution u, is stable only when Im(w)=0 for all
eigenvalues w.

We note that, because Eq. (8) is linear, we may eliminate
one of the eigenvectors, for instance &,, to obtain an alterna-
tive expression of the eigenvalue problem in the form

L(OL(CO)n,= o’ n,=Q,. 9)

In view of the relation Q=w?, it follows that a soliton is
unstable if it has an eigenvalue with either 1 <0 or Im({})
#0.

A. Analytical calculations

Analytical calculations of the existence and stability of
discrete solitons can be carried out for small coupling con-
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Y <Y

FIG. 1. (Color online) A sketch of the dynamics of the eigen-
values and the continuous spectrum of a stable onsite bright soliton
in the (Re(Q)),Im(Q)) plane. The arrows indicate the direction of
movement as the coupling constant C increases. Note that a soliton
is unstable if there is some () with either 1 <0 or Im()) # 0.

stant C, using a perturbation analysis. This analysis exploits
the exact solutions of Eq. (6) in the uncoupled limit C=0,
which we denote by u,,=u(°) in which each u;o) must take

n

one of the three values given by
0, = VA+7. (10)

Solutions of Eq. (6) for small C can then be calculated ana-
Iytically by writing

u,= uflo) + Cu,gl) + C2u,(12> + o

In studying the stability problem, it is natural to also expand
the eigenvector 7, and the eigenvalue () in powers of C, as

=7+ CpV+ 0D, Q=00 +coM+0(A).

Upon substituting this expansion into Eq. (9) and identi-
fying coefficients of successive powers of the small param-
eter C, we obtain from the equations at O(1) and O(C) the
results

[£,(0)£_(0)- Q179 =0, (11)

Y <Y

\L.—»

| QL QU

Q,Q,

FIG. 2. (Color online) As Fig. 1, but for a stable intersite bright
soliton.
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FIG. 3. (Color online) The (in)stability region of onsite bright
solitons in (C, ) space. For each value of C and v, the correspond-
ing color indicates the maximum value of |[Im(w)| (over all eigen-
values w) for the steady-state solution at that point. Stability is
therefore indicated by the region in which Im(w)=0, namely, the
dark region. White dashed and dashed-dotted lines give the analyti-
cal approximations (20) and (21), respectively.

[£,(0)£_(0) = QO = £, 70, (12)
where

fo= A+ 20U ) £_(0) + £,(0)(A, + 66 VuV) + QO
(13)

In the uncoupled limit, C=0, the eigenvalue problem is thus
simplified to

QO=£,0£.(0), (14)

from which we conclude that there are two possible eigen-
values, given by

A=1

151 ==

0 0.02 0.04 0.06 0.08 0.1 0.12

C

FIG. 4. Comparison between the critical eigenvalues of intersite
bright solitons obtained numerically (solid lines) and their analyti-
cal approximation (dashed lines). The upper and lower curves cor-
respond, respectively, to y=0.5 and 0.1, approximated by Eq. (24),
whereas the middle one corresponds to y=0.18, approximated by
Eq. (23).
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FIG. 5. The structure of the eigenvalues of intersite bright solitons in the complex plane for three values of 7, as indicated in the caption
of each plot. Left and right panels depict the eigenvalues of stable and unstable solitons, respectively.

QP=A-p, 0 =4(A+9)y,

nn - aemn + be—lKl’l’

from which one obtains the dispersion relation

which correspond, respectively, to the solutions u,(lo)=0 (for
all n) and uﬁlo =+ A+ (for all n).

We begin by considering bright soliton solutions, for
which u,— 0 as n— = oo, This then implies that (for C=0)

the eigenvalue Q(CO) has infinite multiplicity; it generates a
corresponding continuous spectrum (phonon band) for finite
positive C. To investigate the significance of this continuous

spectrum, we introduce a plane-wave expansion

and

026207-4

Q=[2C(cos k= 1) = A]? - . (15)

This in turn shows that the continuous band lies between

when k=0, (16)
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FIG. 6. (Color online) As Fig. 3, but for intersite bright solitons.
Our analytical approximations, given by Egs. (25)—(27), are shown
as white dashed-dotted, dotted, and dashed lines, respectively.

