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Exploratory analysis of spatiotemporal patterns of cellular automata by clustering compressibility
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In this paper we study the classification of spatiotemporal pattern of one-dimensional cellular automata (CA)
whereas the classification comprises CA rules including their initial conditions. We propose an exploratory
analysis method based on the normalized compression distance (NCD) of spatiotemporal patterns which is
used as dissimilarity measure for a hierarchical clustering. Our approach is different with respect to the
following points. First, the classification of spatiotemporal pattern is comparative because the NCD evaluates
explicitly the difference of compressibility among two objects, e.g., strings corresponding to spatiotemporal
patterns. This is in contrast to all other measures applied so far in a similar context because they are essentially
univariate. Second, Kolmogorov complexity, which underlies the NCD, was used in the classification of CA
with respect to their spatiotemporal pattern. Third, our method is semiautomatic allowing us to investigate
hundreds or thousands of CA rules or initial conditions simultaneously to gain insights into their organizational
structure. Our numerical results are not only plausible confirming previous classification attempts but also shed

light on the intricate influence of random initial conditions on the classification results.
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I. INTRODUCTION

The analysis of complex systems generating spatiotempo-
ral pattern has a long tradition in physical, chemical, and
biological sciences because many natural phenomena exhibit
an intriguing variety of such patterns. A very important
mathematical model capable of generating discrete spa-
tiotemporal patterns is cellular automata (CA). Since first
introduced and studied by Von Neumann and Burks [1] CA
have been investigated numerously, e.g., for analyzing fluid
dynamics [2], pattern formation [3,4], or universality [5,6]. A
meanwhile classic topic concerns the classification of CA
with respect to either the behavior of their spatiotemporal
pattern [7-10] or their transition (lookup) table [11-13].
Over the past decades several approaches have been sug-
gested to classify cellular automata. Most prominently, Wol-
fram [8] proposed a phenomenological classification of CA
based on their observed behavior and entropic measures.

The classification of CA is closely related to a more gen-
eral topic, namely, the characterization of the complexity of
an object itself. This problem has attracted much attention
and many measures have been suggested [14-21] over the
past almost three decades. An intrinsic problem with such a
measure is that there are various ways to define or character-
ize complexity leading to complementing complexity mea-
sures. For example, Kolmogorov complexity [18,20,22] is
based on algorithmic information theory considering objects
as individual symbol strings whereas the measures, such as
effective measure complexity [17], excess entropy [23], or
predictive information [24], relate objects to random vari-
ables. Interestingly, despite considerable differences among
all these complexity measures M they all have in common,
that they assign a complexity value to each individual object
x under consideration, C,(x). It is of importance to note that
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there is a conceptually different measure recently introduced
by Cilibrasi and Vitdnyi that evaluates the complexity dis-
tance among objects x and y instead of their absolute values.
This measure is called the normalized compression distance
(NCD) [25], NCD(x,y), and is based on Kolmogorov com-
plexity [26]. So far the NCD has been applied to various
different problems [27-30] but not to investigate spatiotem-
poral patterns. It is crucial to remark that the classification of
CA is intimately related to measures of complexity because
in order to be able to classify meaningfully the, e.g., spa-
tiotemporal patterns of the CA one needs to clarify what are
simple, complex, or random patterns?

The major purpose of this paper is to demonstrate the use
of the normalized compression distance for the classification
of the behavior of spatiotemporal patterns of complex sys-
tems. More precisely, we suggest an exploratory approach by
clustering many different systems under investigation to un-
ravel the relationship among the object’s complexity. This
comparative analysis will not allow us to assign absolute
values of complexity to the individual objects but, instead,
provides insights into their inter-relational structure. We ar-
gue that this is not only interesting for a practical application
but also for theoretical investigations. Numerically, we ex-
emplify our approach by application to one-dimensional cel-
lular automata. As pointed out by Dhar et al. [31] it is crucial
to include in the study of CA their initial conditions because
the behavior of a rule is significantly affected by its initial
state. For this reason we based our classification on the be-
havior (the spatiotemporal patterns) of the CA solely not
taking the lookup table into account explicitly.

