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Sampling from scale-free networks and the matchmaking paradox
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Consider a large finite scale-free network consisting of M > 1 nodes and N> 1 links, in which the degree

distribution of links per bond is governed by a power-law P(n)=n"!

“ with exponent 0<a<1. A subset of

m<<M nodes is sampled arbitrarily, yielding the empirical sample mean #: the average number of links per
node, within the sampled subset. We explore the statistics of the sample mean # and show that its fluctuations
around the network mean v=N/M are extremely broad and strongly skewed—yielding typical values, which
are systematically and significantly smaller than the network mean v. Applying these results to the case of
bipartite scale-free networks, we show that the sample means of the two parts of these networks generally
differ—a fact we refer to as the “matchmaking paradox.”
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I. INTRODUCTION

In this work we address the problem of sampling finite
scale-free networks. Consider a network consisting of M
>1 nodes connected by N>1 links, and assume that the
distribution of the number of links per node follows a power-
law

P(n)=n"'"", (1)

with exponent 0 < a<<1. Note that in this exponent range the
mathematical expectation diverges: . nP(n)=%. Examples
of such scale-free networks include the network of words
co-occurrence [1,2] (with @=0.8), and the network of homo-
sexual contacts [3] (with @=0.6).

Most “real-world” scale-free networks discussed in the
literature are vast, yet finite: biological populations, texts and
movies, the Internet and the World Wide Web, etc. In all such
networks both the overall number of nodes M and the num-
ber of links N—though being huge—is finite. Consequently,
the average number of links per node v=N/M is well defined
and finite.

Consider now a random sample of size m<<M nodes,
drawn from the overall population of M nodes. We inquire
the distribution of the sample mean 7= iE?’;lni, where n;
denotes the number of links connected to the i-th node of the
sample. In particular, it is of interest to know whether the
sample mean 7 is typically larger or smaller than the net-
work mean v, and how do its statistics change as the sample
size m is increased.

In what follows we consider large, yet finite, scale-free
networks governed by the power-law degree distribution of
Eq. (1), and possessing a finite network mean v. We note that
the finite-size effect due to a finite network mean v has to be
distinguished from the finite-size effects in growing net-
works, where the growth process poses additional constraints
on the degree distribution—see [4] and references therein.

The aforementioned sampling problem is closely related
to the “matchmaking problem.” In the mid eighties several
research groups were conducting investigations on the distri-
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bution of the number of sexual partners in human
populations—these investigations promoted by the necessity
to point out the risk groups in the AIDS epidemic. A “Na-
ture” editorial by Maddox stated that [5], “the figures so far
show that the average number of heterosexual partners of
men in the course of a lifetime is 11.0 and of women 2.9.” In
response to Maddox’s editorial, Gurman published a note
explaining the nonsense of having different means in the two
populations connected by well-defined one-to-one links [6],
“a heterosexual union is analogous to a heteronuclear chemi-
cal bond, and the total number must be the same if viewed
from the male or female end.”

To model the matchmaking problem consider two sets
consisting of M> 1 nodes each—say red and blue nodes (or
boys and girls). The nodes of the two sets are connected by
N> 1 links having a red node on one side and a blue one on
the other side. Although the overall number of the links N is
the same when viewed from the red and from the blue side,
the distributions of the number of links attached to red and to
blue nodes may differ. In the aforementioned scale-free set-
ting the red and the blue degree distributions will admit the
power-laws

Pred(n) =~ n_l_ared’ Pblue(”) =~ n_l_ablue (2)
(with, in general, exponents .47 Q). In such a
situation—when sampling from the red and blue

populations—how different can the red and the blue sample
means be?

Empirical studies showed that the distributions of the
number of sexual partners are extremely broad [7]. If at least
one of the exponents (a,q Or @) i8S in the range
0<a<1 then—as we shall establish in this paper—the cor-
responding sample mean depends systematically on the
sample size m. Consequently, the male and the female
sample means have to differ for small samples in order to
match each other for the population as a whole. This key
point is what we refer to as the “matchmaking paradox.” For
exponents in the range o> 1 this is no more the case, and the
sample means have to match. Up to our best knowledge, this
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exponent-dependency aspect of the matchmaking problem
was never considered in detail (probably due to the lack of
an adequate mathematical toolbox). Both the problems of
sampling and matchmaking are of considerable interest—
especially taking into account the overall importance of the
sampling procedures in networks [8]. Moreover, the problem
has much in common with the phenomena of weak ergodicity
breaking—in which sample means that should “normally” be
the same exhibit, in effect, universal fluctuations [9—11].

