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We describe a technique for calculating the low-frequency mechanical modes and frequencies of a large
symmetric biological molecule where the eigenvectors of the Hessian matrix are determined with full atomic
detail. The method, which follows order N methods used in electronic structure theory, determines the subset
of lowest-frequency modes while using group theory to reduce the complexity of the problem. We apply the
method to three icosahedral viruses of various T numbers and sizes; the human viruses polio and hepatitis B,
and the cowpea chlorotic mottle virus, a plant virus. From the normal-mode eigenvectors, we use a bond
polarizability model to predict a low-frequency Raman scattering profile for the viruses. The full atomic detail
in the displacement patterns combined with an empirical potential-energy model allows a comparison of the
fully atomic normal modes with elastic network models and normal-mode analysis with only dihedral degrees
of freedom. We find that coarse-graining normal-mode analysis �particularly the elastic network model� can
predict the displacement patterns for the first few ��10� low-frequency modes that are global and cooperative.
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I. INTRODUCTION

Nearly every living creature on earth is affected by vi-
ruses. Viruses often are pathogenic and infect plant, animal,
and bacteria cells. Viruses cause damage to cultivated plants
and livestock and produce a variety of diseases in humans,
which can lead to death. Viruses are parasites and once the
host cell is infected, its metabolism is commandeered by the
virus and used to replicate more viral particles.

The assembly, thermodynamics, and dynamics of virus
capsids are an important research area as these pathogens
strongly affect human health. Modeling using atomistic ap-
proaches is difficult due to the large size of these gene-
carrying creatures. The most common assembly allotrope is
the icosahedral form which contains a minimum of 60 inter-
acting proteins. A full description of the cooperative dynam-
ics in terms of a complete set of normal modes is still not
possible. Yet for many applications, one is mainly interested
in the global motion distortions of the capsid which generally
are at low frequency ��30 GHz�. These global motions are
relevant for the maturation of the virion, attachment to cells
or other surfaces, or the response to external mechanical
probes such as atomic force microscope tips. In these appli-
cations, where the low-frequency modes are desired, an exact
solution is difficult. It is the intention of this work to produce
an exact solution of the normal-mode problem for large
icosahedral viruses and to compare with approximate meth-
ods. Additionally we determine the Raman scattering inten-
sity profile at low frequency.

Another motivation for this work are recent experiments
with short pulses of light that inactivate viruses. One pos-
sible alternative to drug therapies is to use a physical method
to inactivate the virus based on its mechanical properties. A
particularly promising approach relies on stimulating
�through some means� resonant excitations of a virus
capsid’s vibrational modes; large amplitude excitations pro-
duce instabilities in the capsid causing it to break apart. Such
a hypothesis has been discussed in the past �1� and very early

work provides evidence of ultrasonic energy absorption in
viruses �2�. Recent experiments have examined the feasibil-
ity of such treatments using ultrashort laser pulses. Tsen and
colleagues �3–7� performed several such experiments with
M13 bacteriophages and other viral particles in solution. Us-
ing conditions suggesting impulsive stimulated Raman scat-
tering �ISRS� with near infrared and visible light, they have
been able to inactivate M13 phages. However, it is still un-
clear if ISRS is the �sole� mechanism involved in the inacti-
vation of the M13 phages or if other process help �or domi-
nate� to enable the inactivation.

Normal modes are also useful for understanding the co-
operative motion of flexible molecules and their change in
conformation. For example enzymes undergo allosteric tran-
sitions upon binding with other molecules or substrates. The
displacement patterns in a normal-mode analysis �NMA�
give guidelines to the mechanical operation of these nano-
machines �8�. Often simplified mode patterns are used �9�,
and a few normal modes are not always enough �10,11�.

The “general” method for determining the normal modes
of vibration of a molecule requires one to solve the Nf �Nf
matrix equation,

DJe� = �e� , �1�

where DJ is the dynamical matrix with mass-weighted ele-

ments Dij =�ij /��mimj�, where �J is the force constant ma-
trix �Hessian� for the molecule given by

�ij =
�2V

�xi � xj
. �2�

The eigenvalues of Eq. �1� �, are the squared frequencies �2

while the eigenvectors e� are the mass-weighted displacement

patterns of the molecular motions; e� =MJ 1/2�� with Mij =mi�ij.
In a classical atomistic model, there are typically five
potential-energy terms which contribute to the total potential
energy �V� of a molecule corresponding to bond, angle, di-
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hedral, Coulomb, and van der Waals interactions.
Diagonalizing the matrix equation �Eq. �1�� provides a

complete set of atomic modes for the molecule. However, as
the number of atoms in the molecule increases, the amount
of computer memory required to store the dynamical matrix
elements and the time required to diagonalize it �scaling as
order N3� quickly become unfeasible. At the present time, the
number of atoms that can be treated by a direct diagonaliza-
tion of the dynamical matrix is roughly on the order of a few
thousands, which leaves large proteins and protein com-
plexes like viruses with hundreds of thousands or millions of
atoms out of reach.

Past normal-mode analysis of large proteins or macromo-
lecular structures has relied on methods such as continuum
elastic theory �12�, elastic network models �ENMs� �13,14�,
or the rotation translation block method �15�. These methods
coarse grain the molecule �i.e., use a reduced basis set to
construct the vibrational modes�, so that a diagonalization of
Eq. �1� is possible. Recent work has extended continuum
elasticity theory to icosahedral symmetry �16�.

In this paper, we use a method based on order N tech-
niques from electronic structure theory �17� to determine the
low-frequency normal modes and frequencies of three large
icosahedral viruses �with 105–106 atoms�, the polio virus
�PV�, the cowpea chlorotic mottle virus �CCMV�, and the
hepatitis B virus �HBV� using a fully atomistic classical
force-field model and a full basis set. A full basis set means
that unlike coarse-graining procedures, the vibrational modes
are constructed from the individual atomic displacements
�three for each atom in the system� and hence is complete.
The work presented here provides �1� a more detailed de-
scription of the methods used to determine the atomistic nor-
mal modes of icosahedral viruses �18�, particularly the group
theory aspects, �2� a comparison of atomistic calculations
with other coarse-graining normal-mode analysis performed
on the same viruses �15,19�, and �3� a Raman spectra profile
of each virus based on a bond polarizability model �20–23�.

We note that all of the normal modes calculated in this
work are for the capsid without genomic material inside.
While the genome will likely affect the vibrational modes of
the capsid, it is often just as important to calculate the nor-
mal modes of the empty capsid. For example, many empty
capsids undergo either a reversible or irreversible swelling
under the action of a protease or a simple change in pH. One
such example is the cowpea chlorotic mottle virus �studied in
this work� which undergoes a reversible swelling when the
pH is increased. Similarly, the Hong Kong 97 �HK97� virus,
undergoes a maturation event �an irreversible swelling of the
empty procapsid� in vitro when the delta domain of the pro-
tein consisting of the 102 N-terminal amino acids is cleaved
and the pH is subsequently changed �24�. In the case of
HK97, this maturation event is likely to be an important step
in virus assembly as the ability of the empty HK97 procapsid
to swell is a necessary requirement to accommodate the ge-
nome during packaging by its terminase.

