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The two-dimensional density correlation matrix is constructed for symbolic sequences using contiguous
segments of arbitrary size. The multifractal spectrum obtained from this matrix motif is shown to characterize
the correlations in the symbolic sequences. This method is applied to entire human chromosomes, shuffled
human chromosomes, reconstructed human genomic sequences and to artificial random sequences. It is shown
that all human chromosomes have common characteristics in their multifractal spectrum and deviate substan-
tially from random and uncorrelated sequences of the same size. Small deviations are observed between the
longer and the shorter chromosomes, especially for the higher �in absolute values� statistical moments. The
correlations are crucial for the form of the multifractal spectrum; surrogate shuffled chromosomes present
randomlike spectrum, distinctly different from the actual chromosomes. Analytical approaches based on hier-
archical superposition of tensor products show that retaining pair correlations in the sequences leads to a closer
representation of the genomic multifractal spectra, especially in the region of negative exponents, due to the
underrepresentation of various functional units �such as the cytosine-guanine CG combination and its comple-
mentary GC complex�. Retaining higher-order correlations in the construction of the tensor products is a way
to approach closer the structure of the multifractal spectra of the actual genomic sequences. This hierarchical
approach is generic and is applicable to other correlated symbolic sequences.
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I. INTRODUCTION

The presence of nontrivial statistical correlations in the
genome of many organisms has been the subject of intense
investigations in the past three decades, starting in 1992 with
the seminal papers by Li et al. �1�, Peng et al. �2�, and Voss
�3�. Since then a great number of studies have been devoted
to the exploration of correlations in the genomes of many
organisms and to the understanding of the mechanisms pro-
ducing these correlations. More specifically, scaling laws
were detected in the primary structure of DNA and in par-
ticular in the noncoding parts of higher eucaryotic DNA
�1–14�. Later, the size distributions of coding and noncoding
DNA segments were shown to follow distinctly different sta-
tistics, short range in the former case and long range in the
latter �8�. The CG /GC content of the genome �C�cytosine,
G�guanine� was also shown to present long-range features
in its distribution within genomic sequences �15–23�.

The identification of long-range distributions in the size of
noncoding DNA sequences interrupted by coding short-range
distributed sequences has induced the hypothesis of stochas-
tic fractal, Cantor-like structures in the genome. Investiga-
tions in this direction have demonstrated such tendencies and
fractal dimensions were obtained for various categories of
organisms �24–26�. In addition to this, the chaos game rep-
resentation of genomic sequences has also demonstrated
fractal features �27�.

The complexity of the genomic sequences, due to the
many superposed and often counteracting evolutionary pro-
cesses, leads to the hypothesis that the DNA cannot be char-
acterized by a simple fractal dimension but it could involve
many scales in its structure. This hypothesis points directly
to the notion of multifractality, where many scales are in-
volved in the construction of the system. It is well known

that usual fractal and multifractal systems emerge from mul-
tiple iterations of the same process or multiple superpositions
of the same initial unit. Such hierarchical processes are
known to take place during the evolution of organisms,
where DNA duplications and repetitions are abundantly ob-
served �28�. In particular, one repetitive element alone, the
ALu sequence, is shown to cover 10.7% of the human ge-
nome. In the current study the presence of multiple scaling in
the human genome will be discussed through the search for
multifractality. In addition, the origin of this multifractality
will be investigated through comparisons with elementary
iterative processes �tensorial products of density correlation
matrices� producing specific types of multifractal spectra.

In the next section the probability of finite-size blocks
containing a specific configuration of base pairs �bps� will be
defined. It will be shown that the frequency of occurrence of
a certain DNA block is different from the product of frequen-
cies of individual bps, which is a direct indication of corre-
lations in DNA. The construction of the probability block-
density matrix will further demonstrate the nonuniform
distribution of blocks and the presence of correlations. In the
same section the calculation of the multifractal spectrum
based on the probability density matrix will be discussed. In
Sec. III the multifractal spectrum of all human chromosomes
will be calculated and direct comparison will be undertaken
with the spectrum of various surrogate data. In Sec. IV it will
be shown how to obtain iteratively the probability distribu-
tion of blocks from multiple superpositions of the single bps
distributions. This iterative process yields an analytical ex-
pression of the multifractal spectrum, which can be com-
pared with the one calculated directly from the genomic se-
quences �chromosomes�. When higher-order blocks are used
for the construction of the probability block-density matrix,
this hierarchical approach gradually approaches the results of
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the real chromosomes. In the final section the main conclu-
sions of this study will be recapitulated and open problems
will be discussed.