The main issues explored in this research are the follow-
ing: What is a distribution of the sample mean 7? How does
this distribution depend on the sample size m? And how does
the sample mean 7 relate to the network mean »? These
issues are intimately connected to the statistics of Lévy ran-
dom probabilities, studied in [12]—but have several unique
aspects which are worth a separate and detailed investiga-
tion.

II. MODEL

We follow Gurman’s setup with a static and finite bipartite
population. Such bipartite structures appear quite naturally in
many situations [1]. To begin with, we have to establish a
model yielding, in a natural way, matched power-law degree
distributions.

Reference [1] proposes the following algorithm for the
generation of bipartite networks with prescribed degree-
distributions: create two sets of nodes (red and blue ones)
with stubs, with the numbers of stubs per node distributed
according to Eq. (2). Then connect the stubs of the nodes of
the two types at random. The problem which arises when
using this algorithm is that even if the two distributions are
theoretically consistent, the sums of the degrees of the red
and the blue nodes might be different due to statistical fluc-
tuations. To resolve this problem additional nodes need be
added to compensate for the difference. If the mathematical
expectations of the degree-distributions are finite, then the
theoretical matching condition is trivial, these expectations
have to be the same (this is exactly the situation referred to in
[1]). However, in the case of infinite mathematical
expectations—at least on one side—such a condition is not
known a priori. Therefore, we propose a different model of
creating a bipartite network with automatically imposed
matchmaking conditions, and then discuss the properties of
the corresponding sample means.

Let us first explain the model in the case of a simple
(rather than bipartite) network with a given degree distribu-
tion. Instead of concentrating on the nodes, we focus on the
links and consider a network with exactly M nodes and N
links—with M and N being consistent with the correspond-
ing network average via N=vM. We assign each node j of
the network an attractiveness level A s which has to be taken
proportional to its desired degree [for example by taking it at
random from the degree-distribution P(n)]. We further at-
tach, at random, the ends of each link to two different
nodes—the random attaching taking place with probability
proportional to the nodes’ attractiveness levels. The attrac-
tiveness model, thus, generates a realization from a microca-
nonical ensemble of networks, with given M and N=vM,
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while the model presented in [1] generates a realization from
the corresponding canonical ensemble of similar networks
(M is fixed, but N fluctuates).

The microcanonical nature of the attractiveness model is
of great value when modeling situations, in which the global
matching conditions have to be met—especially when mod-
eling bipartite networks. Consider now a large bipartite
population consisting of 2M>1 nodes—M ‘“red” and M
“blue”—and N> 1 links connecting the red and blue nodes.
Each red node i has an attractiveness level f;, and each blue
node j has an attractiveness level g,—the random attractive-
ness levels governed by one-sided Lévy distribution with
respective exponents .y and .. Each link connects—on
each red/blue side—to a single node, the probability of con-
necting being proportional to the attractiveness levels.
Hence, the probabilities ¢; and 7; that the ends of a given
link are connected to the red node i and to the blue node j are
given by

fi 8
¢[= —_—, Y= . (3)
21<M:1fk ! 2/<M:1gk

II1. SAMPLE MEAN DISTRIBUTION

Let us concentrate henceforth on the red side of the bipar-
tite network. As a statistical sample we chose at random a set
of m<<M of the red nodes. The probability that a given link
is connected to one of the sample nodes is given by
C3Ei i 1 @)
M —5ym M - ’

Ej:lfj Ej=1fj + Ej=m+1fj 1+Y/X

where X=2",f; and YzEinmej. Note that X and Y are the
sums of independent, identically distributed random vari-
ables governed by a one-sided Lévy distribution. Hence, X
and Y are the independent one-sided Lévy random variables
with exponent a=q,4, and with respective scaling param-
eters m"'* and (M —m)". The value of p—the Lévy random
probability [ 12]—is thus a random variable, which coincides
in law with the random variable

1
T MIm-1)VeR’

)

where R is quotient of two independent one-sided Lévy
variables with exponent a=a,4, and with a unit scaling
parameter. Henceforth, we set the shorthand notation
x=(M/m-1)"2, Note that the random variable z admits val-
ues in the unit interval (0,1). Moreover, we emphasize that
even if the distributions of the attractiveness levels f; deviate
from the one-sided Lévy—but yet possess power-law
asymptotics with exponent a—then the distribution of z for
m,M> 1 is universal (in the sense of the corresponding cen-
tral limit theorem [13]). Hence, our analysis does not depend
on the precise form of distributions of the attractiveness lev-
els f;.

