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By studying a recent biophysical model of tumor growth in the presence of the immune system, here we
propose that the phenomenon of evasion of tumors from immune control at a temporal mesoscale might, in
some cases, be due to random fluctuations in the levels of the immune system. Bounded noises are considered,
but the Gaussian approach is also used for analytical reference. After showing that in the case of bounded
noises there may be multiple attractors in the space of probability densities, we numerically show that the
velocity of convergence toward asymptotic density is very slow and that a transitory analysis is needed. Then,
by simulations using the sine-Wiener and the Tsallis noises, we show that if the level of the noise is sufficiently
large then there may be the onset of noise-induced transitions in the transitory density evaluated at realistic
times. Namely, the transitions are from unimodal density centered at low values of tumor burden to bimodal
densities that have a second maximum centered at higher values. However, those transitions depend on the

distribution of the noise.
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I. INTRODUCTION

The complex and nonlinear interplay of the immune sys-
tem (IS) with non-self-entities [1] offers an ideal area of
research for the statistical physics of nonequilibrium systems
[2] and, indeed, has long been a source of great interest for
physicists [3]. In particular, the interaction of IS with tumors
is a classical challenge in the field of biophysics [3-10].

Molecular biology has shown that tumor cells (TCs) are
characterized by a vast number of genetic events leading to
the appearance of specific antigens, which trigger actions by
the IS [11]. These experimental observations have provided a
theoretical basis to the old empirical hypothesis of immune
surveillance, i.e., that the IS may act to control or eliminate
tumors [12]. Only in recent years, has a sufficient amount of
experimental and epidemiologic evidence been accumulated
in favor of this hypothesis and it has been demonstrated that
the IS can suppress tumors [13].

An important point to stress is that the structure of the
tumor-immune system (T-IS) interactions is also fime vary-
ing at two different scales, fast and slow, which may be a
cause of evasion of the tumor from immune control
[9,13,14]. The fast scale is related to the very initial phases
of growth when immune system cells dynamically learn to
recognize and target TCs [15], which might allow many neo-
plasms to escape from the immune control [16].

At the slow scale, remarkably, the TCs are characterized
by a considerable evolutionary ability to enhance their sur-
vival in a hostile environment [9,13,17]. Indeed, if the IS is
not able to eliminate a neoplasm, a suboptimal control is
possible by establishing a dynamic equilibrium, such that the
tumor may only survive in a small steady state [8]. However,
over a long period of time [13] the neoplasm may develop
multiple strategies to circumvent the action of the IS [11,13],
which may allow it to recommence growing to its carrying
capacity [9].
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In [9] those behavioral strategies interrelated with pheno-
type changes were described by means of models similar to
the Lotka-Volterra models with slowly varying parameters
representing adaptively changing interaction strengths [18].
The objective of this work is the investigation of the phe-
nomenon of evasion of TCs from immune control at a tem-
poral mesoscale.

Of course in the very short term if either the tumor is
lowly immunogenic or the level of IS is per se low (e.g.,
because of an immunodeficiency [1]) it is obvious that the
transformed cells can easily and in short times evade control.
Over the long temporal range not only those slow evolution-
ary processes but also the IS degradation due to natural se-
nescence [14] can explain long-term evasions. However,
middle-term evasions are presumably representative of the
vast majority of cases of immune surveillance failure.

An important factor that has been extensively investigated
[4,5,19,20,22] is the influence of the fluctuations in the pro-
liferation rates of a tumor. Those fluctuations, however, play
a dual role since they can also trigger the elimination of the
neoplasm.

Given the complexity and multistability of the T-IS inter-
play, we think that a natural approach is to investigate the
role of statistical fluctuations of immune levels that might
trigger noise-induced transitions. Moreover, from a modeling
point of view, the extreme intricacy of the interactions be-
tween tumor cells and immune effectors [2,21] further justi-
fies the inclusion of noise on a deterministic model of T-IS
interplay in order to take into account a plethora of relevant
phenomena such as the variable strength of the neoantigens
in stimulating the immune response, the expression or ab-
sence of expression of molecules needed for T cell activa-
tion, the dynamics of Treg cells that generate a state of tol-
erance to cancer antigens, and many others [1,16].