II. METHOD: 2D DENSITY CORRELATION MATRIX

A. Construction of the 2D density correlation matrix

Consider a symbolic sequence S=S1S2S3¯SN, where N is
the length of the sequence and Si takes values from an
m-letter alphabet. As a working example genomic sequences
will be used, in which case m=4 and Si can take values from
the set �A ,C ,G ,T� �A stands for adenine, C for cytosine, G
for guanine, and T for thymine�. Define as P�Sl�

the probabil-
ity to find a given block of size l within the sequence S. For
random uncorrelated sequences,

P�Sl�
= �

i=1

m

pi
mi, �

i=1

m

mi = l �1�

where pi denotes the single symbol probability �of symbol
Si� and mi denotes the number of times the symbol Si is
found within the block of size l. In the general case correla-
tions oblige the block probability to deviate substantially
from Eq. �1�. This is usually the case for sequences originat-
ing from digitalized natural data, or conversion of continuous
sequences into finite alphabets, or partition of the state space
of continuous dynamical systems into a finite number of el-
ements. Also, for symbol sequences originating from natural
processes, such as genomic and protein sequences, natural
languages, music etc, correlations are built in as a result of
evolution.

To obtain information about the presence of a given block
of size n �Bn�= �B1B2¯Bn� following in juxtaposition a
block �An�= �A1A2¯An�, we construct the frequency matrix
Mn

m of all possible combinations of blocks. For an m-letter
alphabet and blocks of size n, the number of all possible
combinations are mn and the 2-D frequency matrix Mm

n con-
tains mn�mn elements. If A and B denote specific combina-
tions, �A�	�A1A2¯An� and �B�	�B1B2¯Bn�, the elements
of the frequency matrix correspond to

M�AB� 	 p�A1A2¯AnB1B2¯Bn� �2�

�p�A1A2¯An� · p�B1B2¯Bn� 	 M�A��B� �3�

and their precise value needs to be computed directly from
the sequence S. In particular, for the case of DNA sequences
�m=4� and for two-letter words �n=2� the matrix M4

2 has
dimensions �16�16� and takes the following form:

M4
2 =


pAAAA pAAAC pAAAG pAAAT pAACA ¯ pAATT

pACAA pACAC pACAG pACAT pACCA ¯ pACTT

¯ ¯ ¯ ¯ ¯ ¯

pTTAA pTTAC pTTAG pTTAT pTTCA ¯ pTTTT

� .

�4�

From its construction, the matrix M contains information on
the frequency of occurrence of all words of length 2n as well

as on the probability of a given block of size n to follow a
specific block of the same size n. Although in this work the
size of the two blocks is equal, the results can be generalized
for blocks of different sizes. Due to the construction of M the
sum of all its elements should be equal to unity. This is true
for all sequences, whether or not they are uniform or corre-
lated. Note, that for a uniform, random distribution of the
letters and very long �infinite length� sequences, the sum of
each column and row should be equal to 1 / �mn�. This does
not hold for nonuniform or correlated sequences.

The matrix Mm
n can be represented with a rough surface,

the local height of which is defined by the block probabili-
ties. If the various blocks have similar frequencies, the sur-
face is almost flat. If there are variations in the block fre-
quencies these are mirrored in the variety of surface heights
and consequently in the complexity of the multifractal spec-
trum. In DNA sequences it is known that certain combina-
tions, such as the CG one, are reserved for specific functions
�promoter sequences, regulatory elements, etc.�. These com-
binations are not abundant and consequently their frequency
is relatively small �28�. As a result, blocks of any size which
include the CG �or GC� complex are also infrequent. The
superposition of these blocks with others which have various
frequencies create a variety of scales, which give nontrivial
structure to the multifractal spectrum of the density correla-
tion matrix.