First, we briefly review the phonon functional method.
Next, we provide a brief review of group theory followed by
a description of how the operation of the smaller symmetry
related dynamical matrices for an irreducible representation
�irrep.� of the group can be performed without storage of

either the full dynamical matrix or the smaller symmetry
related dynamical matrices. The following section applies the
methods discussed to the polio virus, cowpea chlorotic
mottle virus, and hepatitis B virus and compares the low-
frequency fully atomistic modes with the low-frequency
modes calculated in other coarse-grained calculations pro-
viding information about the reliability of using coarse-
graining methods in the predictions of normal modes. In ad-
dition, Raman spectra are calculated for each virus using a
bond polarizability model. Finally, the work is summarized
and concluded.

II. ORDER N METHOD FOR ELECTRONIC STRUCTURE
CALCULATIONS

Often in complexes such as viruses, the low-frequency
vibrations �e.g., �25 cm−1� tend to be of the most interest in
a NMA since these modes illustrate the large global motions
of the molecule. These large global motions are also the ones
that are most likely to break apart the virus during resonant
excitations with external probes. For a large molecule there
are many high-frequency states and only a few low-
frequency states that are of particular interest.

Our strategy is to use a phonon energy functional �18�
that, when minimized, contains the subset of M lowest-
frequency eigenvectors �and eigenvalues� of the dynamical
matrix. The phonon functional Gp is deceptively simple,

Gp = Min�TrM�H + H�1 − S��� . �3�

The matrices H “Hamiltonian” and S “overlap” are small
M �M matrices with elements defined in terms of the dy-

namical matrix DJ and the vectors 	u
,

Hij = �ui	D̂s	uj
 ,

Sij = �ui	uj
 . �4�

The value of M is chosen by the user and specifies the num-
ber of lowest-frequency states that are to be obtained from

the full 3N spectrum of states. The operator D̂s is the shifted

dynamical matrix operator D̂s= D̂−�LÎ, where �L is the larg-

est eigenvalue of D̂. The purpose of the shift is to produce a
negative-definite spectrum which guarantees to produce an
energy minimum in the phonon energy functional �17�. In
Fig. 1 we plot a contour plot of the energy functional for a
two-atom dimer in one dimension. We write the displace-
ment pattern as a two-component vector �C1 ,C2� for the dis-
placements of atoms 1 and 2, respectively. There are two
modes—the translational mode of zero frequency and the
stretching mode. In this trivial example, the lowest-
frequency mode is the translation, and for M =1 in the energy
functional, this is the state that will be produced, 	u

= 	 � 1

�2
, 1

�2
�. As can be seen from Fig. 1, a minimum is pro-

duced when the eigenvalue is negative �frequencies shifted
downward� and a maximum is produced when the frequen-
cies are unshifted and allowed to be positive. To ensure that
the phonon energy functional produces an energy minimum,

the spectrum of D̂ is shifted by the largest eigenvalue pro-
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ducing an entirely negative spectrum. The shift leaves the
eigenvectors unaffected. The functional is very similar to that
used in electronic structure theory �17�, except that there are
no “occupied” and “unoccupied” subspaces. We simply
choose M desired states that are the lowest in frequency.

The energy functional, when minimized, produces the ex-
act eigenvalues and eigenvectors of the lowest M modes of
the dynamical matrix. Figure 2 shows a block diagram of the
process to achieve this which involves seven �7� major steps.
We now describe the steps in some details.

The user first decides on the number �M� of eigenstates
desired �step 1�. Typically M =100 is sufficient to reach fre-
quencies around 10–25 cm−1 �depending on the size of the
virus� and this is typically the number used in the present

work. The search for the M lowest phonon states of D̂ begins
by choosing a random set of M vectors 	ui
 �step 2� that need
not be orthogonal or even normalized as the phonon func-
tional will enforce orthonormality. For each vector, the
shifted dynamical matrix is applied �step 3�, and the matrices

Hij and Sij are formed. The operator D̂s acting on a vector is
accomplished by treating each component separately—much

like determining the force on an atom in a molecular dynam-
ics �MD� step. An MD step is tantamount to computing,
atom by atom, the change in the energy to a first-order virtual

displacement. The operation of D̂s on a vector component is
the second-order displacement. Computationally, the time
necessary for the second derivative is marginally more than

the first derivative, so that applying D̂s to a vector is roughly
equivalent �in CPU time� to an MD step. For M states, this is
equivalent to M MD steps. Thus, the full dynamical matrix is
never stored or computed, but rather only the small M �M
matrices Hij and Sij and M vectors 	ui
.

The phonon energy functional �Eq. �3�� is then computed
and minimized �steps 4–6�. Although the phonon functional
is a multivariant function of 3MN variables �M vectors times
3N components� the minimization procedure proceeds
quickly since any set of orthonormal vectors that span the

subspace of the M lowest states D̂ is a solution of the mini-
mization. The minimization of the energy functional is per-
formed using an iterative conjugate gradient method �steps 5
and 6�. Generally the conjugate gradient method requires a
one-dimensional line minimization along a search direction.
This minimization normally is tedious and a relatively ex-
pensive computation. Here, fortunately, the line minimiza-
tion can be accomplished analytically. The condition for a
minimum generates a cubic equation which can be easily
solved to determine the step length needed to find the mini-
mum. Complete details of this step have been given in Ref.
�32�. The minimization procedure will require only M dy-
namical matrix operations �on each of the search directions�
for every minimization step. The total number of full vectors
of length 3N that must be stored is 5M.

The convergence of the functional GP can be monitored
during the iteration process. Figure 3, which will be de-
scribed fully in the results section, shows convergence for
the polio virus as a function of iteration step. A few thousand
steps are sufficient to converge the frequencies to a small
fraction of a wave number. In general, about 3000 minimi-
zation steps are sufficient to converge the phonon functional

FIG. 1. �Color online� The energy landscape of the phonon
functional for a dimer molecule in one dimension. The values C1
and C2 label the displacement pattern of the dimer molecule as a
two-component vector �C1 ,C2�. The lowest-frequency mode is the
translational mode at zero frequency. The landscape for �a� the un-
shifted dynamical matrix and �b� the shifted dynamical matrix with
all negative eigenvalues. Note that �a� forms a maximum at the
high-frequency eigenvector �C1 ,C2�= 	 � 1

�2
, −1

�2
�, while �b� forms a

minimum at the correct low-frequency mode �C1 ,C2�= 	 � 1
�2

, 1
�2

�.

1. Choose M (e.g. 100 modes)

2. Choose M random displacement vectors of length 3N

, i=1,M (orthonormality optional)

3. Computation step ,>>= iuSDiv ||
) >>=<=< juHiujviuijH |ˆ||

>iu|

>=< juiuijS |

4. Compute phonon energy functional [ ])1( SHHMTrPG −+=

5. Compute gradient of Gp with respect to ,>iu|
[ ]∑ >+>+>>=

k
kiHkukiSkvivig ||2|4|

6. Use gradient in conjugate gradient search. Line
minimization is analytic – solve cubic equation.

>ig|

7. Convergence of Gp to within tolerance? (e.g. (0.1cm-1)2 ) End

No

Yes

FIG. 2. The flow chart block diagram of the energy
functional.
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when M =100. Since each minimization step requires M op-
erations of the dynamical matrix on a vector, the rough
equivalent of M molecular-dynamics steps, the computa-
tional effort to compute the M lowest-frequency modes can
be thought of as 3�105 molecular-dynamics steps �or as a
0.3 ns molecular-dynamics simulation�. For a virus where
symmetry can be used to reduce the size of the problem, the
computational time can be thought of as 0.3 ns molecular-
dynamics simulation on a single unit cell �1 of 60�.