Qy=A’-»+8C(A+2C), when k=m. (17)

From the continuous spectrum analysis above, it can be con-
cluded that an instability can only be caused by the dynamics
of the discrete spectrum.

1. Onsite bright solitons

The existence and stability of a single excited state, i.e.,
an onsite bright soliton, in the presence of parametric driving
have been considered in Ref. [26]. For small C, the soliton is
given by [26]

VA +y+CINA+y+0O(C?, n=0
u, =\ CINA + y+O(C?), n=—1,1(18)

o(C?), otherwise,
and its eigenvalue is given by
Qp=4(A+y)y+8yC+O(C?). (19)

It was shown in Ref. [26] that configuration (18), which is
known to be stable for any value of C when y=0, can be
destabilized by parametric driving. Furthermore, it was
shown that there are two mechanisms of destabilization, as

| Y <Yt

FIG. 7. (Color online) As Fig. 1, but for a stable onsite dark
soliton.
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y<05A

y>05A

2 Q,0Q, oN

FIG. 8. (Color online) As Fig. 1, but for a stable intersite dark
soliton.

sketched in Fig. 1. The two instability scenarios are deter-
mined by the relative positions of Qg)) and Q(CO), as we now
summarize. First, we note that there is a threshold value,
Yn=A/5, at which the two leading-order eigenvalues coin-
cide, so that Qg”:(l(co). For y> vy, upon increasing C from
C=0, the instability is caused by the collision of )y with
Q,; taking Q= then yields the corresponding approxi-
mate critical value

Ve == 3A = 2C+ $1V9A2+56CA +96C%.  (20)

For y<<1yy, by contrast, the instability is caused by the col-
lision of )y with an eigenvalue bifurcating from ();. In this
case, the critical value of y can be approximated by taking
Q=Q,, giving

Yerr=— A —1C+1VOA2+16C(A+C).  (21)

Together, v, and 7, , give approximate boundaries of the
instability region in the (C,y) plane.

1.1
1 \ 7
09F HH‘\“;‘\\;H” i
3 08 R
0.7t T = J
3 oessf N \\‘\\
0.6r ~ S~
0.68 = =
0042 0044 0046
C
0.5 L L L L L L L
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

C

FIG. 9. Comparisons between the critical eigenvalue for onsite
dark solitons obtained numerically (solid lines) and analytically us-
ing Eq. (41) (dashed lines) for y=0.1 (upper curves) and y=0.6
(lower curves). An approximation that explicitly includes the next
term in expansion Eq. (44) is also plotted (dotted lines).
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FIG. 10. The eigenvalue structure of onsite dark solitons for several values of y and C, as indicated in the caption of each panel.

2. Intersite bright solitons

The next natural fundamental solution to be considered is
an intersite bright soliton, i.e., a two-excited-site discrete
mode. In the uncoupled limit, the mode structure is of the
form ufqo):O for n#0,1 and u(()o):u(lo): \T-l-y Using a per-
turbative expansion, one can show further that the soliton is
given by

VA + v+ %C/\r’/A+ y+0O(C?, n=0,1
u, =\ C/INA+ y+O(C?, n=-1,2

o, otherwise.

(22)

To study the stability of the intersite bright soliton above,
let us consider first Eq. (11). Due to the presence of two
nonzero excited sites at C=0, the soliton (22) has at leading
order the double eigenvalue Qg))=4(A+ v)y, with corre-
sponding eigenvectors 775,0)=O for n#0,1, 7700):1, and 77(10>
=*1.