This paper is organized as follows. In Secs. II-V we
present a detailed definition of the problem we are studying.
Section VI provides our numerical results and this paper fin-
ishes in Sec. VII with a discussion and conclusions.

II. CELLULAR AUTOMATA

In this section we will provide the necessary definitions
we need for our investigations. One-dimensional cellular au-
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tomata consist of a lattice of N identical sites or cells, s;, i
e N, and N={0, ... ,N—1}. Each cell s; can assume values
from an alphabet S consisting of k=|S| discrete states or
symbols, e.g., S={0,1}. All cells are updated synchronously
by a local update function

S§+] = ¢(S;_r, - ’S§+r) (1)

involving only the nearest 2r+1 neighbors, including cell i
itself. The local update function ¢ can be written as lookup
table encoding the value of a cell at time step 7+1. The

evolution of the system s'=(s{), ... ,s\_;) € S" is given by the
global update function ®:SY— SV defined by
D), = p(s, ... .80, (2)

In the following we consider only cellular automata with k
=2, r=1 and periodic boundary conditions for the finite lat-
tice. This implies that we have a total of 256=2" different
update functions ¢ that we call in the following update rules.
The update rules of the cellular automata are coded accord-
ing to the scheme introduced by Wolfram [8] which can be
explicitly written [32] as

R=4(0,0,0)2° + ¢(0,0,1)2' + -+ &(1,1,1)27, (3)
with R e R={0,...,255}.

III. CLASSIFICATION OF CELLULAR AUTOMATA

The first attempt to classify one-dimensional cellular au-
tomata systematically was presented by Wolfram [7,8]. The
basic idea behind Wolfram’s classification is to group the
rules of cellular automata according to their observed behav-
ior into four disjoint classes. The four suggested classes are
(8]

(1) evolution leads to a homogeneous state,

(2) evolution leads to a set of separated simple stable or
periodic structures,

(3) evolution leads to a chaotic pattern, and

(4) evolution leads to complex localized structures, some-
times long lived.

The classification is qualitative, but motivated by the dy-
namical behavior dynamical systems can exhibit in general.
We want to emphasize that so far no final agreement regard-
ing the classification of all 256 rules has been reached. This
is not only due to the missing mathematical rigor in the
definition of the four classes but also due to the difficulty to
demonstrate that a rule shows all required properties to be-
long to a certain class. In addition, this is complicated by the
fact that initial conditions can change the spatiotemporal pat-
tern of the CA rule profoundly. For example, it is known that
rule 90 produces a behavior that is not distinguishable from
random if the initial condition was a random sequence of Os
and 1s [33]. However, starting from an unbalanced ratio be-
tween black (1) and white (0) cells favoring, e.g., the pres-
ence of black cells significantly results in a nonrandom be-
havior. The reason for this is that rule 90 preserves the
randomness present in the initial conditions [33]. This is just
one example to show that the initial conditions can have a
significant influence on the behavior of the cellular automata.
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For this reason, we are not aiming to classify rules of CA
themselves, like Wolfram, but their spatiotemporal behavior.
This implies that in addition to the rule of the CA we also
need to specify its initial state because only the combination
of both defines the behavior of the CA. From this explana-
tions it becomes clear that we are not trying to reproduce the
classification of Wolfram [8] (or any other classification
schema suggested so far, e.g., [10,12,13]) not only because
we are taking explicitly initial condition into account for this
classification but also because we are using a different mea-
sure to identify the different classes as described in Sec. IV.