As an example in Fig. 1 the density correlation matrix of
the human chromosome 10, for n=3, is depicted. The varia-
tion in the gray scales represents the local value pij. Low pij
values are represented by black colors, while high pij’s are
represented by white colors. One can observe different scal-
ings in the coloring, ranging from black, to dark gray, to light
gray and to white. Low density layers which correspond to
the rare CG and GC content �large black cross� and larger
blocks containing multiple CG combinations �smaller black
crosses� clearly appear. Maximum values such as pAAAA,
pTTTT, and single point mutations of those, can be seen with
white and light gray colors in the upper left and lower right
part of Fig. 1.

B. Block correlations in DNA

To obtain some intuition about the type of correlations we
search, it is useful to construct the simple frequency matrix

FIG. 1. The density correlation matrix for human chromosome
10, with n=3.
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for blocks of size 2n=2. Together the frequency values
found in the human chromosome 10 are reported,

M =

pAA pAC pAG pAT

pCA pCC pCG pCT

pGA pGC pGG pGT

pTA pTC pTG pTT

� ,

Mch:10 =

0.0958 0.0505 0.0705 0.0752

0.0734 0.0536 0.0103 0.0706

0.0597 0.0440 0.0537 0.0505

0.0631 0.0597 0.0736 0.0959
� . �5�

In the above data the accuracy is of the order of �0.0005.
Curiously enough, the values of the frequencies pij , i , j
� �A ,C ,G ,T� are close in all human chromosomes for all
combinations of i and j. In other words, the numerical values
of the matrix M are almost the same as in Eq. �5� for all
human chromosomes. One first observation is that this ma-
trix is not symmetric around the diagonal, pij�pji, while
symmetry is always apparent in the case of random, uncor-
related sequences. Note also the small frequency of appear-
ance of the doublet CG. This is directly related to the speci-
ficity of the CG complex, which is not abundant in the
genome but is retained for specific functions related to pro-
moting the gene transcription �28�, as discussed also in Sec.
II A. The same is true for the complimentary GC sequence.

To demonstrate pedagogically the presence of correlations
it is enough to calculate the same matrix as products of fre-
quencies of finding a single letter. The individual bps fre-
quencies computed for chromosome 10 are

pA = 0.291 921, pC = 0.207 966,

pG = 0.207 859, pT = 0.292 219. �6�

In this uncorrelated case the binary frequencies are:

Muncor =

pApA pApC pApG pApT

pCpA pCpC pCpG pCpT

pGpA pGpC pGpG pGpT

pTpA pTpC pTpG pTpT

�
=


0.0852 0.0607 0.0607 0.0853

0.0607 0.0432 0.0432 0.0608

0.0607 0.0432 0.0432 0.0608

0.0853 0.0609 0.0608 0.0854
� . �7�

As expected this matrix is symmetric around the diagonal.
Note also, the difference in the numerical values between
frequency matrices �5� and �7�.

Having obtained a first impression on the type of correla-
tions that we seek, we will next characterize the correlations
through the multifractal spectra of higher-order frequency
matrices.

C. Calculation of the multifractal spectrum

The distribution of words of size n in the above manner
leads to the construction of a two-dimensional �2D� mesh

with different density on each site, constituting a surface
above this mesh. The complexity of the sequence is now
mirrored in the complexity of the relief of this surface.