The continuation of the eigenvalue Qg)) above for nonzero
coupling C can be obtained from Eq. (12) by applying a
solvability condition. The Fredholm alternative requires that
f»=0 for all n, from which we immediately deduce that the

double eigenvalue splits into two distinct eigenvalues, which
are given as functions of C by

Q,=4(A + y)y+4yC+ O(C?), (23)

Oy =4(A+y)y—4(A+ y)C+O(C?). (24)

As is the case for onsite discrete solitons, intersite bright
solitons can also become unstable. The mechanism of the
instability is again determined by the relative positions of
Qf_po) and O, as sketched in Fig. 2. Performing an analysis
corresponding to that in Ref. [26], we find that the two
mechanisms of destabilization for an onsite discrete soliton
also occur here. The two scenarios have corresponding criti-
cal values of vy, which are given as functions of C by

Yer1 == A+ 2C+ 1\IA2 + 52AC+84C,  (25)
—
Ve =—3A = 3C+ V9N +8AC+4C.  (26)

We emphasize, as is apparent from the sketch shown in
Fig. 2, that there is another possible mechanism of destabi-
lization for y<<'yy,, namely, when (), becomes negative. The
third critical choice of parameter values is then obtained by
setting Q,=0, i.e.,

026207-6
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FIG. 11. (Color online) The (in)stability region of onsite dark
solitons in the two-parameter (C,7y) space. The white solid and
dashed lines, respectively, give the analytical approximations (43)
and (46). White dashed-dotted and dotted lines show Egs. (42) and
(45); note that these curves are indistinguishable in this plot.

Yer3 = C. (27)

Furthermore, by solving y,,=7v.3 we find that y:(v’ﬁ
—2)A/9, which then gives a more specific domain of y’s for
the two possible scenarios of destabilization above.

B. Comparisons with numerical calculations

We have solved the steady-state equation (6) numerically
using a Newton-Raphson method and analyzed the stability
of the numerical solution by solving the eigenvalue problem
(8). In this section, we compare these numerical results with
the analytical calculations of the previous section. For the
sake of simplicity, we set A=1 in all the illustrative ex-
amples.

1. Onsite bright solitons

Comparisons between numerical calculations and analyti-
cal approximations for the case of onsite bright solitons have
been fully presented and discussed in Ref. [26]. For the sake
of completeness, we reproduce the results of Ref. [26] for the
(in)stability domain of onsite solitons in the (C,y) plane in
Fig. 3. Approximations (20) and (21) are also shown there.

2. Intersite bright solitons

For the stability of intersite bright solitons, we start by
examining the validity of our analytical prediction for the
eigenvalue associated with the phase mode as given by Eqs.
(23) and (24). In Fig. 4, we present a comparison between
the analytical approximation and the numerics for some rep-
resentative values of 7y (specifically y=0.1,0.18,0.5). This
figure reveals the relative accuracy of the small-C approxi-
mations, and we conclude that their range of validity is wider
for smaller values of +.

Next we turn to a description of the eigenvalue structure
of this intersite configuration for the three values of y given
above; this is shown in Fig. 5, where the left and right pan-
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25
A=1

|l

0.5r b

0 0.05 0.1 0.15 0.2

C

FIG. 12. Comparisons between the critical eigenvalue for inter-
site dark solitons obtained numerically (solid lines) and analytically
(dashed lines) using Eq. (51), for two values of . The upper curves
correspond to y=0.8, and the lower ones correspond to y=0.1.

els, respectively, present the structure just before and just
after the first collision that results in the mode instability. We
now describe results in more detail for the three values of y
in turn.