IV. KOLMOGOROV COMPLEXITY
AND DERIVED MEASURES

The method we use to cluster CA rules according to their
spatiotemporal behavior is the normalized compression dis-
tance [25,34] which is based on Kolmogorov complexity
[18]. In general, the Kolmogorov complexity K(x) of a string
x is the length I(p) of the shortest binary program p*, with
p*=arg min,. -, [(p), which computes x on a universal
computer (Turing machine) &/ without input

K(x)= min [(p). (4)
pU(p)=x

A practical problem is that K(x) is not computable but only
upper semicomputable [34]. Li er al. introduced in [34] a
normalized and universal metric

max{K(x|y),K(y|x)}
max{K(x),K(y)} ~

dx,y) = &)

called normalized information distance (NID), whereas the
conditional Kolmogorov complexity is given by [44]

KGdy)= min (p). (©6)
pUp.y)=x

It has been argued [34] that NID can be approximated by

C(xy) — min{C(x),C(y)}
max{C(x),C(y)}

NCD(x,y) = . (7)
called the NCD. Here, C(x) denotes the compression size of
string x and C(xy) denotes the compression size of the con-
catenated stings x and y [34]. The quantities C() are ob-
tained by compressors such as gzip or bzip2 (see Sec. V).
Recently, several approaches have been suggested to utilize
concepts based on Kolmogorov complexity in general
[35,36] or the NCD measure [25,29] to problems from data
analysis. For example, the NCD has been used to study texts,
music files (corresponding to time series) (see [30] and ref-
erences therein), DNA and protein sequences [37,38], protein
structures [29], and metabolic networks [28].

Clustering the behavior of CA

In this paper we use the NCD [as defined in Eq. (7)] as
dissimilarity measure to evaluate the distance between spa-
tiotemporal patterns generated by different CA. More pre-
cisely, we generate for all |R|=256 one-dimensional cellular
automata with N cells, r=1 and k=2 spatiotemporal patterns

026103-2



EXPLORATORY ANALYSIS OF SPATIOTEMPORAL...

YI=(S,), te{l,....T4}, and i € N of length T;. From these
patterns we use only the last T=T—1,,,,, time steps because
the first ¢,,,,, time steps represent a transient that the cellular
automata need to reach their final behavior. In general, the
influence of this transient should only have marginal influ-
ence on the final results for 7,— o; however, for practical
reason it is important to ensure that ¢,,,,, is sufficiently long
because T is finite. This aspect will be discussed in more
detail in Sec. V. The resulting spatiotemporal pattern ¥ has N
space and T time dimensions. For {¥;} we calculate now the
dissimilarity matrix NCD according to Eq. (7)—details re-
garding this procedure are presented in Sec. V. This dissimi-
larity matrix NCD is then used to apply a hierarchical clus-
tering method resulting in a dendrogram that represents a
grouping of CA rules. A proper classification could be ob-
tained from this dendrogram by cutting this tree structure at
a certain level. Because the determination of such a level is
difficult to derive theoretically we investigate the structure of
the dendrogram exploratory.

V. PRACTICAL NOTES

In order to use the NCD one needs to estimate the com-
pression size C(x) of a string x. Practically, this is done by a
compression algorithm such as gzip or bzip2, which we used
primarily for our study. The principle working mechanism of
both compression algorithms is as follows. Gzip uses the
deflate algorithm, which is a variant of LZ77 [39], for pre-
processing the data and a statistical compressor (usually
Huffman [40]) for postprocessing. Bzip2 uses a Burrows-
Wheeler transformation [41] and a Huffman coding. In the
preprocessing step duplicated strings in the input data are
replaced by a pointer to the previous string providing infor-
mation about the distance and length of the string. In the
postprocessing step frequently used symbols are replaced
with shorter representations and less frequently used symbols
with longer representations by application of Huffman cod-
ing. Regarding the used compressor there is one important
characteristic of the compression algorithms that needs to be
considered. Because NCD is a metric when the compressor is
normal [25,34] one needs to make sure that the normality
property is fulfilled. This implies that the following condi-
tion,