We stress that in this problem the methods of noise-
induced transitions theory have to be somewhat adapted. In-
deed, recent studies have shown that the classical approach
based on Gaussian perturbations in biology has a limited
range of applications (see [24] and references therein), and
that suitable bounded noises should be used [25].
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Another major point is that the classical theory of noise-
induced transitions [4] is an asymptotic theory since it refers
to the study of the qualitative changes in stationary probabil-
ity densities: P, (x)=1im,_,,, P(x,f), where x stands, in bio-
logical applications of this theory, for some biological prop-
erty such as the size of a cellular population, as in our case,
or the viral load or the average activity, etc. Here, of course,
we shall assume that x denotes the tumor size. However,
living beings have a finite lifespan. Thus, the lifespan of the
host organisms must set a natural limit to the investigations,
which makes the velocity of convergence to P,(x) an essen-
tial parameter. If this velocity is low and the attractor is
practically reached in times that are greater than the average
lifespan of the organisms in study, one has to investigate the
possible qualitative changes in P(x,7) during its transitory,
namely, at some given realistic times. Moreover, also in
other fields of applied physics the necessity of transitory
analyses has been stressed [26].

Very interestingly, in [5] the problem of the influence of
the fluctuations of the immune system strength had been
faced, with the interesting result that by increasing the vari-
ance of the noise, the corresponding effect is the (partial)
rejection of the neoplasm. However, in the model [5] the
effect of the immune system is increasing for whatever size
of tumor, whereas there is evidence that for large sizes of the
tumor there is a decrease in the effect of the immune system
[8]. Thus, the important results of [5] may be considered as
referring to the class of largely immunogenic tumors.

To take into account the decreased cytotoxic effectiveness
of immune effectors, we study here a phenomenological
model that was proposed in [20,22] by adapting previously
existing prey-predator models [23]. Here, we shall give a
precise biological interpretation of the model and of its lim-
its. We shall then focus on the response of this biological
system to stochastic bounded perturbation in the immune
levels, differently from [20,22], where the influence of
Gaussian stochastic changes in the proliferation rate was in-
vestigated. Here, we also shortly investigate our model in the
Gaussian settings, in order to set a reference framework and
to make appropriate comparisons. Another key difference be-
tween our analyses is that in [20] the stochastic model was
framed in the Stratonovich theory, whereas here we use Ito
calculus, which is more apt for modeling tumor-immune sys-
tem interplay [4,5].

II. MODELING TUMOUR-IMMUNE SYSTEM INTERPLAY

In [20,22] a qualitative model of T-IS interactions was
proposed, which was obtained by a simple analogy with
some prey-predator models [23]. Although the model was
based on an ecological analogy between predation and kill-
ing of tumor cells by immune effectors, the results that one
may obtain are biologically sound. For this reason before
starting our analysis we shall briefly examine it for its bio-
logical soundness and deficiencies.

In dimensional form the model can be written as follows:

2
X' = (po- )X - -mX - L2

1+ (%)
where X(7) is the size of the neoplasm at time 7, pyX is the
baseline proliferation rate and §yX is the baseline apoptotic
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rate (i.e., they are, respectively, the proliferation and apop-
totic rates for small tumors where competition effects are
very small), jX? accounts for intercellular competition (e.g.,
for nutrients), and ¢(X)X:=ByX>/[1+(X/c)?] is the rate of
lysis of TCs by the IS. We call S the baseline IS strength.

Note that here we added to the original model [20,22] a
new term —myX that takes into account the interplay of TCs
with innate immune defense [1]. This also allows us to iden-
tify (X)X as the contribution due to specific immune de-
fenses.

Despite its simplicity, this model is able to reproduce
some of the basic properties of the interactions between tu-
mor cells and the immune system, in primis multistability
[20,22]. In our opinion, this model is interesting since the
specific rate of lysing of tumor cells by the immune effectors
¢(X) is nonmonotone, which correlates with the fact that
small tumors might produce an insufficient amount of anti-
gens, whereas large tumors decrease the ability of the IS to
react [8,16], because of the production of immunosuppres-
sors and because of a general compromising of the host bone
marrow in the presence of advanced tumors.