For y=0.1, when C=0 the eigenvalues w lie in the gap
between the two parts of the continuous spectrum, and the
instability is caused by a collision between the critical eigen-
value and its twin at the origin (see the top panels of Fig. 5).
For y=0.18, the eigenvalues w also lie in the gap between
the two parts of the continuous spectrum, but the instability
in this case is due to a collision between one of the eigen-
values and the inner edge of the continuous spectrum at @
= =, (see the middle panels of Fig. 5). In contrast to the
two cases above, for y=0.5 the eigenvalues lie beyond the
continuous spectrum, and the instability is caused by a col-
lision between the critical eigenvalue and the outer boundary
at o=+, (see the bottom panels of Fig. 5). All the nu-
merical results presented here are in accordance with the
sketch shown in Fig. 2.

Numerical calculations of the stability of intersite bright
solitons, for a relatively large range of C and 7, give us the
(in)stability domain of the bright solitons in the two-
parameter (C,y) plane, which is presented in Fig. 6. We use
colors to represent the maximum of |Im(w)| as a function of
C and 7y; thus, solitons are stable in the black region. Our
analytical predictions for the occurrence of instability, given
by Egs. (25)-(27), are also shown, respectively, by dashed,
dotted, and dashed-dotted lines.

III. DARK SOLITONS IN THE DEFOCUSING DNLS

In this section we consider the existence and stability of
onsite and intersite dark solitons for the defocusing DNLS
equation. Then a static (real-valued time-independent) solu-
tion u, of Eq. (5) satisfies

— CAot, + 1) — Au,, — yu, = 0. (28)

In contrast to bright solitons, where u,, —0 as n— * o, dark
solitons have u,— * VA+7y as n— *+ o,

026207-7
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FIG. 13. The eigenvalue structure of intersite dark solitons with parameter values as indicated in the caption for each panel.

To examine the stability of u,, we again introduce the
linearization ansatz ¢, =u,+ d¢,, where again 6<<1. Substi-
tuting this ansatz into the defocusing equation (5), writing
€,(t)=mn,+i&,, and linearizing in &, we again find

()= 5 ) on(2)

but where the operators £ (C) are now defined as

(29)

L(C)=-CA+Bul-A-v),

L(C)=—-CAhy+ W =A+7).

The eigenvalue problem above can be simplified further as
for the focusing case to the alternative form
LAOLACO) = w7, = Q1. (30)

Performing a stability analysis as before, we find the disper-
sion relation for a dark soliton to be
Q=[2C(cos k—1) = (A +2y)]>- A2, (31)

and so the continuous band lies between

Q,=4(A+7v)y, when k=0, (32)

and

when k=1.

(33)

Qu=4A+7y)y+8C(A+2y+20),

>—
0 .
-0.2 : : 0
0 05 1 1.5
C

FIG. 14. (Color online) As Fig. 11, but for an intersite dark
soliton. The white dashed line is our analytical approximation (53).
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FIG. 15. (Color online) The spatiotemporal evolution of an onsite bright soliton governed by the original time-dependent parametrically
driven Klein-Gordon system (1), with e=0.2. The parameter values are indicated in the caption for each panel. The left and right panels show

stable and unstable solitons, respectively.

A. Analytical calculations

To study the eigenvalue(s) of the dark soliton analytically,
we again expand 7, and () in powers of C, and hence obtain
from Eq. (30), at O(1) and O(C), respectively, the equations

[£,(00£_(0)- Q5 =0, (34)
[£,(0)£_(0)- Q7D =7, (35)

with
fu=(0,+ Q)7 (36)

where

0= (8= 2u®uM) £_(0) + £,(0)(A - 6uVul)).
(37)

We next investigate the eigenvalues of both intersite and on-
site modes.

1. Onsite dark solitons

With errors of order C2, an onsite dark soliton is given by

p
_\/F’ n=-2,-3,...
—VA+y+ %C/\/A+ , n=—1

u, = 40, n=0 (38)
\/A+)/—%C/\/A+y, n=1
\\/A+'y, n=273,....
For this configuration,
Loe={ 7 n=0 (39)
T 4(A+ )y, n#O.