C(xx)=C(x), (8)

holds. The compressors gzip and bzip2 fulfill this condition
to a certain degree when the size of string x is below a
compressor specific threshold called the block size. For gzip
this is about 64 kbytes and for bzip2 it is about 900 kbytes.
In [42] this behavior has been studied numerically. If x is
larger than this block size the compressor packs x in smaller
pieces which may lead to strong violations of the normality
condition. In order to avoid this violation one needs to make
sure that the investigated strings are in size smaller than
block size/2 because otherwise the assumptions used for the
proof that NCD is a metric do no longer hold. For our prob-
lem this is easy to ensure because we can chose an appropri-
ate length T of the time series for a given size N of the CA.
For our simulations we used gzip as well as bzip2 and found
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FIG. 1. (Color online) Mapping from a one-dimensional spa-
tiotemporal pattern Y to a string x. Y represents a fixed point and x
starts at the top left corner and is connected as the arrows indicate.

that both compression algorithms give similar results. We
emphasize that the purpose of this paper is not to estimate
Kolmogorov complexity as accurate as possible but to apply
the NCD to cluster spatiotemporal patterns. The difference is
that a proper clustering does not depend solely on the accu-
racy of the absolute values of Kolmogorov complexity but
on the conservation of relative distances among these ob-
jects.

It is important to use an appropriate long burn-in time
trans 10 avoid an evaluation of transients that are not charac-
teristic for the long-time behavior of the CA. For example,
when started from a random initial condition rule 97 takes in
most cases 200 time steps to reach a periodic behavior but
for certain random initial conditions twice as many time
steps are necessary. For this reason we used for N=50 a
burn-in phase of ¢,,,,,=1000 time steps.

In order to apply the NCD which utilizes a compression
algorithm to evaluate C(x) we need to transform the spa-
tiotemporal pattern Y of the CA into a string x. The spa-
tiotemporal pattern can be seen as matrix ¥ whereas a history
of a cell is indexed by re{l,...,T} and ie{l,...,N}, Y
=(S,;). A natural mapping from S to x consists of a concat-
enation of, e.g., the rows of ¥, Y —x=(§,,S,,...,S7). How-
ever, this simple transformation introduces a behavior not
present in the spatiotemporal pattern that may lead to un-
wanted results. This problem is visualized in Fig. 1. For ex-
ample, if Y represents a fixed point then the mapping defined
above leads to a periodic pattern in the resulting string x,
Y —x=(00000010000 00000010000 00000010000...) [45].
To avoid this we map S to the difference of two consecutive
time steps, ¥ —x=(5,-5,,5,-S3,...,57_—S7). This map-
ping leads to an extension of the alphabet S of x consisting
now of three symbols, S=(-1,0,1).

VI. RESULTS
A. Definition of initial conditions

We start our analysis by re-emphasizing that it is of im-
portance to consider the initial condition as parameter that
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FIG. 2. (Color online) Spatiotemporal patterns of rule 122 (first

row) and rule 210 (second row). First column: simple initial condi-
tion. Second column: random initial condition.

can strongly influence the behavior of the CA, i.e., its spa-
tiotemporal pattern. In the following we define a simple ini-
tial condition as

1 for i=|N/2]
5= )
0 else

and a random initial condition as s;~prob(p,1—p) for all i
e{l,...,N}, with a probability of p=0.5 to observe a 1 or a
0 at each site 5;. We want to note that we intentionally restrict
the simple initial condition to just one element whereas for
the random initial conditions there exist 2V different initial
states.

To demonstrate the general dependence of the CA on the
initial conditions we present in Fig. 2 two examples. The first
row shows rule 122 and the second rule 210. For the patterns
shown in the first column a simple initial condition was used,
whereas in the second column we used a random initial con-
dition as starting states. One can clearly see that it is possible
that a periodic behavior for a simple initial condition can
change to a complex pattern for a random initial condition
(rule 122) but also the opposite behavior can occur (rule
210). In Sec. VIC we will continue this line of argument
demonstrating that initial conditions are an intricate param-
eter that needs to be defined with care.