After the minimization, the vectors 	ui
 are an orthonor-
mal set of vectors that span the space of the lowest M states

of D̂. The true eigenvectors of D̂�	ei
� are obtained from a
diagonalization of the small M �M matrix equation,

HC�i� = ��SC�i� . �5�

The eigenvalues �� are shifted and are related to the true

eigenvalues of D̂ via ��=�−�L. The vector C�i� of length M
gives the linear combination of basis vectors 	u
 that produce
the eigenvector 	ei
, i.e.,

	ei
 = �
j=1

M

Cj�i�	uj
 . �6�

III. SYMMETRY

Although the phonon functional method is capable of de-
termining the lowest-frequency modes of large �
106� ma-
trices that result for icosahedral viruses, the use of group
theory can �i� reduce the computational expense of minimiz-
ing the phonon functional and �ii� group the eigenvectors in
categories which describe their irreps. The last point is par-
ticularly important when searching for modes that may be
sensitive to stimulation by external probes, such as Raman
light scattering, which have strict symmetry selection rules
�A and H irreps. are “allowed” in icosahedral symmetry�.

To use group theory in the phonon functional method, a
method to calculate the operation of the smaller symmetry
related dynamical matrices on a vector is required. This is
further complicated by the requirement that the matrix not be
stored in computer memory as it is typically too large. First
we briefly review some background from group theory then

follow with a description of a method that determines the
symmetry related dynamical matrices times a vector without
requiring storage of the matrix.

A. Background and review

The icosahedral point group I, is one of very high sym-
metry. Group theory is used to classify the modes according
to their irreducible representations, but can also be used to
simplify the computation of the eigenvectors and frequen-
cies. The character table of group I is given in Table I. The
symmetry operators for an element T of the group are de-

noted by R̂�T� and fall into one of five classes; the identity E,
12 C5 operations, 12 C5

2 operations, 20 operations around C3
axes, and 15 operations around C2 axes. There are five irreps.
associated with the group I: A, T1, T2, G, and H with degen-
eracies of 1, 3, 3, 4, and 5, respectively.

The total number of symmetry operations is nG, where nG
is 60 for the regular icosahedral group. These operations re-
late the proteins on the coat by symmetry. Capsids with tri-
angulation number T=n have 60n proteins on the coat. We
thus consider the coat to contain 60 cells �which we index as
J= �1,60��. Each cell contains n proteins and each protein is
copied 60 times by the application of the 60 symmetry op-

erators R̂�T�. The total number of degrees of freedom Nf of
the complete viral capsid is thus Nf =60�3Nb, where Nb is
the number of atoms �“basis” atoms� in the n proteins in a
single cell.

Each of the Nf eigenvectors of the Nf �Nf Cartesian dy-

namical matrix D̂ for the complete virus can be separated
and labeled by three indices; the irrep. p, row m, and appear-
ance number �. The index p ranges from �1,5� and denotes
one of the five irreps. �A, T1, etc.� of group I. The index m
ranges from �1,dp� and labels the eigenvector by the dp or-
thogonal degenerate states. Finally, � ranges from �1,np�,
where np is the number of times that irrep. p “appears” in the

Cartesian dynamical matrix D̂. One can easily verify that
np=3Nbdp and, using the property ng=�pdp

2, that the total
number of eigenvectors is equal to �pnpdp=Nf.

The eigenvectors of the full virus capsid e�m�
p �of length

Nf� of row m for irrep. p transform according to the irreduc-
ible representation � matrices �mn

p �T�,

R̂�T�e�n�
p = �

m=1

dp

�mn
p �T�e�m�

p . �7�

Similarly, any linear combination of eigenvectors from a row
m of irrep. p must also satisfy Eq. �7�. Since the dynamical
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FIG. 3. Convergence of the phonon functional G for the A sym-
metry modes of the polio virus. The function on the ordinate is
tantamount to convergence of the root-mean-square frequency of
the lowest 50 modes.

TABLE I. The character table of the icosahedral group I. The
quantity 
 is the golden mean, 1+�5

2 .

1E 12C5 12C5
2 20C3 15C2

A 1 1 1 1 1

T1 3 
 1−
 0 −1

T2 3 1−
 
 0 −1

G 4 −1 −1 1 0

H 5 0 0 −1 1
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matrix is invariant under any group operator, i.e.,

D̂ = R†�T�D̂R�T� �8�

for every group element T, it is easy to show that any basis
set of orthogonal vectors v�m�

p of length Nf which transform
according to Eq. �7� block diagonalizes the Cartesian dy-
namical matrix to the form

D̂ = 
D̂A

D̂T1

DT1

�

� , �9�

where the smaller matrices D̂p have dimension np�np and
occur exactly dp times along the diagonal, giving rise to the
degeneracy of eigenvectors from irrep. p. The power of
group theory is shown by the fact that it reduced the size of
the full Nf �Nf dynamical matrix to a set of 5 �for group I�
smaller np�np dynamical matrices. The smaller dynamical
matrices are diagonalized by the symmetry eigenvectors q��

p

�no m index� of length np, with components that give the
linear combination of symmetry basis vectors v�m�

p that con-
struct the full eigenvector e�m�

p ,

e�m�
p = �

�

v�m�
p �q�

p��. �10�

Note that no m index is required for the symmetry eigenvec-
tor q��

p as the other degenerate orthogonal eigenvectors for
irrep. p can be constructed by using orthogonal symmetry
basis vectors that transform as a different row m, or rotating
the eigenvector using Eq. �7�. As can be seen in Eq. �10�, a
set of orthogonal symmetry basis vectors v�m�

p of length Nf is
required for both the construction of the full eigenvectors of
the Cartesian dynamical matrix and the operation of a
smaller symmetry related dynamical matrices on a vector.
The next section discusses a method that uses symmetry ba-
sis vectors from the atomic icosahedron C60 �which have a
length of 180� to perform the operation of the smaller sym-
metry related dynamical matrix on a vector.

B. Dynamical matrix operator in symmetry coordinates

In light of the previous section, the symmetry related dy-
namical matrix for irrep. p can be constructed from the fol-
lowing formula:

DJ p = VJ†DJVJ , �11�

where the matrix VJ is the Nf �np matrix containing a set of
orthogonal symmetry basis vectors which transform accord-
ing to Eq. �7�. Only basis vectors that transform as a single
row are needed in Eq. �11� since symmetry basis vectors

from other rows will give an identical DJ p.
There are many ways to construct symmetry basis vectors

that transform according to Eq. �7�. A simple scheme makes
use of the projector operator in group theory,

P̂mn
p =

dp

ng
�
T�G

�mn
p� �T�R̂�T� , �12�

by projecting a set of random np vectors onto the basis space.
Afterward, the Gram-Schmidt orthogonalization of the pro-
jected vectors results in a set of vectors that span the space of
basis vectors that transform as a single row. Despite the ef-
fectiveness and simplicity of this method, this scheme is par-
ticularly cumbersome to use here for two reasons. First, the
computer memory required to store the full Nf �np basis
vector matrix is on the scale of the dynamical matrix. Sec-
ond, the Gram-Schmidt procedure required to produce an
orthogonal set of vectors is time consuming for large viruses
since np=3Nbdp scales with the number of basis atoms.