On the other hand, if my<py—3J, the model is slightly
pessimistic since it implies that the effectiveness of specific
immune defense toward TCs is limited: the possibility of
tumor suppression is precluded since for small tumors Eq.
(1) reads x'=(po— &—my)x>0. Of course, since immune
surveillance for small tumors is excluded, there cannot be, in
the absence of therapies, a tumor eradication induced by the
immune system unless the innate defenses are so strong that
mo>po— . This is a limit of the model that must be
stressed, with the validity of the model being limited to tu-
mors whose immunogenic activity, for low levels of X, is
intermediate or low.

As in many models of tumor growth, in this model there
is no direct representation of the myriad of complex dynami-
cal biomolecular mechanisms that underlie the processes
leading to proliferation, programmed cell death, senescence,
and—of course—interaction with the IS. Thus, virtually all
parameters appearing in Eq. (1) may be considered variables
and affected by a major or minor extent of noise. Here, we
shall focus on noisy variations of the baseline IS interaction
rate 3;.

If mg>py— & it is convenient to adimensionalize by as-
suming as the time unit 7,=(p,— 8,—m;)~" and as the tumor
size unit X, =c, which yields

X B
TR T e @

where K=cj7, and B= ,BOCT;I. The deterministic behavior of
the solutions of Eq. (2) is simple: there exist 8“ and B*
> 3" such that if 0<B< " there is a unique and globally
attractive macroscopic equilibrium that is near the carrying
capacity K, if B> ™ there is a small globally attractive
equilibrium, and whereas if 8*<<B8<B* there also is a cen-
tral unstable equilibrium and two equilibria: one is micro-
scopic and the other is macroscopic. As a consequence at
B=B" and at B=B"" there is a hysteresis bifurcation.

Let the baseline strength of IS, 3, be subjected to stochas-
tic varying of the IS by adding a white noise,
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B(t) = B+ oé&lt),

where &(1) is a white noise of unitary intensity; we obtain the
following Langevin-Ito stochastic differential equation
(SDE):

2 Bl 2

X
—x-= i . 3
TR T4 g()ul+x2 3)

We recall here that given a SDE x'=f(x)+0g(x)&(r) the
probability density P(x,f) is given by solving the Fokker-
Planck equation that may have a unique stationary solution
of the form

g ()
which, if it exists, is globally attractive, i.e., for all initial
condition P(x,0)=py(x) it is

lim P(x,1;p0(x)) = Py(x). (4)

t—+00

Py(x)=M exp(—z In[g(x)] + %J; f(2) )

Thus to Eq. (3) is associated the following stationary prob-
ability density for x:

Pst(-x) =M exp<_ éUeff(x)> > (5)

where the stationary potential U, (x) is

g 2 KB+1 ?
Ugff(x)=;—[(+x<[—(+,8)— f(x —021n(x2+1)—%

+ Lz -2(1-0?)In(x). (6)
2x

In the next section we shall numerically assess how o2 in-

fluences the probability potential U,/(x).

Although the Gaussian noise approach allows the above
interesting analytical results, it has an inherent pitfall. In-
deed, in an infinitesimal interval (¢,¢+dt) the IS contribution
to the change in the tumor size x is

2 2

X - W)Wdto—
1+x2 v Ul+x2

Prob(— > 0) >0,

which means that the killer cells of the immune system in-
stead of killing the TCs may generate them. The key point is
that a Gaussian perturbation of a positive parameter 7 is a
good approximation if its standard deviation is far smaller
than the average value of 7, because in this case the prob-
ability of negativity of the now randomly varying  is very
small and can be tolerated.

Unfortunately, in biological systems the parameters are
subjected to such large fluctuations that they are considered
small even if their standard deviations are on the order of
10%, thus making the use of Gaussian noises quite question-
able. In order to graphically represent this point, we simu-
lated (Euler method with N=10° points) the model in the
range 0 <7<1 with 8=1.8, 0=0.18, and K=10. In Fig. 1 we
plotted the corresponding Bdt+oW(r) Vdt: a very large per-
centage (=37.9%) of the simulated killing rate of TCs by the
IS is negative.
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FIG. 1. (Color online) Plot of the time series of a (approximate)
realization of the infinitesimal stochastic coefficient H(r)=dt
+oW(r)Vdr for B=1.8, 0=0.18, and dr=107. In a large fraction of
the simulation time the coefficient is negative.