B. Simple initial condition

For the following simulations we generated spatiotempo-
ral pattern for each CA rule for N=50 and 7=100. As
burn-in time we used #,,,,,=1000 time steps. Each of these
spatiotemporal patterns was transformed as described in Sec.
V and then the normalized compression distance was calcu-
lated according to Eq. (7). Then, NCD was used as a dissimi-
larity matrix for a hierarchical clustering for which the Ward
method [43] has been used as distance measure. The result-
ing hierarchical clustering allows us to gain insights into the
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compressibility of the patterns because patterns of similar
compressibility joining successively the same cluster.

The result of this clustering is shown in Fig. 3. The cluster
on the left-hand side involves all 256 CA and consists of
three major branches. The CA in these branches are labeled
with “=" “——" or “+” and Table I provides the rule numbers
for — and — which are in the table termed 1 and 2. The right
figure in Fig. 3 shows a magnification of the 76 CA rules
labeled with a + in the left figure. In this figure there are two
major branches but the CA rules are categorized in three
different classes for reasons that will be discussed below.
The category labels of these classes are “——,” “———" and
“————" Table II provides a summary for these CA rule
numbers. Visual inspection of the CA rules categorized in
classes 1 (=) and 2 (—-) reveals that all CA rules (respec-
tively their spatiotemporal pattern) in 1 are fixed points and
in 2 are periodic. For the four sub-branches of the leftmost
branch in the right of Fig. 3 we present four examples in Fig.
4. From these patterns the categorization becomes clear be-
cause only the top left pattern which was obtained from rule
30 shows random behavior whereas the other three exhibit
complex behavior.

C. Random initial condition

For the following simulations from random initial condi-
tions we generated spatiotemporal pattern for each CA rule
for N=50 and T=100. As burn-in time we used again t,,,,,
=1000 time steps. Each of these spatiotemporal patterns was
transformed as described in Sec. V and then the normalized
compression distance was calculated according to Eq. (7).
Because different random initial conditions may result in a
different clustering we averaged over E different initial con-
ditions,

E

NCD = 12 NCD(j), (10)
E";

to obtain a mean normalized compression distance that is
characteristic for the ensemble of all initial conditions. Then,
NCD was used as a dissimilarity matrix for a hierarchical
clustering for which the Ward method [43] has been used as
distance measure.

The result of this hierarchical clustering is shown in Fig.
5. The left figure shows again the clustering of all 256 CA
and the right figure provides a magnification of the CA rules
labeled with a +. In Tables III and IV a summary of this
clustering can be found providing the categorization of the
CA rules in the four classes (1-4). Figure 6 visualizes some
spatiotemporal pattern for some rules in the right of Fig. 5
that justify the categorization. Periodic patterns (class 2) are
again clearly separated from classes 3 and 4 and also the
latter classes can be distinguished.

Heterogeneous initial conditions

Finally, we demonstrate that the use of random initial con-
ditions, as defined in Sec. VI C, is problematic with respect
to a classification of spatiotemporal patterns because it can
result in behavior that apparently belongs to different catego-
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FIG. 3. Left: hierarchical clus-
tering of all 256 CA started from a
simple initial condition. Right: hi-
erarchical clustering of 76 CA la-
beled with a + in the left figure. A
summary of the categorization is
provided by Tables I and II.
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TABLE I. Classification of the behavior of CA started from a
simple initial condition as shown in the left figure in Fig. 3.