Instead, we construct a set of orthogonal symmetry basis
vectors by a simpler scheme which uses symmetry basis vec-
tors from the atomic icosahedron C60. For the atomic icosa-
hedron there are 3dp orthogonal symmetry basis vectors of
length 180 to construct for each irrep. p, giving 180 vectors
in total. The symmetry basis vectors for the atomic icosahe-
dron can be represented as vectors of length 3 labeled by cell
number, J= �1,60�, irrep. p, row m, and appearance �
= �1,3dp�, v�J,m�

p . The full set for all irreps. can be easily
stored in a small 180�180 matrix. The set of np=3Nbdp
orthogonal symmetry basis vectors for the virus can then be
constructed by applying each C60 symmetry basis vector to
each atom in each cell of the protein coat, one at a time. This
results in a full set of symmetry basis vectors of length Nf
that are automatically orthogonal and satisfy Eq. �7�. In ad-
dition there may be some advantages to choosing the sym-
metry basis vectors to be the eigenvectors of C60. If the low-
frequency modes of the virus are expected to have
similarities to the modes of C60, then using the eigenvectors
of C60 as symmetry basis vectors for the virus could precon-
dition the resulting symmetry related dynamical matrix to
something that is nearly diagonal. This possibility will be
explored further in the future. For now we simply construct
symmetry basis vectors for the point group using random
vectors and the projection with the Gram-Schmidt orthogo-
nalization procedure which proceeds rapidly for the point
group.

Using the symmetry basis vectors from the atomic icosa-
hedron v�J,m�

p and Eq. �11�, the operation of the np�np sym-
metry related dynamical matrix on one of the M =100 sym-
metry vectors of length np=3dpNb �q�

p with �= �1,np�
labeling the components of the vector� can be computed in
three steps. First, m= �1,dp� vectors of length 3Nb, z�m

p , are
formed using the point group symmetry basis vectors from
J=1 only,

z�m
p = �

�=1

3dp

v�1,m�
p q�

p . �13�

It is important to note that the first �=3dp components of the
vector q�p are multiplied by the symmetry basis vectors for
the point group �of length 3� and summed in Eq. �13� to give
the first three components of the vector z�m

p . Since the sym-
metry vector q�p has a total length np=3dpNb, this can be
done a total of Nb times to give all 3Nb components of the
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vector z�m
p . This performs the first multiplication VJpq�p in Eq.

�11� but keeps only the portion of the vector which corre-
sponds to cell J=1. In the second step, the vectors z�m

p are
multiplied by the Cartesian dynamical matrix. This performs

the next multiplication, i.e., DJVJpq�p. Since the vector z�m
p is �by

construction� a vector in cell J=1, only the portions of the
dynamical matrix which describe coupling of a cell J with
cell 1, DJ,1, contribute. The result is dp vectors of length Nf,
w� m

p , which can be written as J= �1,60� vectors of length 3Nb,

w� J,m
p = DJ J,1z�m

p . �14�

Finally, the third step performs the last multiplication by VJ†

to give the 3dpNb components of the symmetry related dy-
namical matrix times the vector q�p,

DJ pq�p =
ng

dp
�
J,m

v�J,m�
p · w� J,m

p . �15�

The dot product of the symmetry basis vectors v�J,m�
p �of

length 3� with the first three components of w� J,m
p gives the

first 3dp components of the operator in Eq. �15�. Since w� J,m
p

has length 3Nb, this can be done Nb times to give all
3dpNb=np components of the vector. The third multiplication
is done on the fly and added in to the final result as the
components of w� J,m

p are constructed. This prevents the need
to store all J= �1,60� vectors w� J,m

p , which can be quite large.

The entire computation of DJ p times a vector proceeds in
roughly order �dpNb� steps and requires a work space of only
dp vectors of length 3Nb, which is equivalent to the storage
requirement for a single symmetry vector q�p.

IV. LOW-FREQUENCY MODES OF THE POLIO VIRUS

The PV is a member of the picornavirus �small RNA vi-
ruses� family of viruses, which contain the genus members
enterovirus and rhinovirus. The polio virus and the virus
producing the common cold are related in that they both
belong to the picornavirus family with PV in the genus en-
terovirus and the common cold virus in the rhinovirus genus.
The polio virus is a severe pathogen in humans and is the
cause of poliomyelitis, which is a disease that affects the
central nervous system. It can produce paralysis and can be
fatal if it produces paralysis in respiratory muscles. The polio
virus historically has attacked in developed countries be-
cause of advances in hygiene. Natural infections in infants
were greatly reduced which led to susceptible adults and an
increased likelihood of epidemic spread of the disease. A
polio vaccine was introduced by Salk in 1955, which con-
sisted of injections of an inactivated virus to produce effec-
tive antibodies. The incidence of the disease has dropped
precipitously and the disease has the potential to be eradi-
cated worldwide.

The structure of the polio virus that we use is PV-type 1,
Mahoney strain, and was obtained by x-ray crystallography
by Grant et al. �25�. The coordinates are available from the
protein data bank �PDB� �26� and the PDB file used is
1VBD. The virus is a T=3 like capsid assembled from three
proteins �VP0, VP1, and VP3� at a single symmetry site of

the capsid. Upon maturation, VP0 is cleaved into two sepa-
rate proteins �VP2 and VP4� via viral protease giving the
structure found in the PDB file. The number of atoms in a
primitive site including hydrogen is 13 074. The x-ray struc-
ture does not include H-atom positions. We assigned posi-
tions based on chemical considerations at a pH value of 7.
Relaxation of the structure �see below� produces a structure
where no two hydrogen atoms are too close. The total num-
ber of atoms in the full icosahedron is 60�13 074
=784 440. The total number of normal modes is 3
�784 440=2 353 320. The phonon functional will find just
a small subset of these; specifically the low-frequency modes
from each irreducible representation of the group I.

The first step is to optimize the structure to its equilibrium
zero force structure within the force field that we are using.
We mention in passing that the phonon functional method
does not mathematically require a zero force structure and
that it can be used to calculate normal modes within the
harmonic approximation when the net force on the structure
is not zero. We relaxed the structure using the conjugate
gradient technique. We performed approximately 4000 con-
jugate gradient steps, which resulted in the total energy of
the structure changing by 0.0032 eV/atom �or about 40 K in
temperature units�. At equilibrium, the residual root-mean-
squared �RMS� force is 3�10−5 eV /Å and the RMS devia-
tion from the initial atomic positions is 1.78 Å.

Next, we compute the normal modes by minimizing the
phonon functional. We choose to seek convergence of the
lowest Mp=50 modes for each irrep. The convergence of the
energy functional Gp with a conjugate gradient step is shown
in Fig. 3 for the A modes of the polio virus. Because of the
shift of the eigenvalues by −�max

2 , the value of the functional
is shifted from its true value by −Mp�max

2 . This is a very
large value and, at first, appears to make seeking conver-
gence of the phonon functional to within a fraction of
1 cm−1 very difficult. The value of the functional upon con-
vergence is Gp=Mp�+�RMS

2 −�max
2 �, where �RMS is the RMS

value of the frequency of the modes ��RMS
2 =�i=1

Mp�i
2 /Mp�.

Thus, instead of Gp we plot in Fig. 3 the quantity
�Gp /Mp+�max

2 , which theoretically is the RMS frequency of
the converged modes �RMS verses step number. The total
number of conjugate gradient steps performed is 6000. It is
evident that the convergence is monotonic and rapid. After
1000 steps �RMS is within 3.0 cm−1 of the converged result,
and after 3000 steps it is within 0.3 cm−1. The difference
between �RMS at 5000 and 6000 steps is 0.04 cm−1. Thus,
the frequencies can be obtained with a very high accuracy.
The method has very favorable convergence properties in
spite of the ill-conditioned nature of the eigenvalue spec-
trum, which has a ratio of high to low eigenvalues of ap-
proximately 107 ��min

2 ��1 cm−1�2 ,�max
2 ��4000 cm−1�2�.