As a consequence, it is more appropriate to perform an
analysis based on the introduction of bounded noises v(z),
with |v(f)] =B < B [so that B+ v(t) > 0], leading to the equa-
tion

x? x?

X =x=" = [B+ 0]

1+x %
Let us consider a 8 such that the deterministic model has
three equilibria and a B such that < 3-B and S+B<(*.
This implies that, in the unperturbed case, there are three
equilibria at S—B and three at S+B. Let us call these equi-
libria a;, by, and ¢, for the lower bound and ay;, by, and ¢y
for the upper bound. Of course it is ay<a;, by>b;, and
cy<<cy. From the differential inequalities

x? x? x? x?

x—;—(B+B)1+x2 =x'=x-—-(8-B)

1+x
(8)

it follows that if x(0)<b, then for large times x(z)
€ (a,,a,), whereas if x(0) € (b;,+) then for large times
x(t) € (¢y,cy), so that in principle @(x) is non-null only in
(ay,a) U (cy,cr).

More interestingly, the fact that two initial distributions of
x(0) lead to two different and mutually exclusive asymptotic
behaviors means that the asymptotical probability distribu-
tion, if it exists, depends on the initial conditions, i.e., there
are multiple equilibria in the space J of the probability mea-
sures. If the equilibrium does not exist, there are however
multiple attracting sets in J. This behavior is markedly dif-
ferent from the case of Gaussian noise where, as represented
in Eq. (4), there is a unique and globally attractive stationary
density.

Since we are interested only in the natural history behav-
ior of the T-IS interplay, in the absence of human interven-
tion, we are mainly interested in random small or moderate
initial values x(0). Thus, here we are not interested in the
general assessment of the influence of B on the samples x(z)
for large times, but in the subcase where the initial condition
is suitably small. More formally we are interested in the
assessment of the qualitative changes in the conditional
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probability density, conditional to x(0) € A=(0,a"), where a*
is a suitable small value, for example, 1% of the carrying
capacity. Finally, we briefly mention that in the case where
the innate system is sufficiently reactive to have mg>p,
— &, from

x" < =[my=(po— &)lx, 9)

it follows that P,(x)=4(x), independent of the type of
bounded noise.

III. MODELS OF BOUNDED NOISE

Since the noise-induced transitions are dependent on the
kind of density of noise adopted [27], we shall assume two
kind of bounded noise. The first bounded noise we consider
is the so-called sine-Wiener noise [28] given by

v(t)=B sin( \/EW(I)) ,
T

where W(r) is a white noise. The sine-Wiener noise, as it is
easy to verify, is such that (v(1))=0, (+*(t))=B?/2, and

ool -l -]

where z=0. A different approach consists of using noises
v(¢), which we shall call Tsallis noises [29], and which are
derived by the following Langevin equation [29,30]:

V(=7 - +\2D¢( ). (10)

v
) v

D 2
where 0<g<1 and {(r) is a Gaussian noise with zero mean
and unitary intensity. Thus, »(¢) is a non-Gaussian noise with
zero average and the following bounds:

2D

-B<v(t)<B, B= —q)

(11)

The stationary density of v is

) 1/(1-q)
14
Py() =Aq{<1 - ;) } :
+

where A, is a normalization constant and (z),=max(z,0).
Finally, the autocorrelation of »(z) is approximately given by
[30]

(vt +s)) ( 5- 3q>
oy P\

IV. NUMERICAL SIMULATIONS

In this section we shall assess the role of noise by means
of simulations for various values of B, which will be our
bifurcation parameter. Regarding the order of greatness of
the parameters, since at x=1 the killing rate is maximal and
equal to /2, we may assume that K> 10. Thus, we shall use
K=10 as a test value. For 8 we note that there is a critical
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FIG. 2. Plot of U,(x) for 0=0.01, 8=1.8, and K=10.

value B.=2(1-1/K) such that the microscopic equilibrium is
at x=1, i.e., in correspondence to the maximum of ¢(x).
Finally, it is important to stress that for chimeric mice 7,
~5.56 days [32]. We shall use these values as reference
values.