Class CA rule

0, 4, 8, 12, 13, 28, 32, 36, 40, 44, 64, 68, 69, 70,
72,76, 77,78, 79, 92, 93, 94, 96, 100, 104, 108,
128, 132, 133, 136, 140, 141, 151, 156, 157, 159,
160, 164, 168, 172, 183, 191, 192, 196, 197, 198,
199, 200, 203, 204, 205, 206, 207, 215, 217, 219,
220, 221, 222, 223, 224, 228, 232, 233, 235, 236,
1 237, 238, 239, 247, 249, 251, 252, 253, 254, 255
1,2,5,6,7, 10, 14, 16, 19, 20, 21, 23, 24, 29, 31,
33, 34, 37, 38, 42, 46, 48, 50, 51, 52, 54, 55, 56,
57, 58, 62, 63, 66, 71, 74, 80, 84, 87, 88, 91, 95,
98, 99, 106, 112, 114, 116, 118, 119, 120, 122,
123, 127, 130, 131, 134, 138, 139, 142, 143, 144,
145, 147, 148, 152, 155, 162, 166, 170, 171, 173,
174, 175, 176, 178, 179, 180, 184, 185, 186, 187,
189, 194, 201, 202, 208, 209, 211, 212, 213, 216,
226, 227, 229, 231, 234, 240, 241, 242, 243, 244,
2 245, 248, 250

ries. In order to make this point more clear we show in Fig.
7 an example. In Fig. 7 spatiotemporal patterns of rule 54 are
shown. Each row corresponds to one random initial condi-
tion and each column shows a different time window. The
second column shows the complete pattern of length 7
=2650 whereas the first column shows only the last 150 time
steps thereof. One can clearly see that the first random initial
condition (first row) leads after about 600 time steps to a
periodic behavior of the CA whereas the second random ini-
tial condition (second row) does not. To make sure that the
reason therefore is not just a too short burn-in time we con-
tinued the simulations for 100 000 time steps (from the same
initial condition used in the second row) and found that the
behavior is still not periodic. This reveals that there are two
different regimes of random initial conditions that can lead
to a completely different behavior of the spatiotemporal be-
havior of rule 54. From this one can conclude that it should
be possible to categorize rule 54 in two different categories
depending on the random initial condition. We demonstrate
this by generating 200 spatiotemporal patterns from rule 54
all belonging to different random initial conditions and cal-
culated for these patterns the normalized compression dis-

TABLE II. Classification of the behavior of CA started from a
simple initial condition as shown in the right of Fig. 3.

Class CA rule

3,9, 11, 15, 17, 25, 27, 35, 39, 41, 43, 47, 49, 53,
59, 61, 65, 67, 81, 83, 85, 97, 103, 107, 110, 111,
113, 115, 117, 121, 124, 125, 137, 158, 163, 177,
188, 190, 193, 214, 230, 246
3 30, 45, 75, 86, 89, 101, 135, 149
18, 22, 26, 60, 73, 82, 90, 102, 105, 109, 126,
129, 146, 150, 153, 154, 161, 165, 167, 169, 181,
4 182, 195, 210, 218, 225
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FIG. 4. (Color online) Spatiotemporal patterns of different rules
started from simple initial conditions. Top left: rule 30. Top right:
rule 22. Bottom left: rule 18. Bottom right: rule 182.

tance. The result of the hierarchical clustering is shown in
the left of Fig. 8. One can see that there are two clearly
separated branches in the tree. Inspection of the patterns
from these branches reveals that the right branch corresponds
to periodic behavior whereas the patterns in the left branches
are nonperiodic.

These results suggest to subdivide the random initial con-
ditions by refining its definition to obtain a unique classifi-
cation of rule 54. However, the purpose of this paper is not to
provide such a specified definition but to point out that this is
one source of complexity that makes the classification of CA
rules so challenging.

In order to show that there are also rules that behave
uniformly for all random initial conditions we present in the
right of Fig. 8 an example showing the results for rule 30.
There one can see that the distances between the branches
are much smaller (see scale on the abscissa), indicating that
the results for all initial conditions are very homogeneous
suggesting not to cut the tree at any level which would lead
to subcategories.

We want to point out that this observation corresponds to
the behavior of rules 122 and 210, as shown in Fig. 2, when
using simple or random initial conditions. However, the cru-
cial difference is that it is less intuitive that the random initial
conditions themselves, as defined in Sec. VI A, do not lead
to a constant class behavior for the spatiotemporal patterns of
CA.