A schematic spectrum for the first 50 modes of each sym-
metry is shown in Fig. 4 �the six zero-frequency modes from
translation and rotation are not included�. The A-symmetric
modes are symmetric under any group operator, and they are
most spread out in frequency ranging from about 1 to
12 cm−1. Modes of other symmetries have frequencies that
range from about 1 to 8 cm−1. The mode of lowest fre-
quency is of H symmetry. The values of the frequencies are
listed in Table II for the first 20 modes. In addition, the
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participation number �W� �18� is also given. The participa-
tion number measures the number of atoms participating in
the displacement pattern for that mode and is obtained from
the spatial extent of the eigenvectors. The number of atoms
given in the participation number is given relative to the
number of atoms in one cell �out of 60� of the icosahedral
capsid. Most low-frequency modes are delocalized over a
large fraction of the atoms, but occasionally there is a mode
with just a few hundred atoms vibrating. These localized
modes are located on “soft” spots of the capsids protein such
as hairpin turns that are at the capsid surface or even a small
segment of alpha helix that would be exposed to solvent.
These modes are likely missed in an elastic network model
which uses a simplified phenomenological spring potential
between atoms within a cutoff distance.

The normal modes of the polio virus have been computed
by van Vlijmen and Karplus �19� using a restricted basis set.
They allowed only flexibility of the dihedral degrees of free-
dom, except that the dihedrals of the peptide bond were as-
sumed rigid. A comparison is made between the two calcu-
lations for the three lowest modes of each frequency in Table
III. Since our model includes all degrees of freedom, we find
some modes of low frequency, which are fairly localized on
a few hundred atoms. These are unlikely to be found using
the smaller basis of only dihedral degrees of freedom and so
we have included modes with a participation number of
greater than 2000 from our analysis in the comparison. The
comparison shown in Table III is striking in that the agree-
ment between the two calculations is strong. Both calcula-
tions predict that the lowest-frequency modes are H, with G
and T2 just slightly higher, then A, and finally T1. There is a
clear trend that the frequency of modes computed with all
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FIG. 4. Stick spectrum of the lowest 50 modes of the polio virus
for each irreducible representation of the symmetry group I.

TABLE II. Frequencies ��i in cm−1� and participation numbers �W� per protein unit of polio for each of the irreducible representations
�group I�. Full participation is 13 074 atoms. Raman active modes are of A and H symmetries.

A T1 T2 G H

� W � W � W � W � W

1.50 10617 1.17 455 0.99 10347 0.88 5257 0.81 12446

2.35 10676 1.2 358 1.09 556 1.07 1301 1.1 1673

3.18 9313 1.63 9980 1.19 574 1.3 1721 1.19 3200

3.59 281 1.92 12099 1.8 10521 1.54 6980 1.28 1951

4.43 6529 2.12 10451 1.95 10528 1.75 11102 1.34 1022

4.49 6536 2.7 11816 2.86 10084 2.27 11432 1.44 2767

4.95 4048 2.87 11912 2.94 9462 2.33 12040 1.61 3265

5.48 5094 3.28 8567 3.21 7664 2.61 11761 1.99 8314

5.51 1296 3.51 3432 3.31 8454 3.17 9999 2.36 12224

5.88 6604 3.62 295 3.5 576 3.21 8177 2.46 10683

6.26 4715 3.63 410 3.64 495 3.29 6829 2.55 11472

6.29 3654 3.64 1240 3.68 547 3.42 1133 2.81 10628

6.39 8455 3.99 7265 3.92 9962 3.55 668 2.89 10903

6.43 6876 4.15 3061 4 6074 3.62 2565 3.3 7923

6.77 2082 4.29 1218 4.13 4131 3.7 641 3.5 2780

6.81 4525 4.39 5863 4.29 1407 3.82 2867 3.53 5349

7.15 4900 4.48 3367 4.43 4752 3.87 3419 3.63 2986

7.41 5114 4.69 6223 4.52 4302 3.9 8690 3.71 966

7.53 3500 4.8 8590 4.63 6312 4.04 3422 3.74 1851

7.65 3953 4.87 6539 4.67 7989 4.28 1896 3.81 1075

TABLE III. A comparison of the lowest three modes for the
polio virus computed will all degrees of freedom �present work� and
with dihedral degrees of freedom �19�. The frequencies are in cm−1

units and the values in parentheses are from Ref. �19�.

A T1 T2 G H

1.50 �1.9� 1.63 �2.1� 0.99 �1.3� 0.88 �1.3� 0.81 �0.9�
2.35 �3.0� 1.92 �2.3� 1.80 �2.3� 1.54 �1.8� 1.19 �1.4�
3.18 �4.3� 2.12 �2.4� 1.95 �2.4� 1.75 �2.2� 1.44 �1.7�
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degrees of freedom is lower in frequency than if only dihe-
dral degrees of freedom are included.

There are 15 modes in Table III and an average over these
modes shows a percent frequency difference �defined as
�� /2��
� of 13%. Here, �� is the difference between the
two frequencies and ��
 is the average of the two frequen-
cies. Part of this difference may be due to the difference in
force-field models used. The authors of Ref. �19� used a
CHARMM �27� based parameter set �28�, while we use a
AMBER �29� based generalized Born parameter set �30,31�.

Figure 5 illustrates one displacement pattern from each of
the irreducible representations A, T1, T2, G, and H. Figure
5�A� shows the lowest A mode at 1.50 cm−1, which corre-
sponds to the breathing mode. The T1 mode at 1.92 cm−1 is
shown in Fig. 5�B�, the lowest T2 mode at 0.99 cm−1 in Fig.
5�C�, the lowest G mode at 0.88 cm−1 in Fig. 5�D�, and the
lowest H mode at 0.81 cm−1 in Fig. 5�E�. The arrows in each
figure represent the center-of-mass motion of one of the 4
�60 proteins �VP1, VP3, or the cleaved VP2 and VP4� in
the capsid shell.

Using a simplified bond polarizability model �20,21�, the
atomic displacement patterns and frequencies can be used to
predict a low-frequency Raman scattering profile for the po-
lio virus. Although the polarizability of bonds vary, we use a
single set of polarization parameters �specifically Ref. �23��
to simplify the analysis and produce a semiquantitative pic-
ture of the Raman profile. Earlier we have used the atomic
displacement patterns from the phonon functional method to
predict the low-frequency Raman scattering profile of the
tubular M13 bacteriophage. The results showed a reasonably
good fit between experiment and theory �32,33�. Figure 6
shows the predicted Raman scattering profile for the Raman
active A and H modes for polio. The A modes are shown in
solid black line, while the H modes are shown in the dashed
line. The degeneracy of the H modes contributes to the large
difference in the Raman scattering intensity. This is in con-
trast to C60 where A and H mode scatterings are comparable.
The origin of the weaker A mode scattering in virus particles
likely reflects that uniform A modes such as the breathing
will result in very little covalent bond stretching since the
entire protein units move in concert.