Natural surfaces, or surfaces obtained from natural se-
quences as above, tend to display characteristic heights over
a variety of scales and often they present self-similar features
�29–31�. For single-scale self-similar surfaces, one single ex-
ponent, the fractal dimension D is enough to characterize the
complexity of the structure. In the case of more complex
systems, such as the DNA, where a great number of evolu-
tionary processes have been involved in their formation, it is
hard to imagine that a single scaling exponent can adequately
describe their structure. A spectrum of exponents is more
appropriate for the quantitative description of a complex se-
quence and the corresponding constructed surface. The con-
tinuous spectrum of exponents, each of which describes the
local distribution of specific heights, is obtained through the
multifractal description of the surface and is also called the
singularity spectrum. The singularity spectrum is obtained
through the generalized dimensions and the exponents Dq of
order q are obtained using the box-counting technique.
Namely, the surface is divided in squares �or in general
“boxes”� of linear size �. In each “box” in position �i , j� the
surface height/intensity is denoted as pij. The qth order ex-
ponent is calculated as

Dq =
1

q − 1
lim
�→0

log �
i,j=1

mn

pij
q

log �
. �8�

In the case of the density correlation matrix �Eq. �5� in Sec.
II A�, each matrix element corresponds to the local “height”
of the surface and formula �8� can be directly applied. The
limit �→0 corresponds to the single-site calculation. The
case q=0 corresponds to the “capacity dimension,” which is
best estimated with the usual box-counting technique. The
case q=1 presents a singularity and is calculated through de
l’ Hospital’s rule. It is also called the “information dimen-
sion” and is given as

D1 = lim
�→0

�
i,j=1

m2n

pij log pij

log �
�9�

The case q=2 is also known as the “correlation dimension.”
In the cases of nonfractal, random systems or simple �one-
scale� fractals, all exponents converge a� to the capacity di-
mensions for simple, one-scale fractals or b� to the embed-
ding dimensions for random, nonfractal surfaces. In the case
of systems with multiple scales, the expression for Dq is a
decreasing function of q.

The computation of Dq using Eqs. �8� and �9� can proceed
directly using the block probabilities obtained from the DNA
sequences, as in Sec. II B. Next we will calculate the multi-
fractal spectrum of all human chromosomes and compare
them with random surrogate data, while in Sec. IV we will
show how to construct the 2D density correlation matrix M
using a hierarchical superposition of blocks �tensor product�
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and obtain an analytical approximation to the multifractal
spectrum by retaining various degrees of correlations.

III. APPLICATION TO ARTIFICIAL RANDOM
SEQUENCES AND GENOMIC SEQUENCES

Using the method described in Sec. II A we first construct
the density correlation matrix for all 24 human chromosomes
�22 autosomes +2 sex chromosomes�. We use blocks of size
n=8 which produce the matrices M4

8. For each one of these
matrices we calculate the multifractal dimensions Dq using
Eqs. �8� and �9�. Figure 2 presents the multifractal exponents
Dq as a function of q from real chromosomal data and vari-
ous surrogates. In this figure are shown: �a� the multifractal
exponents obtained from the chromosome 10 sequence �thick
solid black line�. �b� The red line �with symbols stars� cor-
responds to shuffled data from the same chromosome. The
original sequence has been shuffled a number of times equal
to 10� �chromosomal size in bps�. �c� The green line �with
symbols filled circles� represents an artificial random se-
quence of size equal to chromosome 10 and single symbol
probabilities given by Eq. �6�. �d� The blue line �with sym-
bols open circles� corresponds to a sequence of size equal to
chromosome 10 and equal probabilities for all four symbols.
Note that there are a number of unknown bps in chromosome
10, which are found with frequency pN=1.7�10−5. This in-
troduces an error of the order of 10−5 in our calculations
which is of the order of the accuracy used in this work.

As expected for case �d� �the completely random se-
quence, with equiprobable distribution of all 4 bps�, the fre-
quency covers equiprobably the 2D space and thus all the
exponents collapse to the value 2 �this will be shown later in
Sec. II A�. The case of random data with different bps fre-
quency �case c� deviates slightly from the equal frequency
distribution, as seen in the same figure. The same is true for
the case of the shuffled data �case b�, where all correlations
are destroyed due to the shuffling process. When all correla-
tions break the resulting sequence becomes statistically
equivalent to a random one �see case �c�� and thus presents
identical multifractal exponents.