We finish Sec. VI by a remark regarding the identify rule
(204) and the shift rule (170). The identity rule (204) gives a
fixed point and a shift rule (e.g., 170) gives a periodic pat-
tern. According to Wolfram these two rules would be classi-
fied in class 1 (rule 204) and class 2 (rule 170). Hence, they
would be considered different to each other but closer to
each other than rules that show chaotic or complex behavior.
Application of the Kolmogorov complexity measure leads to
very similar results. This can be seen not only from Table I
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FIG. 5. Left: hierarchical clus-
tering of all 256 CA started from
random initial conditions. Right:
hierarchical clustering of 95 CA
labeled with a + in the left figure.
A summary of the categorization
can be found in Tables III and IV.
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TABLE III. Classification of the behavior of CA started from
random initial conditions averaged over E=10 runs as shown in the
left of Fig. 5.

Class CA rule

0, 4,8, 12, 13, 32, 36, 40, 44, 64, 68, 69, 72, 76
77,78, 79, 92, 93, 96, 100, 104, 128, 132, 136,
140, 141, 160, 164, 168, 172, 192, 196, 197, 200,
202, 203, 204, 205, 206, 207, 216, 217, 218, 219
220, 221, 222, 223, 224, 228, 232, 233, 234, 235
236, 237, 238, 239, 248, 249, 250, 251, 252, 253,

1 254, 255
1,2,5,6, 10, 14, 15, 16, 19, 20, 23, 24, 28, 29
33, 34, 37, 38, 42, 43, 46, 48, 50, 51, 52, 55, 66,
70, 71, 74, 80, 81, 84, 85, 88, 91, 94, 95, 108
112, 113, 116, 117, 123, 127, 130, 133, 134, 138,
139, 142, 143, 144, 148, 152, 155, 156, 157, 158
159, 162, 170, 171, 173, 174, 175, 178, 179, 186
187, 188, 189, 190, 191, 194, 198, 199, 201, 208
209, 211, 212, 213, 214, 215, 229, 230, 231, 240,

2 241, 243, 244, 245, 246, 247

for simple initial conditions but also from Table III for ran-
dom initial conditions (rule 204 is always in class 1 whereas
rule 170 is always in class 2).

VII. DISCUSSION AND CONCLUSIONS

In this paper we introduced a semiautomatic method to
classify spatiotemporal patterns of CA based on the normal-
ized compression distance. The method is semiautomatic be-
cause it actually does not classify but cluster the rules of the
CA leaving it to the investigator where to cut the tree ob-
tained from the hierarchical clustering. This way the method
allows an exploratory analysis studying many different con-
ditions of CA and their resulting behavior efficiently. The
spatiotemporal pattern of CA have been classified according
to their compressibility. Kolmogorov complexity has been
used previously [11], however, only for studying transition
tables of CA but not with respect to their spatiotemporal
pattern. Further, CA have been studied comparatively be-
cause the normalized compression distance NCD(x,y) com-

TABLE IV. Classification of the behavior of CA started from
random initial conditions averaged over E=10 runs as shown in the
right of Fig. 5.

Class CA rule

3,7,9, 11, 17, 21, 25, 26, 27, 31, 35, 39, 41, 43,
47, 49, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 67,
73, 82, 83, 87, 97, 98, 99, 103, 107, 109, 110,
111, 114, 115, 118, 119, 121, 124, 125, 131, 137,
145, 147, 154, 163, 166, 167, 176, 177, 180, 181,
2 184, 185, 193, 210, 226, 227, 242
30, 45, 60, 75, 86, 89, 90, 101, 102, 105, 106,
3 120, 135, 149, 150, 153, 165, 169, 195, 225

18, 22, 122, 126, 129, 146, 151, 161, 182, 183
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time
time

time
time

(c) (d)

FIG. 6. (Color online) Spatiotemporal patterns of different rules
started from random initial conditions. Top left: rule 161. Top right:
rule 89. Bottom left: rule 101. Bottom right: rule 195.

pares always two strings x and y from, e.g., two different CA
rules or initial conditions. Conventionally, CA have been
studied one rule at a time with measures that are solely based
on one rule or its spatiotemporal pattern [7,10].