The probability density function (pdf) py of the quotient R
is known [12]: Its Laplace transform is given by
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L(pr(R)) = Eo(=u*), (6)

where E,(-) denotes the Mittag—Leffler function [13], and u
denotes the Laplace variable. The derivation of Eq. (6) is
based on the analytic methods of Chap. XIV in [13]. For the
sake of completeness a variant of the full derivation is given
in the Appendix. The asymptotic behavior of py for R large
and small is obtained—via Tauberian theorems—from the
asymptotics of the Mittag-Leffler function. For R large we
have

pr(R) = R (7)

I(a)
(R>1), where I'(-) denotes the Gamma function. Note that
since R is a quotient of two identically distributed non-
negative random variables, the distributions of R and 1/R are
the same (i.e., the pdf of In(R) is an even function), which
fact will be repeatedly used in what follows.

Let h=2",n; denote the number of “hits” in the sample—
i.e., the overall number of links connected to the sampled
nodes. Given the value of Lévy random probability z, the
probability that 4 of N links hit the sample is given by the
conditional binomial distribution

ak 21— )N, (8)

p(h|Z):—h!(N—h)!

Hence, the unconditional probability distribution of £ is
given by

=N }
Ph(h)=fo RETE (1-2)""p(2)dz. )

For N> 1 the binomial distribution is actually extremely nar-
row: Its standard deviation is much smaller than its mean, so
that [N!/h!(N=h)!]z"(1-2)N"~ 8(h—Nz). Thus, we can
take h=Nz; the distribution of /& follows from that of the
Lévy random probability z by change of variables. The dis-
tribution of the sample mean #n=h/m=Nz/m, in turn, is
given by

m m
P = NPZ(UN) (10)
This fact can be proved by an explicit calculation of the
generating function of the probability distribution
pp—evaluating it in the range 1<<h<<N using Tauberian
theorems.

Note that for m<<M the prefactor in front of R in the
denominator of Eq. (5) is large, so that one can assume
z=(M/m)~"*R" for all z not too close to unity. Noting that
the variables R and R~! have the same distribution, we get
that the distribution p, of the Lévy random probability z
practically follows the distribution of (M/m)~"*R, and is a
power law. Taking m=1 we arrive at the (continuous ap-
proximation for the) distribution of the number of links per
node. The power-law spreads over the domain of 1 <h<N
and is truncated for 7> N—as it is evident from the fact that
p-(z) vanishes for z>1 [14]. The sample mean 7 is therefore
a random variable, and the properties of its distribution are
discussed below.
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The mathematical expectation (#) of the sample mean 7
is equal to the network mean v. Indeed,

<77>=<£> -2, (1)

* A |
(2)= fo AR)pr(R)dR = fo T PR RIR. (12)

and

Noting that 1/(1+xR)=x"'(1/x+R)™" and substituting the
integral representation

1 o0
= J e e Ry (13)
I/'x+R J,

into Eq. (12), while interchanging the order of integration,
yields:

1 oo <) 1 e
(z)= —f due‘“/xf dRe™Rpr(R) = —J due™ " E (- u®).
XJo 0 XJo

(14)
The right-hand-side of Eq. (14) is the Laplace transform of
the Mittag-Leffler function. This Laplace transform is known
to be given by L{E (-u®)}=s%"/(s*+1) [13], and hence set-
ting s=1/x we arrive at
1
x4+ 17

(@)= (15)

Finally, recalling that x=(M/m—1)"% we obtain that (z)
=m/M and

(p=—"r= =" (16)

Thus, we have asserted that, on average, the sample mean »
coincides with the network mean v. In other words, the
“mean sample mean” (%) equals the network mean .

The distribution of the sample mean 72, however, is ex-
tremely broad—as seen from its variance. To calculate the
variance we note that (7%)=(N?/m?)(z?) and

* * 1
(%)= JO Z(R)pr(R)dR = fo mpR(R)dR. (17)

Using the fact that (1+xR)>=“:(1/x+R)™", and the integral
representation given by Eq. (13), we obtain

d x m? M
<Zz>=El+x“=ﬁ[l+(l_a)<;_l>:|. (18)

From this we conclude that the variance of 7 is given by

N> (M M
=) -(n?=( —H)W(;— 1) = (1 —a)vzz-
(19)

Hence, the standard deviation o of 7 is of the order of mag-
nitude VM /m> 1—i.e., far larger than its mean (7). There-
fore, it is highly improbable to obtain an accurate estimate of
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the network mean v from a sample with size m much smaller
than the population size M.