V. LOW-FREQUENCY MODES OF HEPATITIS B

HBV is an infectious virus of vertebrates and is an exem-
plar of the hepadnaviridae �hepa+dna� family. The virus is a
serious human pathogen that chronically infects over 350
�106 people worldwide, which results in over 1�106 deaths
annually �34�. Worldwide the virus infects 2�109 people.
The HBV infection produces a serious inflammation of the
liver �hepatitis� leading to liver failure or cirrhosis. The hepa-
titis virus also produces hepatocellular carcinoma in the liver,
particularly in nonwestern countries.

The capsid of HBV surrounds DNA to protect it, while the
capsid itself is surrounded with a lipid envelope which con-
tains surface proteins encoded by the virus. The envelope is
taken from its host. We model only the protein coat of the
capsid and neglect the lipid membrane and the DNA con-
tained inside. The capsid protein consists of replicas of a
single polypeptide chain labeled HBcAg. The proteins ar-
range themselves in an icosahedral capsid that is dimorphic;
it can be triangulated on the icosahedral faces as either a T
=3 or a T=4 capsid �35�. The capsid has either 180 or 240
copies of the polypeptide HBcAg monomer. The assembly of
either capsid occurs through dimer units. The T=3 capsid
contains three symmetry-inequivalent core HBcAg particles
A, B, and C. There are 60 AB dimer units and 30 CC dimer
units. The T=4 capsid contains four symmetry-inequivalent
core particles A, B, C, and D with 60 AB dimers and 60 CD
dimers �36�. The switch determining which triangulation oc-
curs is not yet clearly determined although proteins truncated
near the C terminus have a strong influence on the final as-
sembled structure. This region is rich in arginine which fa-
cilitates the electrostatic interaction of the capsid with the
enclosed nucleic acids.

The local packing of subunits is very similar in the two
sizes of particles. The arrangement is such that there exists a
hydrophobic core that forms the base of the capsid, and the
dimers produce spikes projecting out of the capsid. The
spikes contain a four-helix bundle. The outermost tips of
these spikes are believed to be the location of the primary
antigenic site �37�. The arrangement of the proteins in either
the T=3 or T=4 virus is such that there are holes in the
capsid allowing the exchange of small molecules.

The particular capsid we study is a T=4 variety. The full
monomer has a very basic C-terminal region, and this region

FIG. 5. �Color online� Displacement patterns of the polio virus
for the lowest-frequency mode in each irreducible representation A,
T1, T2, G, and H of the icosahedral group. Lowest-frequency �A� A,
�B� T1, �C� T2, �D� G, and �E� H modes.
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FIG. 6. The Raman intensity profile of the polio virus up to
7 cm−1. Raman active modes are of A �solid line� and H �dashed
line� symmetries.
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interacts strongly with the charged DNA contained within the
capsid. The gene can be expressed within E-coli, and this
gene has been altered, so that the C-terminal sequence is
trimmed from the monomer. These monomers assemble pre-
dominately into T=4 capsids. Specifically, the capsid we use
to determine the vibrational modes includes the amino-acid
sequence from residues 1–149 out of the 183 amino-acid
sequence, which has been crystallized and its structure deter-
mined by x-ray diffraction �38�, PDB code 1QGT. The
capsid assembly is very similar to those found in an infected
liver.

The HBV T=4 virus has four identical proteins in the unit
cell, where each of the four proteins in the cell is the same.
The total number of atoms in a unit cell is 8980. The full

icosahedron thus produces a total of more than 1.6�106

modes. The procedure for obtaining the vibrational modes is
similar to that used for the polio example. The PDB structure
was first relaxed to a zero force equilibrium structure. The
RMS deviation from the input structure and the relaxed
structure was 2.41 Å and the residual forces are reduced to
an RMS value of 3.7�10−5 eV /Å.

We choose to determine the small subset of Mp modes
with Mp=100. A schematic stick spectrum of the lowest 100
modes for each irreducible representation is shown in Fig. 7.
The A-symmetric modes are the most spread out in fre-
quency ranging from 0.9 to 15 cm−1. Modes of other fre-
quencies range from 0.5 to 9.0 cm−1. The lowest-frequency
modes are of T2, G, or H symmetry, being within 0.1 cm−1

of each other.
Table IV gives the frequencies of the first 20 modes for

each irreducible representation and indicates localization �or
lack thereof� by the participation number W. Full participa-
tion of all atoms in a mode �such as a translation� is 8980,
corresponding to the number of atoms in a fundamental unit
of the icosahedron. One notices that the first two modes of
each symmetry are highly cooperative with W=6500–8900.
In fact, the first 20 modes of every symmetry are coopera-
tive. The lowest value of W is the 17th A-symmetric mode
with W=1939. This indicates that there are no localized
floppy regions on the capsid within this manifold of modes.

Displacement patterns of the lowest modes for each sym-
metry are shown in Fig. 8. The arrows of the displacement
pattern represent the center-of-mass motion for each one of
the four core proteins in the unit. Interestingly, the lowest-
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FIG. 7. Stick spectrum of the lowest 100 modes of the hepatitis
B �HBV� virus for each irreducible representation of the symmetry
group I.

TABLE IV. Frequencies ��i in cm−1� and participation numbers �W� per protein unit of hepatitis B virus for each of the irreducible
representations �group I�. Full participation is 8980 atoms. Raman active modes are of A and H symmetries.

A T1 T2 G H

� W � W � W � W � W

0.86 6512 0.82 7803 0.60 8538 0.64 8185 0.54 8906

1.03 8018 1.10 6918 0.88 8033 0.72 8172 0.74 8853

1.50 2086 1.17 7005 1.16 6867 1.03 7579 0.77 8852

1.64 3280 1.18 7906 1.23 7274 1.11 7804 0.92 8378

2.29 5804 1.48 2849 1.26 6367 1.16 6906 0.99 8423

2.39 4844 1.56 4618 1.39 3447 1.32 4601 1.22 6044

2.74 6580 1.64 4066 1.47 3602 1.38 4540 1.32 4925

3.31 6565 1.69 3553 1.56 2942 1.39 4220 1.36 6011

3.70 4966 1.76 4120 1.66 4212 1.41 5693 1.40 4622

3.92 2383 1.77 4539 1.70 3409 1.46 3512 1.43 4833

4.24 5203 2.00 6363 1.91 6711 1.69 5449 1.46 4061

4.43 6025 2.06 6539 2.01 6103 1.71 3857 1.50 3506

4.58 4516 2.18 7201 2.03 7802 1.76 4166 1.52 4800

4.91 5505 2.20 7395 2.15 7172 1.84 5714 1.56 3917

5.14 5777 2.43 5649 2.27 6957 1.92 5826 1.68 4525

5.26 3385 2.45 5722 2.57 3435 2.02 6289 1.72 4676

5.81 1939 2.61 7451 2.69 7491 2.11 7561 1.81 4540

5.88 2484 2.63 6981 2.76 4243 2.15 6892 1.87 5814

6.13 5296 2.79 6984 2.77 6435 2.28 7518 1.92 5839

6.36 4526 3.13 6464 2.86 6310 2.32 7073 1.98 6643
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frequency A mode does not correspond to a breathing of the
capsid, but instead is a more complex motion of the four
proteins. A simplified description of the motion is that the
five proteins around the fivefold axis expand outward while
the six proteins around the threefold axis expand inward. The
next three low-frequency A modes of hepatitis B �not shown�
correspond to the breathing, pentagonal rotation, �where pro-
teins on the fivefold and threefold symmetry axes “twist” in
opposite directions� and the pentagonal pinch where proteins
on both the fivefold and threefold axes move toward the
main symmetry axis �either fivefold or threefold�. Interest-
ingly, the first few ��5� low-frequency modes of hepatitis B
in all symmetry groups have similarities to the vibrational
modes of C240 and reflects how extreme coarse-graining
models that replace whole proteins with point masses can
still usually predict a few of the low-frequency displacement
patterns �39,40�. However, while such coarse graining may
be able to predict the center-of-mass motion of the proteins
for a few modes, it cannot predict the soft spots of the capsid
that are most important for allowing the capsid to �in the case
of breathing� expand �18�.