We conducted our simulations for two different compres-
sion programs, gzip and bzip2, and found that the obtained
results are very consistent indicating that the actual choice of
the compressor to approximate K(x) ~ C(x) has only a minor

time

20 40 60 80 20 40 60 80
(a) space (b) space

100 &

time
time

-
(c) space (d) space

FIG. 7. (Color online) Spatiotemporal patterns of rule 54. Each
row corresponds to one random initial condition and each column
shows a different time window. The second column shows the com-
plete pattern of length 7=2650, whereas the first column shows
only the last 150 time steps thereof.
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FIG. 8. Hierarchical clustering of rules 54 (left) and 30 (right) for 200 different random initial conditions.
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influence on the results as long as the characteristic block introduced an averaging over the NCD matrices obtained
size of the corresponding compressor is not exceeded. This is from different random initial conditions because we noticed
in contrast to the initial conditions which have a profound from our simulations that some rules are sometimes labeled
influence on the result of the clustering. For this reason we as class 2 and sometimes as class 3 or 4. Interestingly, as we
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found out, averaging does not solve the problem fundamen-
tally but provides just a majority decision with respect to the
size of initial conditions that belong to a certain class (see,
for example, rule 54 in Figs. 7 and 8). For this reason a
statement such as “rule 54 is periodic” or “rule 54 is not
periodic” is ill-posed for random initial conditions with re-
spect to the compressibility measure we employed because it
does not lead to a unique classification of a CA rule for all
initial conditions. As remedy, a refinement of the definition
for random initial conditions will lead to a partitioning of the
space of random initial conditions in two (or more) disjoint
regions AX; guaranteeing that each initial condition from S,
~ X leads to the same class label. The problem with such a
partitioning is not only that it would be laborious to find the
actual partitioning but also that two different rules may have
two different partitions. But this would require a combinato-
rial treatment of the problem to identify initial conditions for
which all CA rules show a constant class behavior. From this
discussion it becomes clear that the parameter in form of
initial conditions increases the complexity of the classifica-
tion problem of CA considerably. For this reason the classi-
fication of one-dimensional CA with k=2 and r=1 depends
actually on many more parameters and not just on k and r,
hidden in the initial conditions, which are difficult to define
precisely in advance without performing the simulations
themselves. We want to point out that the problem of the
dependence of the classification on the initial conditions has
been already recognized and discussed in [31]. However, our
study is different by providing additionally a tractable meth-

PHYSICAL REVIEW E 81, 026103 (2010)

odological approach leading to quantitative results.

We think that the classification of spatiotemporal patterns
based on their compressibility, as measured by the normal-
ized compression distance [25], is a very fruitful way to
study complex systems in general and especially CA. For
example, our exploratory analysis approach can be immedi-
ately used to study one-dimensional CA with k>2 and r
>1 in an analog way. For the analysis of higher-dimensional
CA one would need to extend our approach by studying how
the d-dimensional spatiotemporal patterns are best mapped
into a string representation needed for the NCD. As dis-
cussed in Sec. V, it could be involved to avoid the unin-
tended introduction of symmetries that could lead the NCD
astray because in higher dimensions accounting for such in-
fluences may become more challenging.

In summary, our results show that despite the complexity
of single CA rules, which deserve to be studied individually,
the analysis of a collective of CA is feasible with the help of
our exploratory approach based on the normalized compres-
sion distance. When studied comparatively, the overall com-
plexity may be tamable by unraveling latent dependencies
governing the hierarchical organization of this multivariate
problem.
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