In Fig. 3 the multifractal exponents Dq are computed for
all human chromosomes. The inset depicts details of the
same figure. Three lines were added as eyeguides. The blue
�thick solid� line which corresponds to chromosome 4, the
red �thin solid� line for chromosome 17 and the black
�dashed� line for chromosome 19. All sequences show Dq
=2 for q=0. This is expected, from Eq. �8�, since the expo-
nent for q=0 represents the fractal dimension �capacity di-
mension� of the substrate which is equal to 2. Note that
longer chromosomes �numbers 1, 2…11� follow the blue
�thick� line and are depicted at the top in Fig. 3, while shorter
ones follow the red �thin� and black �dashed� lines and are
depicted lower on the same diagram.

Infrequent events �extreme events� which take place with
low probabilities pij become evident and give larger contri-
butions for negative values of q, while frequent events con-
tribute more in the positive q values. As discussed earlier the
complexes CG and GC are very infrequent �see also matrix
�5�� and they are responsible for the large deviations in Fig.
3 for negative q. At the other end, for positive q, groups such
as poly-A and poly-T contribute to the divergence from the
homogeneous value Dq=2.

From the above discussion the existence of correlations in
the base sequence of DNA becomes evident with the use of
the density correlation matrix, while the comparison of the
multifractal spectra of genomic sequences with random and
uncorrelated ones reveals the presence of specific structures
�sequences� with functional roles in the genome.

IV. ANALYTICAL HIERARCHICAL APPROACH
USING TENSOR PRODUCTS

A. Higher-order tensor products of symbol sequences

Many physical systems emerge as superpositions of them-
selves from finer to larger scales and this way correlations
are generated and propagate. In particular, in the case of
DNA sequences it is widely accepted that the genome suffers
extensive duplications and many copies of the same segment
maybe found within the same chromosome in adjacent posi-
tions �28�. Assuming in this case that the genome has
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emerged from multiple superpositions of itself, the probabil-
ity p�A2n� of a certain string �A2n�= �A1A2 . . .AnAn+1 . . .A2n� to
result from the superpositions of strings �An�= �A1A2 . . .An�
and �An��= �An+1An+2 . . .A2n� will be computed. This includes
the case of duplication when An=An�.

To take into account all possible configurations of strings
of size 2n we define the superposition through the tensor
product of matrices �or outer product in case of vectors�,

Mm
2n = Mm

n
� Mm

n �10�

where the symbol � denotes the tensor multiplication. For
the simple case of a 2-letter alphabet �letters: A ,C� the su-
perposition of all possible strings containing 2 letters results
in the probability density matrix of all strings containing 2
�2=4 letters,

M2
2

� M2
2 = �pAA pAC

pCA pCC

 � �pAA pAC

pCA pCC



= �pAA�pAA pAC

pCA pCC

 pAC�pAA pAC

pCA pCC



pCA�pAA pAC

pCA pCC

 pCC�pAA pAC

pCA pCC

 �

= �
pAApAA pAApAC pACpAA pACpAC

pAApCA pAApCC pACpCA pACpCC

pCApAA pCApAC pCCpAA pCCpAC

pCApCA pCApCC pCCpCA pCCpCC

� .

�11�

Note that using the treatment of Eq. �11� the correlations of
doublets are retained but above two letters the probabilities
are treated as decorrelated. This might be true in some cases
�for some combinations� but is not true in the general case. If
one wishes to retain correlations of higher orders, one may
start the superposition procedure from longer words n�2.
Using the superposition of a matrix with itself we quickly
produce matrices of large sizes. Consider for example the
matrix M4

2 of form �5�. The tensor product of M4
2 �size 16

�16� yields a matrix M4
4 of size 44�44=256�256. Further

superposing these matrices yields a matrix of size M4
8 of size

48�48=65 536�65 536.
Certainly, using tensor calculus one can find tensor prod-

ucts of matrices with different dimensionality and thus obtain
the probability of finding a word of arbitrary size n from
superpositions of words of sizes n1 and n2, provided that
n1+n2=n. Still, it is interesting to investigate the case of
self-tensor product of matrices, because it is easy to calculate
analytically the multifractal spectrum of the kth tensor prod-
uct �k superpositions� and to compare it with the multifractal
spectrum obtained from the real data.