From Eq. (34), we then deduce that at C=0 the eigenvalues
of onsite discrete dark solitons are given by Q(CO)=4(A
+)7, which becomes the continuous band for nonzero C,
and Q0=A2—12.
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500 1000
t

(b)y=0.1,C =03

500 1000 1500
t

(d)y =0.18, C = 0.18

500 1000 1500
t

(f)y =0.5,C =0.2

FIG. 16. (Color online) As Fig. 15, but for an intersite bright soliton, with parameter values as indicated in the caption for each panel.
The initial profile in each panel corresponds to the same parameters as in Fig. 5.

The continuation of the eigenvalue Qg)) for nonzero C can
be calculated from Eq. (35). The coefficient of 7]511) in this
case is given by

0, n=0
L£.(0)£_(0)-Q© = { (40)

ANy - AN’ +59*, n#0.

The solvability condition for Eq. (35) then requires that
fo=(AA+QM) 9 9=0. Setting 7" #0, we deduce that

QW=—_4A. Hence, the eigenvalue of an onsite dark soliton
for small C is given by

QO =A%2— Y —4AC+O(C?. (41)

Initially, i.e., for C=0, the relative positions of the eigen-
value and the continuous spectrum can be divided into two
cases, according to whether y= y,=A/5. When C=0 and
Y<9Ym (¥>vy) the eigenvalue (41) will be above (below)
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FIG. 17. (Color online) As Fig. 15, but for onsite dark solitons. The parameter values are as in Fig. 10.

the continuous spectrum, as sketched in Fig. 7. These relative
positions determine the instability mechanism for an onsite
dark soliton, as we now describe.

For y<1y, the instability is due to a collision between
the eigenvalue (41) and )y, which approximately occurs
when y=1v,,,, where

Ye1=—A-3C+1JON - 28AC-16C2. (42
Note that this critical value is meaningful only when C
<9A/(14+2485). For Y>>y, the instability is caused by
the eigenvalue (41) becoming negative, which occurs when
Y= Yer2» Where

Yerz = VAZ—4AC. (43)

This value is meaningful only when C=A/4.
Furthermore, if we include terms up to O(C?), we obtain
Q=A*- 9y —4AC+6C*+0O(C) (44)
as the eigenvalue of an onsite discrete dark soliton. Using

this expression, we find the critical value of vy indicating the
onset of instability to be

Y1 =— A -SC+1JOAT_28AC+14C2,  (45)

for y<1vy and

Yera= VAT =4AC+6C?, (46)
for y= .
2. Intersite modes

Intersite discrete dark solitons are given, with errors of
O(C?), by

— A+'y’ n=—2,—3,...
—VA+y+CNA+y, n=-1
Uy = ’ ’ (47)
\/A+7—C/\/A+y, n=0
A+, n=1,2,....
Starting from Eq. (34), we then find
L(0)L(0)=4(A+p)y (48)

for all n, from which we deduce that there is a single leading-
order eigenvalue, given by Q©@=4(A+1v)y, with infinite
multiplicity. This eigenvalue then expands to form the con-
tinuous spectrum for nonzero C.
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Because a localized structure must have an eigenvalue,
we infer that an eigenvalue will bifurcate from the lower
edge of the continuous spectrum. This bifurcating eigenvalue
may be calculated from Eq. (35). Because

£90)£90)-09=0 (49)

for all n, the solvability condition for Eq. (35) requires f,
=0 for all n. A simple calculation then yields

{[4A+ 167+ QA +49)8, + QD70 n=-1,0

[2A +4y)A, + Q1V]7, n#—1,0.
(50)
Taking (0)—0 for n#—1,0 leaves the two nontrivial equa-
tions

By+ Q)7 + QA +4y)7y =0,

By+ Q)7 + QA +49)7 =

from which we see that 770)— 7760). Thus, we obtain two
possibilities for the O(C) contribution to the eigenvalue,
given by

QY =—(12y+2A), QY =2A-4y.