Not only is the distribution of 7 extremely broad—it is
also extremely skewed. As we now proceed to show, the
median of # lays far below its mathematical expectation
(m)=v. And, finding values of z which are larger than its
mathematical expectation (z)=v is highly improbable.
Hence, a typical result of a statistical measurement of # will
be much smaller than the network mean v.

Since z and therefore 7 are monotonous functions of R,
their medians follow from the median of R. The random
variable R is a quotient of two identically distributed random
variables—hence, the distribution of R is the same as the
distribution of 1/R. The random variable In(R) is therefore
symmetric and, consequently, its median is zero—implying,
in turn, that the median of R is unity: R;,=1. Substituting
the median R;,=1 into the expressions for z and
7=(N/m)z we obtain that the median 7, of the sample
mean 7 is given by:

N 1 (m)”“‘l
=—— =yl — 20
K ml+x VM (20)

[Eq. (20) holding for all m<<M]. Clearly, the median 7, is
much smaller than the network mean v.

Let us turn now to calculate the probability P, that the
sample mean 7 is larger than the network mean r—i.e., the
probability of the random event {7> v}. Using the fact that
for m <M the distribution p, of the Lévy random probability
z practically follows the distribution of (M/m)~"*R, we get

P,= f p(2)dz= f Pr(R)AR (21)
miM Ry
with Ry=(M/m—-1)'""¢_ Further using Eq. (7), we obtain
that
P ~;(ﬂ 1>a_1 (22)
T al(a)\m

[Eq. (22) holding for all m<M]. Clearly, the probability P,
is very small.

Thus, in a the matchmaking problem, the sample means in
different subpopulations not only fluctuate strongly, but also
display a systematic skew. Moreover, for the same sample
size, a population with smaller a—i.e., the one with a
broader distribution—will typically show a smaller sample
mean.

IV. AN EXAMPLE

It is instructive to consider an analytically solvable ex-
ample: The Lévy-Smirnov case—corresponding to the expo-
nent value @=0.5. In this special case the corresponding dis-
tributions can be obtained exactly, without use of asymptotic
realtions applied in the previous section, which may serve as
the additional proof of the quality of approximations. More-
over, this example is of special interest due to the fact that
the exponent a=0.5 is not too far from the exponent
a=0.6 observed in the network of homosexual contacts [3].
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The Lévy-Smirnov pdf of the attractiveness levels is given
by

1 1
= —F— __¢€X -, 23
p(f) N p( 4f> (23)
for which the probability density pg(R) is given by the in-
verse Laplace transform of E,,(—u'?)=e" erfc(\u), with
erfc(x) being the complementary error function. The inverse
Laplace transform of this function is known to be

1 1
pr(R)= —=—""—, (24)
. TVR(1+R)
ie., pg(R)=m"'R3? for R large. Now, performing the
change of variables as prescribed by Eq. (5) one obtains

1 X 1
pz(z)=7—7 Vz(1-2)1+(x =1z 25

This p,(z) behaves as p,(z) = (1/\x)z"¥? for x> 1 and z not
too close to unity.

The quantiles of the corresponding distributions can be
calculated explicitly:

tan’(g/2)

= —, 26
x + tan’(g/2) (26)

Zq
implying, in particular, that for x> 1 the sample mean 7 lays
with probability 0.5 within the interval

— m I m
(V2 - I)ZVE <p<(N2+ I)ZVE. (27)

Namely, for m <M the sample mean # is typically consider-
ably smaller than the network mean v. Only as m— M (and
x—0) does the sample mean converge to the network mean
v. On the other hand, the distribution over samples is very
skewed, and the probability that the sample mean 7 be
greater than the network mean v is given by
P, = (2/@)\m/ M. Namely, P, is very small for sample sizes
m which are considerably smaller than the population size
M.

A simple numerical example elucidates the situation: For
a=1/2, M=10° and m=1000 the variance is approximately
45 times larger than the sample mean 7, and the median is
approximately 32 times smaller than the sample mean 7. The
discussion above also gives a possibility to roughly estimate
the unknown network mean v from the typically much
smaller sample mean 7. Such an extrapolation is given by
Eq. (20) [or by Eq. (27)—in the special Lévy-Smirnov case].
Indeed, since for a=1/2 the value of 7 lays with the 50%
probability within the interval between 0.172-1073» and
5.828-1073v, the estimate v~ 10°% will give a correct order
of magnitude of ». This estimate is not too bad, especially
when taking into account that the corresponding confidence
interval (being an order of magnitude for p=50%) can be
explicitly evaluated.