It is now possible to obtain a spectrum of scaling expo-
nents even from simple superpositions of frequency matrices
which retain low-order genomic correlations. This will dem-
onstrate that even a simple superposition of DNA strings, in
the form of repetitions or duplications is enough to create
long-range correlations. We will start with the pedagogical

example presented in Eq. �7�. This matrix representing un-
correlated data, with pA= pT�0.29=� , pC= pG�0.21=�,
becomes

Muncor =

�2 �� �� �2

�� �2 �2 ��

�� �2 �2 ��

�2 �� �� �2
� . �12�

In matrix �12� the combination �� appears with frequency 8,
the combination �2 with frequency 4 and the combination �2

also with frequency 4. In the case of n successive superpo-
sitions of matrix M, i.e., the tensor product of order n, it can
be shown that the number of superpositions are given by

�2� + 2��2n = �
k=0

2n
�2n�!

k!�2n − k�!
�2��k�2��2n−k

= �
k=0

2n
�2n�!22n

k!�2n − k�!
�k�2n−k, �13�

where the variable k can take both even and odd values.
From expression �13� it can be directly inferred that in the
matrix of size 4n�4n probabilities of strength

Pk = �k�2n−k �14�

are met as often as

Rk =
�2n�!22n

k!�2n − k�!
. �15�

Using Eq. �8� it becomes now easy to calculate the exponents
Dq as follows:

Dq =
1

q − 1
lim�→0

log �
k=1

2n

RkPk
q

log �
�16�

where the various pij in representation �8� have been grouped
together in representation Pk of Eq. �16� and each one of
them is found Rk times. The value of � is calculated as

� = �1/4�n �17�

because in every iteration the size of the matrix increase 4
times in each direction and after n iterations the linear in-
crease is L1=4n. Thus each cell �site� has linear size propor-
tional to the inverse of L1 and this corresponds to the small-
est value of cell size ��→0�. Taking into account Eqs.
�14�–�17� the values of Dq are calculated as

Dq =
1

q − 1

log�22n��q + �q�2n�
log�1/4�n , �18�

which ultimately simplifies to

Dq =
1

q − 1
�− 1 −

log��q + �q�
log 2


 . �19�

Note that
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Dq = 2 for � = � = 1/4 �20�

which corresponds to the homogeneous and uncorrelated dis-
tribution of the 4 symbols �bps�. Expression �19� can be di-
rectly computed for different values, e.g., �=0.29 and �
=0.21 which approximate the human chromosome 10 and
can be compared with the Dq exponents directly computed
from the block distributions in the corresponding sequences.

It is also interesting to repeat the calculations Eqs.
�13�–�19�, using different values of single base concentra-
tions, namely pA=a, pC=c, pG=g and pT= t. The correspond-
ing matrix takes then form �7� and after n successive super-
positions of this matrix M the complexity of the 2D surface
reads as

�a + c + g + t�2n

= �
k1,k2,k3=0

2n
�2n�!

k1!k2!k3!�2n − k1 − k2 − k3�!

�ak1ck2gk3t�2n−k1−k2−k3�. �21�

From Eq. �16�, with

P�k1k2k3� = ak1ck2gk3t2n−k1−k2−k3 �22�

and with

R�k1k2k3� =
�2n�!

k1!k2!k3!�2n − k1 − k2 − k3�!
�23�

it becomes easy to calculate the exponents Dq. The resulting
expression is

Dq =
1

q − 1
�−

log�aq + cq + gq + tq�
log 2


 , �24�

which reduces to Eq. �19� when a= t and c=g. Note that the
calculation presented here corresponds to multiple �n� super-
positions of the uncorrelated frequencies of single bps, while
the block distributions used in Sec. III carry information
about block correlations. We thus expect specific deviations
of the spectrum calculated in Eqs. �19� and �24� with the one
directly obtained using the block frequencies �Figs. 2 and 3�.