Hence, the eigenvalues bifurcating from the lower edge of
the continuous spectrum are given by

Q,=4(A + y)y— (12y+2A)C+ O(C?), (51)

O, =4(A +9)y+ (2A -4y C+O(C?). (52)

A simple analysis shows that ,<<(); only when vy
> A /2. The sketch in Fig. 8 then illustrates that instability is
caused by (), becoming negative. This consideration gives
the critical vy as a function of the coupling constant C to be

-
Yo=—3A+3C+3VA?—4AC+9C. (53)

When there are two eigenvalues ({2; and (),), (), decreases
more slowly than ), in such a way that for y>A/2 the
instability is still caused by (); becoming negative.
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FIG. 18. (Color online) As Fig. 15, but for an intersite dark soliton with y=0.1. The left panel shows the evolution of a stable dark soliton
with C=0.05, while the right panel shows the evolution of an unstable dark soliton with C=0.5.

(b)

B. Comparison with numerical computations

1. Onsite dark solitons

We now compare our analytical results with correspond-
ing numerical calculations. As for bright solitons, for illus-
trative purposes we set A=1.

We start by checking the validity of our analytical ap-
proximation for the critical eigenvalue associated with the
phase mode. As explained above, the change in the position
of the eigenvalues relative to the continuous spectrum at C
=0 occurs at y=1/5. Therefore, we consider the two values
y=0.1 and 0.6, representing both cases. Figure 9 depicts a
comparison between our analytical result (41) and the nu-
merical computations, from which we conclude that the pre-
diction is quite accurate for small C. The accuracy can be
improved if one includes further orders in the perturbative
expansion (44), and this improvement is shown in the same
figure by the dotted line.

The eigenvalue structure of onsite dark solitons is de-
picted in Fig. 10; left and right panels refer, respectively, to
conditions just before and just after a collision resulting in an
instability. As sketched in Fig. 7, for y<<1/5 the instability is
caused by a collision between the eigenvalue and one edge
of the continuous spectrum. On the other hand, when 7y
=1/5 the instability is caused by a collision between the
eigenvalue and its twin at the origin (see the bottom panels
of Fig. 10).

We now proceed to evaluate the (in)stability region of this
solution in the (C,7y) plane. Shown in Fig. 11 is again the
maximum of the imaginary part of the eigenvalue, together
with our approximation to the (in)stability boundary. The
white solid line represents Eq. (43), corresponding to the
instability caused by the collision with the continuous spec-
trum. Equation (42) is represented by the white dashed-
dotted line, which corresponds to the other instability mecha-
nism. In addition, white dashed and dotted lines show,
respectively, Egs. (46) and (45), where a better analytical
approximation is obtained.

An important observation from Fig. 11 is that there is an
interval of values of vy in which the onsite dark soliton is
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always stable, for any value of the coupling constant C. This
indicates that a parametric driving can fully suppress the os-
cillatory instability reported for the first time in [22].

2. Intersite dark solitons

Now we examine intersite dark solitons. First, Fig. 12
shows the analytical prediction for the critical eigenvalue,
given by Eq. (51), compared to numerical results. We see
that the approximation is excellent for small C and its range
of validity is wider for larger values of y. The eigenvalue
structure of this configuration is shown in Fig. 13 for the two
values y=0.1,0.8. The mechanism of instability explained in
the section above can be seen clearly in the top panels of Fig.
13.

It is interesting to note that a parametric driving can also
fully suppress the oscillatory instability of an intersite dark
soliton. As shown in the bottom panels of Fig. 13, there are
values of the parameter y for which no instability-inducing
collision ever occurs. The (in)stability region of this configu-
ration is summarized in Fig. 14, where we see that for any C
and y>0.3 an intersite dark soliton is always stable. Our
analytical prediction for the onset of instability is given by
the dashed line in Fig. 14. We observe that for relatively
small C, the prediction of Eq. (51) is reasonably close to the
numerical results.