A comparison of the spectra of the polio virus and the
HBV reveals a surprising result. The polio virus has an over-
all higher frequency spectrum than the HBV even though the
polio virus has nearly 50% more atoms than HBV. By higher
frequency we mean that the extreme lowest-frequency values
for polio are higher than HBV and that the density of levels
�levels per cm−1� is greater for HBV than polio. �Note that
Fig. 4 �polio� is for 50 modes per symmetry, while Fig. 7
�HBV� is for 100 modes.� The result is unexpected because
larger objects tend to have lower frequencies. However, the
outer radii of the two viruses are comparable; the outer ra-
dius of polio is approximately 30–31 nm, while the outer
radius of HBV is about 30 nm neglecting the spikes and is
about 32.5 nm including the spikes. Many models of capsids
use continuum elasticity theory to determine the modes of
the capsid, and we believe that a comparison of these two
capsids within an elastic model would be enlightening. It is
unclear if the trends observed here would persist in a con-
tinuum elastic model.

A qualitative relative Raman intensity spectrum is deter-
mined using a bond polarizability model as was done for

polio. The spectrum is shown in Fig. 9. The spectrum is
completely dominated by the H-symmetric modes with the A
modes producing very little intensity. The intensity spectrum
is heavily weighted toward very low frequency with addi-
tional intensity more evenly spread out.

Having a low-frequency spectrum with all degrees of
freedom and a reasonably accurate force field allows one to
get a sense of the robustness of more approximate methods.
In this spirit we have computed the vibrational spectrum of
HBV using an elastic network model �ENM�. In the ENM,
one treats only the C� atoms and connects them together
with springs. The springs connect C� atoms within a cutoff
distance. Here, we choose the cutoff to be 8 Å and the
spring constant k is the same independent of distance within
the cutoff. The potential energy between nodes i and j is
Uij = �k /2��dij −dij

0 �2, where dij is the distance between atoms
i and j, and dij

0 is the equilibrium distance. The mass of each
node is the mass of carbon. We choose the spring constant k
so as to reproduce the frequency of the lowest-frequency A
mode �0.86 cm−1�. Even with the ENM approximation the
dynamical matrix is 101 880�101 880 �566 C� atoms per
site �60 sites �3 degrees of freedom�, too large to directly
diagonalize. A typical solution to this problem is to treat each
of the virus’ proteins as a rigid mass �15,39�, which would
reduce the dynamical matrix for a T=4 capsid to 1440
�1440. We use the phonon functional method developed
here �with symmetry� to determine the ENM mode frequen-
cies and eigenvectors for the full 101 880�101 880 matrix,
much like we do for the all-atom �AA� model. This shows
the utility of the phonon functional method in that it can find
the lowest-frequency modes of very large �and possibly ill-
conditioned� matrices.

We compare the frequencies and displacement eigenvec-
tors of the AA method with the ENM method for the
A-symmetric modes. The eigenvectors of the AA calculation
include far more atoms than the C� atoms. We determine the
all-atom displacement vectors 	��
 then remove all compo-
nents other than those of C�, and finally renormalize the
vector to unity. Figure 10 shows a spectrum of the lowest 20
vibrational frequency modes for both the AA method and the
ENM. Although the lowest ENM mode frequency was fit to
the AA result, the remaining mode frequencies are in rela-
tively good agreement with the AA results.

The correspondence of the first few ENM eigenvectors
compared to those of the AA model is remarkable. We com-

FIG. 8. �Color online� Displacement patterns of the hepatitis B
virus for the lowest-frequency mode in each irreducible representa-
tion A, T1, T2, G, and H of the icosahedral group. Lowest-frequency
�A� A, �B� T1, �C� T2, �D� G, and �E� H modes.
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FIG. 9. The Raman intensity profile of the hepatitis B virus up
to 7 cm−1. Raman active modes are of A �solid line� and H �dashed
line� symmetries.
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pute the overlap of an ENM eigenvector 	�i
ENM
 with an

all-atom eigenvector 	� j
AA
 to give a projection probability,

Pij = 	��i
ENM 	� j

AA
	2. By completeness, this overlap is between
zero and 1. We multiply by 100 to make it a percentage.
Figure 10 shows that the eigenvectors of the ENM for the
lowest few modes ��5� faithfully reproduce the displace-
ment pattern of the all-atom results. For example the lowest
ENM mode projects 97% onto the lowest all-atom mode.
Higher modes become less faithful �e.g., the seventh ENM
mode projects 62% onto the seventh all-atom mode�. Con-
sidering that the ENM mode takes into account no specific
binding or interactions, the close correspondence is surpris-
ing. Even the loss of fidelity at higher-frequency mode levels
is not as sharp as Fig. 10 indicates. For example, ENM mode
12 shows a 12% projection probability onto mode 12 of the
all-atom model. However, the sum of the projection onto the
first 15 all-atom modes is 70%—thus, the ENM displace-
ment pattern is still a faithful representation of a low-
frequency distortion, but it is not a true eigenmode.

VI. LOW-FREQUENCY MODES OF CCMV

The CCMV is a T=3 nonenveloped icosahedral virus
from the bromovirade family that infects plants such as the
black eyed pea plant. Infection occurs through a vector, such
as an aphid or other small insect that carries the virus from
infected plants to uninfected ones when the insect feeds on
leaves or other tissues of the plant. Probably one of the most
interesting features of the CCMV capsid is its ability to un-
dergo a reversible swelling, which opens and closes 60 pores
on the capsid surface. In the normal CCMV virus, swelling is
prevented by placing 180 calcium ions at key electronegative
areas of the capsid. However, in vitro calcium ions are typi-
cally removed and the swelling can then be induced by a
simple change in the pH of the buffer solution. This revers-
ible swelling has allowed for nanoparticles to be encapsu-
lated by the CCMV protein capsid. This raises the possibility
of using viruses such as CCMV as targeted drug delivery
systems, where the virus capsid can be used to encapsulate a
toxic drug and deliver it to a very specific target �e.g., can-

cerous cell� thereby minimizing the damage and side effects
that would occur from typical administration of drug treat-
ments. Understanding the swelling phenomenon and its
cause shows how atomistic normal-mode analysis of viral
capsids can impact these emerging fields.

The basic building block of the virus during assembly
appears to be a dimer of coat proteins, which first assemble
into a pentamer of dimers �41�. Experimental studies have
shown that in vivo the CCMV virus assembles into exclu-
sively T=3 particles formed from 90 dimers; however, in
vitro the virus can be manipulated to assemble into T=1 or
even T=2 particles which violate the Casper-Klug model
�42�. The formation of T=1 and T=2 particles can be con-
trolled by deleting the N-terminal region of the capsid pro-
tein �N�34�, which forms a � annulus region from the six
capsid proteins that meet at the threefold axes of the virus
�42�.