This “anomalous behavior” is typical in the cases of
power-law distributions with divergent mathematical expec-
tation: P(n)=n"'"% with 0<a<1. For exponents in the
range a>1 the sample mean shows no systematic fluctua-
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tions around the network mean. This can be anticipated by
considering the limiting behavior of (7)=v and #,,— v for
a— 1. The results for «>1 are: In the range 1 <a <2 the
fluctuations are Lévy distributed, and of the order O(m'*71).
And, in the range a>2 these fluctuations are Normally dis-
tributed, and of the order O(1/ \m) The proofs of these re-
sults involve a rather different methodology and analysis
than the ones employed here [15].

Note that the type of behavior following from the discus-
sion of the matchmaking paradox—i.e., that a subpopulation
with broader distribution (smaller «) typically yields a
smaller sample mean—is essentially opposite to what is ob-
served (the male population, the one with smaller «, gives
rise to a larger sample mean). Therefore the reason for the
sample-mean deviations in the reported number of hetero-
sexual partners is not of purely statistical nature and should
be looked for elsewhere [16]. Moreover, recent estimates for
the exponent « tend to values slightly above unity [3,17], so
that the simpler situation with equal means applies.

V. SUMMARY

In this paper we considered the problem of sampling from
large scale-free networks, and the “matchmaking problem”
of bipartite large scale-free networks—in the case of power-
law degree-distributions with exponents « in the range
0<a<1. We have shown that the sample means—in case of
sample sizes which are considerably smaller than the popu-
lation size—fluctuate strongly and display systematic devia-
tions from the network mean. These fluctuations and devia-
tions were explicitly quantified, and an order-of-magnitude
estimation of the network mean—if unknown—was obtained
from the sample means.
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APPENDIX

We present a derivation of Eq. (6) based on a straightfor-
ward calculation. Let R=x/y be the quotient of the two iden-
tically distributed, one-sided Lévy random variables x and y,
whose probability density L,(x) has a Laplace-transform

L(L,(x)) = f L, (x)e ™ dx = exp(— u®). (28)
0

The Laplace transform of the probability density function of
R, p(u)=[{p(R)e™RdR can be represented as the mean value
p(u)={e Ky and therefore has an alternative representation,
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pu) =(e™®)g

{eol-2)).
y

= f f exp(— u)—c)La(x)La(y)dXdy
0 Jo y

- f eXp[—(EY}La(y)dy, (29)
0 y

where we make explicit use of Eq. (28) when integrating
over x. Changing the variable of integration to z=(u/y)* we
can rewrite the last integral as

“1 u u
= ————L_ | — |e%dz. 30
p(u) fo @zl a(ZUa)e z (30)

Let F(x)=[oL(x")dx" be the cumulative distribution func-
tion of the one-sided Lévy distribution. Let us further intro-
duce the auxiliary function

G, (u,2)=1-F (ulz"%). (31)

Since

d 1 u u
d_zG”(u’Z) = :vzl/”““'La(zm)’ (32)

p(u) can be represented as

plu) = f 2 G, 2)e~dz =

JGa(u,z)e_zdz, (33)
0 dz 0

where the second expression follows by integration by parts,
and noting that G(u,z) —0 for z—0.

To evaluate this integral we first consider the Laplace
transform of p(u) in its u variable, p(s)=[;p(u)e *"du, rep-
resent it as a double integral, p(s)= [ ;G (u,z)e ‘e~ dzdu,
interchange the sequence of integrations in u and z,

pls) = f“‘ dze_zfoc G (u,z)e™*"du, (34)
0 0

and then perform the inverse Laplace transform in s.

The internal integral in Eq. (34) is easy to take by using
the definition of G, Eq. (31), the standard formula for the
Laplace-transform of the integral, and by applying Eq. (28),
so that

* 1 a
J G (u,z)e™du=—(1-¢*"). (35)
0 s

The second integral follows elementary and reads

Sa—l

o0 1 N
— dze "—(1 —e") = .
p(s) fo ze S( ) il

(36)

The inverse Laplace transform of this expression is known to
be a Mittag-Leffler function, [13],

L7[p(s)] = p(u) = Eo(=u®). (37)
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