For the autocorrelation time 7., we may assume that many
variations of the immune strength are on the order of some
days since they may reflect various phenomena related to the
behavior of the patient and external additional pathologies
such as infections or temporary immunodepressions [1], so
that we used 7,=0.2 (slightly more than 1 day) and 7.=1.

In the previous section we analytically obtained the
steady-state probability density corresponding to white-noise
perturbations, and we referred to the important fact that it is
globally attractive. In Fig. 2 the potential U,(x) for 8=1.8
and ¢=0.1 is shown. Since 67?=100 and U,(x) at the two
minima is =0 and =-3 it follows that the asymptotic distri-
bution is very near to a Dirac’s delta centered at xj,. The
other peak is negligible even in case of large o, as shown in
Fig. 3, which refers to 0=1.8/1.96. To have equal values at
the two minima of the potential one has to increase up to
approximately v2.2.

As a consequence, this might lead one to infer that the
statistical fluctuation affecting the immune system does
make the tumor evade from immune control in all cases.
However, from the biophysical point of view, this answer is
neither complete nor satisfactory since it is an asymptotic
result, which implies that it is fundamental to assess the ve-
locity of convergence. The density of x at r=1000 for o
=0.1 is shown in Fig. 4 and we can see that the steady
distribution has been fully reached. However, in dimensional
time it corresponds to 5560 days =15.21 years (yr), which
is an interval of time far longer than the average life of
chimeric mice, which ranges from approximately 2 to 3 yr
[31], and—of course—it is also longer than the characteristic
times of the evolutionary escape of the tumor from IS.

05

0 5 10
X

FIG. 3. Gaussian noise. Plot of P (x) for c=1.8/1.96, 8=1.8,
and K=10. In the inset a zoom is shown, for 0 <x <2, of the left
part of the plot.
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o
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o

7.2 7.7 8.2
x(1000)

FIG. 4. (Color online) Probability density of x at #=1000
(=15.2 yr) induced by a Gaussian perturbation of B=1.8 with o
=0.15. Initially x(0) € (0,0.1).

In other words, the velocity of convergence is low, so that
we have to assess transient values of P(x,7) for some realis-
tic values of r. We performed some simulations to assess
these densities, under the hypothesis of bounded noise of
sine-Wiener and of Tsallis types, conditional to initial values
uniformly distributed in a small range, which we assumed
equal to (0,0.1). Namely, we estimated P(x,7) for T
=3, 6, 12 months.

In the case of sine-Wiener noise with 7=1 and B=0.2 we
obtained that at 7=3 months there is no or very scarce prob-
ability of escape, with extreme values equal to x=2 [Fig.
5(a)], whereas at T=6 months the probability of escape is
significant with some tumors reaching values near to the car-
rying capacity [Fig. 5(b)]. Finally, for T=1 yr and again B
=0.2 the probability of escape and macroscopic growth is
very large and the density is bimodal, whereas at B=0.04 we
obtained a unimodal density. Thus, the increase in B caused a
transition, i.e., a qualitative change in P(x,T) (Fig. 6).

For 7=0.2 (i.e., approximately 1 day) and B=0.2 at T
=6 months there is a small but non-null probability of es-
cape, whereas at 7=1 yr there is transition to bimodality
with a considerable probability of tumor explosion, as shown
in Fig. 7 where the densities corresponding to B=0.04 and
0.2 are compared. A time series of an immunoevasion with
7=0.2 and B=0.3 is shown in Fig. 8.

In the case of Tsallis noise with 7=1 and B=0.2 we ob-
tained transitions to bimodality at 1 yr both for g=0.5 (see
Fig. 9) and for ¢=0.1. No transitions were observed at 3 or 6
months, where the density is unimodal centered at the lower
values of x. By decreasing 7 to 0.2, at 1 yr we obtained the
result that for g=0.1 there is a very small (one case on 1000)

70 250
2 2
= =
c =
g 3
= 3
2 5
o (@]
%55 2 0o 4
(a) x(16.5) (b) X(33)

FIG. 5. (Color online) Simulation of the effects that a bounded
noise of the sine-Wiener type with 7=1 and B=0.2 acts on the
conditional probability density P(x,7) at finite times 7" with x(0)
€(0,0.1). (a) T=3 months; (b) T=6 months.