IV. DISCUSSION

In the sections above we discussed the existence and the
stability of localized modes through our reduced DNLS (5).
In this section, we confirm the relevance of our findings
through solving numerically the original time-dependent
equation (1). We use a Runge-Kutta integration method, with
the initial condition ¢,=2eu, and ¢,=0, where u, is the
static solution of the DNLS (5) and € is the small parameter
of Sec. I. Throughout this section, we use the illustrative
value €=0.2.

Shown in the left and right panels of Fig. 15 are the nu-
merical evolution of stable and unstable onsite bright soli-
tons, respectively. From the top right panel of the figure, we
note that a parametric driving seems to destroy an unstable
soliton. This observation is similar to the corresponding ob-
servation for the dynamics of an unstable soliton in the
DNLS (5) reported in Ref. [26]. In the bottom right panel,
we present another case of unstable dynamics for a relatively
large parametric driving amplitude 7y, where the bright soli-
ton is seemingly still preserved but having a different oscil-
lation frequency and amplitude.

In Fig. 16 we present the numerical evolution of intersite
bright solitons for the same parameter values as those in Fig.
5, corresponding to each of the instability scenarios. From
the panels in Fig. 16, we see that the typical dynamics of the
instability is in the form of soliton destruction or discharge of
a traveling breather.
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We have also examined the dynamics of onsite dark soli-
tons in the Klein-Gordon system (1). Shown in Fig. 17 is the
numerical evolution of a solution with the eigenvalue struc-
ture illustrated in Fig. 10. The instability of an unstable on-
site dark soliton typically manifests itself in the form of os-
cillations in the location of the soliton center about its initial
position (top right panel) or oscillations in the width of the
soliton (bottom right panel).

Finally, we illustrate the dynamical behavior of an un-
stable intersite dark soliton in Fig. 18, from which we see
that the instability makes the soliton travel. This dynamics is
similar to that reported in Ref. [21].

V. CONCLUSION

In this paper, we have considered a parametrically driven
Klein-Gordon system describing nanoelectromechanical sys-
tems. Using a multiscale expansion method we have reduced
the system to a parametrically driven discrete nonlinear
Schrodinger equation. Analytical and numerical calculations
have been performed to determine the existence and stability
of fundamental bright and dark discrete solitons in the Klein-
Gordon system through the use of the Schrodinger equation.
We have shown that the presence of a parametric driving can
destabilize an onsite bright soliton. On the other hand, a
parametric driving has also been shown to stabilize intersite
bright and dark discrete solitons. We even found an interval
in y for which a discrete dark soliton is stable for any value
of the coupling constant, i.e., a parametric driving can sup-
press oscillatory instabilities. Stability windows for all the
fundamental solitons have been presented and approxima-
tions using perturbation theory have been derived to accom-
pany the numerical results. Numerical integrations of the
original Klein-Gordon system have demonstrated that our
analytical and numerical investigations of the discrete non-
linear Schrodinger equation provide a useful guide to the
behavior in the original system.

We note that by the staggering transformation ¢,
—(=1)"¢, and A — (A+4C) the DNLS (5) with defocusing
nonlinearity can be transformed into Eq. (5) with focusing
nonlinearity. This implies that, according to the reduced
equation (5), staggered bright and dark solitons can also exist
in the DNLS with defocusing and focusing nonlinearities,
respectively. It is noteworthy that such a transformation is
not immediately present in the original governing equation
(1), a situation similar to that reported in, e.g., [38]. This
seemingly paradoxical fact will be studied in a future work.
In a number of preliminary simulations, we have found that
when a staggered localized mode obtained from Eq. (5) is
used as an initial solution to Eq. (1), it proves relatively short
lived, compared to the time scale presented in the figures
herein. We also propose to study further the influence of the
higher oscillation frequency modes, which are neglected in
the derivation of Eq. (5) from Eq. (1).
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