B. Tensor product with nearest-neighbor correlations

In a second approximation, it is possible to calculate ten-
sor products of the matrix Mch:10, which retains nearest-
neighbor correlations in the DNA sequences. In this case one
needs to calculate the complexity of the tensor product of
order n of the matrix Mch:10. Following closely the analysis
in Sec. II A one can write the complexity of the tensor prod-
uct of order n as

�paa + pac + pag + pat + pca + ¯ + pgg�n

= �
k1,k2,¯k15=0

n
n!

k1!k2! ¯ k15!�n − k1 − k2 − ¯ − k15�!

�paa
k1 pac

k2pag
k3
¯ ptt

�n−k1−k2−¯−k15�. �25�

The resulting spectrum of exponents is then calculated as

Dq = −
log�paa

q + pac
q + pag

q + pat
q + pca

q + ¯ + pgg
q �

2�q − 1�log 2
. �26�

Expression �26� retains also correlations of nearest neighbors
in the DNA sequence. In Fig. 4 the three approximations to
the multifractal spectrum �Eqs. �19�, �24�, and �26�� are pre-
sented together with the original spectrum calculated from
the genomic data �chromosome 10�. In particular Dq is de-
picted for �a� the chromosome 10 DNA sequence, �b� the
approximation of single bps with equal pA= pT=0.29 and
pC= pG=0.21, �c� the approximation of single bps with dif-
ferent values of pA, pT, pC and pG as obtained from the
sequence �Eq. �6��, and �d� keeping correlations in blocks of
size 2 �nearest neighbors, Eq. �26��. As depicted in Fig. 4 the
case �d� which includes pair correlations describes closer the
real data, in terms of the multifractal exponents Dq which
account for the bps frequencies in this chromosome. Al-
though the approximation obtained through the pair correla-
tions resembles the DNA spectrum, it is still considered as
unsatisfactory, due to ignoring correlations of higher order.

Continuing this iteration process and keeping correlations
in larger and larger blocks the spectrum Dq can gradually
improve, approaching better the experimental �genomic�
data. Generalization of Eqs. �19�, �24�, and �26� to blocks of
size s yields the following approximation for the multifractal
spectrum:

Dq = −
log Cq

2s�q − 1�log 2
, �27�

where Cq is

-2 0 2
q

1.5

2

2.5

D
q

Chromosome 10
Uncorrelated Eq. (19)
Uncorrelated, Eq. (24)
Pair correlated

FIG. 4. �Color online� Comparison of multifractal spectrum of
chromosome 10 with analytical hierarchical approaches: �a� the
solid black line represents the generalized exponents Dq for human
chromosome 10. �b� The blue line �with symbol circles� corre-
sponds to a sequence of 2 symbols with probabilities �=0.29 and
�=0.21, as calculated from chromosome 10 �see Eq. �19��. c� The
green line �with symbols triangles� is almost identical to the green
one and is obtained from Eq. �24� with four single symbol prob-
abilities given by Eq. �6�. �d� The purple �dashed� line is obtained
from Eq. �26� where pair correlations in chromosome 10 are taken
into account.
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Cq = paa¯aa
q + paa¯ac

q + paa¯ag
q + ¯ + pgg¯gg

q

= �
�i1,i2,i3,i4�

p�i1i2i3i4�
q �28�

with �i1,i2,i3,i4� � �A,C,G,T�

and the sum runs over all 4s combinations of blocks. Figure
5 compares the multifractal spectrum calculated from chro-
mosome 10 with the analytical superposition method, when
retaining correlations in blocks of sizes s=2 �pair correla-
tions�, s=3 �triplet correlations�, s=4 �quadruplet correla-
tions�, and s=5 �quintuplet correlations�. As the size of the
block �which equals the order of correlations� increases, the
corresponding spectrum estimates better the one obtained di-
rectly from the data. Higher-order correlations induce nu-
merical errors due to the small values of the various frequen-
cies which exceed the computer precisions. The same
procedure can be followed for all other chromosomes and
gives qualitatively similar results. The hierarchical approach
presented is based on superpositions of blocks of identical
length but different composition. In principle, one could
complexify further the hierarchical process by varying the
length and the composition of blocks at the same time.