PHYSICAL REVIEW E 81, 021923 (2010)

80 250
> =

fa) =

1 @

E £

Q (&)

“o % 7 8

09 1 3
(a) X(66) (b) X(66)

FIG. 6. (Color online) Transitions induced to P(x,7T) with T
=66=1 yr by a sine-Wiener noise with 7=1 and x(0) € (0,0.1). (a)
At B=0.04 the density is unimodal. (b) At B=0.2 the density is
bimodal.

probability of x(66) reaching the large values, whereas for
g=0.5 there is macroscopic increase in 11 cases out of 1000.
By increasing B to 0.4 we have transitions at 1 yr for ¢
=0.5, which is similar to Fig. 9.

Finally, we stress that, of course, other fluctuations that
are faster or far slower may be present, with the latter being
due, for example, to the state of psychological depression.
Our simulations, confirming the biological intuition, suggest
that the first type of fluctuations is filtered out or has small
effects, whereas the second type easily induces immunoeva-
sion.

V. CONCLUDING REMARKS

We have developed an analysis of the immunoevasion
process in tumors based on the effects of multiplicative
bounded noises modeling the random fluctuations of the lev-
els of the immune system. Our results seem to show that
these perturbations may contribute to triggering the tumor
escape, but—generally speaking—not so easily.

Although our analysis was mainly numerical, we have
analytically shown that in the model under investigation in
the case of bounded noise (and independently from the spe-
cific choice of it) with small (but not necessarily infinitesi-
mal) amplitude there is no global convergence toward a
unique stationary density, which is, conversely, what happens
if the noise is Gaussian.

Another point of some interest that we stressed in our
model, but that is of general relevance in the biophysics of
diseases, is that the velocity of convergence toward a (unique
or non unique) steady-state density is a key parameter. In-
deed, if this velocity is slow, the related inferences are bio-
logically unsound since they refer to time spans that are

(o2}
o
N
o
o
o

Conditional Density
Conditional Density

o

0
1.1 0 4 8
) X(66)

1

o
%
o

O

x(66)

C

FIG. 7. (Color online) Transitions induced to P(x,7) with T
=66=1 yr by a sine-Wiener noise with 7=0.2 and x(0) € (0,0.1).
(a) At B=0.04 the density is unimodal. (b) At B=0.2 the density is
bimodal.
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t

FIG. 8. Simulation of a tumor immunoevasion induced by a
sine-Wiener noise. Parameters: B=0.3 and 7=0.2.

greater than the average lifespan of the host organism. This is
critical in our case since if when using the Gaussian model
and the analysis of the dependence of the effective potential
U,y then the asymptotic result is up to quite large values of
o the density of the tumor size is centered at large values.
Conversely, we showed that limiting the analysis at finite
significant times, the transition to large values is not reached
if the oscillation B of the noise is too small or, for the Tsallis
noise, if the autocorrelation time 7., is small. Note that
transition depends somewhat on the noise model adopted.

A limitation of this work is that scalar models in oncology
are too oversimplified, which is particularly true in the field
of immuno-oncology, due to the strong heterogeneity of the
involved cellular populations [2,21] as well as to the evolu-
tionary nature of the tumor-immune system interaction [9].
One should at least consider a minimal model where the
dynamics of immune cells is explicitly included, which we
will study in further research on more biologically realistic
finite-dimensional [7,32] and infinite-dimensional [10] mod-
els. However, we believe that the results of this work should
not be changed in their essential features.
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FIG. 9. (Color online) Transitions induced to P(x,T) with T
=66=1 yr by a Tsallis noise with 7=1 and ¢=0.5. x(0) € (0,0.1).
(a) At B=0.04 the density is unimodal. (b) At B=0.2 the density is
bimodal.

We stress here that many of the results that we obtained
are neither strictly related to the specific functional form of
the growth or death rates nor are they related to that of the
specific killing rate function ¢(x). What is really important is
the shape of the involved functions.

Finally, although some inferences of biological interest
are presented here, and although we offered sufficiently
sound biological justifications to our modeling choices, we
must honestly stress that our stochastic model is speculative
and it needs experimental confirmations. The aim of this
work is to trigger such investigations.
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