From the comparison of the multifractal spectra obtained
through the analytical approach when retaining various or-
ders of correlations with the actual chromosomal spectra, we
understand that: �a� multiple superpositions of single bps
data are not enough to reproduce the correlations of the hu-
man genomic sequences. �b� Structural correlations in the
genome have been created by various evolutionary processes
which cannot be accounted for using simple superpositions.
�c� By taking into account higher-order genomic correlations

during the analytical hierarchical approach, a closer repre-
sentation of the chromosomal multifractal spectra is achieved
and �d� If superpositions of multiple blocks of different
lengths are taken into account then the DNA structure can,
gradually, be recovered.

V. CONCLUSIONS

The 2D block correlation matrix is constructed as tensor
product of block frequencies in symbol sequences. Consid-
ering this matrix as a 2D surface where the local height rep-
resents the corresponding block probability, its multifractal
spectrum is calculated. The multifractal spectrum demon-
strates the existence of different length scales participating in
the construction of the symbolic sequence.

As an application we consider the 22 human autosomes
plus the two sex chromosomes. The calculated spectra dem-
onstrate the presence of nontrivial correlations and give sub-
stantial deviations from random uncorrelated data. These de-
viations can be attributed �a� to the many length scales which
are involved in the evolutionary construction of the primary
structure of DNA and �b� to the fact that specific sequences
are not abundantly distributed but are retained for specific
functional or structural tasks and thus appear with relatively
low frequencies. The demonstrated multifractality may stem
from the apparent superposition of different functional units
carried by each genomic sequence. In addition, the superpo-
sition of segments is responsible for creating many length
scales in the system and thus this method may prove valu-
able in shedding light to the still open problem of anomalous
scaling of intron �noncoding strings� versus exon �coding�
segments that was first discovered in the early 1990s.

From the deterministic theory of fractals it is known that
fractal structures are mathematically created through super-
positions of seed sequences. Retaining block probabilities of
low order �second to fifth� we have created correlation den-
sity matrices from superpositions of these block probabili-
ties. Due to the hierarchical nature of the process we were
able to calculate exactly the multifractal spectra obtained us-
ing tensor products of matrices. It was demonstrated that this
process approaches closer the actual chromosomal multifrac-
tal spectrum as the order of the retained correlations is in-
creased. However, numerical errors prohibit the continuation
of this process for very large blocks because the block prob-
abilities decrease to even smaller values, beyond the com-
puter precision. Using blocks of higher orders and different
lengths to construct the tensor product is a way to obtain an
increasingly better approximation to the genomic multifrac-
tal spectra.

This hierarchical tensor product superposition approach is
generic. It can be used for the detection and the comparison
of correlations in many natural and artificial symbolic se-
quences, such as natural languages, music, binary sequences
generated by computer, protein sequences and other continu-
ous data sequences converted to binary ones. It can provide a
way to determine whether the sequence correlations are cre-
ated as a result of superposition processes of shorter �lower-
order� segments.

2222222222222222222222222222222222222222 22222222222222222222

3333333333333333333333333333333333333333 33333333333333333333

4444444444444444444444444444444444444444 44444444444444444444

-2 0 2
q

1.5

2

2.5

D
q

Chromosome 10
pair correlations2 2

triplet correlations3 3

quadruplet correlations4 4

FIG. 5. �Color online� Comparison of multifractal spectrum of
chromosome 10 with analytical hierarchical approaches: �a� the
solid black line represents the generalized exponents Dq for human
chromosome 10. �b� The purple line with symbol “2” is obtained
from Eq. �26� where pair correlations in chromosome 10 are taken
into account. �c� The green line with symbol “3” is obtained from
Eq. �28� where third-order correlations in chromosome 10 are re-
tained. �d� The blue line with symbol “4” is obtained from Eq. �28�
where 4th order correlations in chromosome 10 are retained.
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