Coordinates for the CCMV virus were obtained from the
protein data bank �PDB code 1CWP�. In addition to the three
capsid proteins, the crystal structure also contained a small
segment of ssRNA which was noncovalently bonded to the
capsid. We added three calcium ions with charge +2 to the
three capsid proteins at the calcium binding sites. In total, a
single icosahedral site of the virus �1 of 60� contained a total
of 7520 atoms �three capsid proteins, ssRNA segment, and
three calcium ions� for a total of N=451 200 atoms in the
complete virus capsid. The structure was minimized using
icosahedral symmetry to a RMS force value of 6.6
�10−5 eV /Å. The resulting RMS deviation of the atoms
from x-ray structure was 3.7 Å.

The total number of mechanical modes in the CCMV vi-
rus is 3�N=1.3M. We solve for the lowest Mp=100 fre-
quency modes of the CCMV virus for each irrep. A stick
spectrum of the lowest-frequency modes for each irrep. is
shown in Fig. 11. As with polio and hepatitis B, CCMV has
the symmetric A modes distributed over a larger frequency
spectrum �1.19–17 cm−1� compared with the T1, T2, G, and
H modes.

Table V gives the frequencies of the first 20 modes of
CCMV for each irreducible representation and indicates lo-
calization �or lack thereof� by the participation number W.
Full participation of all atoms in a mode �such as a transla-
tion� is 7520, corresponding to the number of atoms in a
fundamental unit of the icosahedron. The first three modes of
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FIG. 10. A comparison of the frequency spectrum of the HBV
capsid for the AA model and for an elastic network model �ENM�.
Only the lowest 20 modes are shown. The frequency of the lowest
mode of ENM model has been adjusted to produce the AA result.
The percentages refer to the largest projection of an ENM state onto
the AA state, and the dashed lines show the mapping of the ENM
state onto the AA state with largest projection.
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FIG. 11. Stick spectrum of the lowest 100 modes of the cowpea
chlorotic mottle virus �CCMV� for each irreducible representation
of the symmetry group I.
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each symmetry are highly cooperative with W=5150–7381.
However, the fourth and fifth low-frequency A modes at 3.17
and 3.26 are very localized compared with the other symme-
tries with W�900. These modes are localized on the ssRNA
segments that are noncovalently bound to the capsid pro-
teins.

As with the polio and hepatitis B, we show the displace-
ment patterns of the lowest modes for each symmetry in Fig.
12. The arrows of the displacement pattern represent the
center-of-mass motion for one of the three proteins in the
icosahedral unit. The lowest mode of A is the breathing

mode, while the lowest T1 mode is a dipolelike motion.
These first few lowest modes of CCMV have similarities to
C180 and again show that simple models of viral capsid me-
chanical modes can be reproduce at least the very fundamen-
tals. But other low-frequency modes �such as the fourth and
fifth lowest A modes� would be missed in such simplified
models due to their localization on the ssRNA.

Finally, we show the predicted Raman spectra for CCMV
in Fig. 13. The H modes completely dominate the contribu-
tion to the low-frequency Raman scattering profile of
CCMV. The only contribution from the A modes to the low-
frequency scattering spectrum is the mode near 5.0 cm−1.

TABLE V. Frequencies ��i in cm−1� and participation numbers �W� per protein unit of CCMV virus for each of the irreducible
representations �group I�. Full participation is 7520 atoms. Raman active modes are of A and H symmetries.

A T1 T2 G H

� W � W � W � W � W

1.19 7168 1.35 7169 0.89 6950 0.91 6706 0.71 7381

2.14 5585 1.56 6628 1.46 6187 1.16 6792 1.04 7364

2.58 5152 1.77 6350 1.66 6955 1.54 6591 1.24 7183

3.17 816 2.29 6356 2.23 5654 1.94 5059 1.45 6672

3.26 903 2.40 6775 2.43 5014 1.99 6137 1.74 6825

3.84 3606 2.77 5278 2.60 4997 2.12 5307 1.88 7005

4.22 3084 2.83 4685 2.80 4825 2.49 5102 1.93 7128

4.75 3142 3.01 3017 2.92 3001 2.63 4979 2.30 6122

4.79 4183 3.04 2782 3.04 3614 2.84 5873 2.37 6778

4.98 3608 3.14 1472 3.12 1641 2.91 5234 2.64 4881

5.44 4118 3.21 2495 3.22 583 3.06 2598 2.80 4684

5.50 421 3.25 1223 3.26 1086 3.11 1660 2.84 4376

5.69 3250 3.29 2068 3.41 956 3.13 1973 2.90 3726

6.00 4002 3.46 2275 3.41 3404 3.16 2584 2.91 3497

6.42 4535 3.54 2522 3.64 3599 3.20 2004 2.94 4103

6.44 4264 3.66 3404 3.67 3659 3.24 1412 3.01 3481

6.86 1817 3.75 4700 3.76 4524 3.31 2496 3.10 2359

7.05 4877 3.84 4465 3.88 3415 3.36 2202 3.16 1902

7.27 2506 4.11 4511 3.98 4710 3.44 1099 3.23 1932

7.38 3207 4.16 4888 4.13 5329 3.58 4654 3.27 671

FIG. 12. �Color online� Displacement patterns of the cowpea
chlorotic mottle virus for the lowest-frequency mode in each irre-
ducible representation A, T1, T2, G, and H of the icosahedral group.
Lowest-frequency �A� A, �B� T1, �C� T2, �D� G, and �E� H modes.
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FIG. 13. The Raman intensity profile of the cowpea chlorotic
mottle virus up to 10 cm−1. Raman active modes are of A �solid
line� and H �dashed line� symmetries.
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VII. SOLVENT DAMPENING

The question naturally comes up concerning the dampen-
ing of the vibrational modes. Specifically are they over-
damped, slightly underdamped, or highly underdamped? The
phonon functional fails to answer this question since it has
no explicit coupling with the solvent.

Experimentally there are some hints. Recently, the very-
low-frequency vibrational modes of a virus capsid in solu-
tion have been measured by Raman scattering for a tubular
virus, M13 bacteriophage. Tsen et al. �33� observed a clear
peak at low frequency ��7 cm−1�. The intensity of the peaks
scale with the viral concentration providing strong evidence
that, at least in this case, dampening does not destroy me-
chanical modes. However, not all attempts have been suc-
cessful. Stephanidis et al. �43� performed Brillouin scattering
on a spherical virus, the satellite tobacco mosaic viruses, and
did not detect virus particle mechanical modes. Although
there has not been an extensive experimental search for Ra-
man spectra of viruses, the two reported experiments �on two
different viruses� yield quite different results. This perhaps
suggests that some systems are overdamped while others
have at least some underdamped modes.

The two experiments described above differ in that one
experiment was on a tubular virus while the other was on a
spherical virus. To determine the damping characteristics
specifically of icosahedral viruses, we rely on estimates
taken from continuum elasticity theory from the work of
Murray and Saviot �44�. In their model, icosahedral viruses
are modeled as spheres of radius R in a viscous fluid �water�.
The complex frequencies are determined as a function of
radius. From this work we estimate the lifetime 
 of the
lowest modes for CCMV, which we take to be approximately
30 nm in diameter or 15 nm in radius. Table VI lists esti-
mates for the damping of the lowest-frequency modes in the
A, T1, and H irreps. It is clear that while modes such as the A
irrep. breathing modes are highly damped, other modes such
as the lowest-frequency H mode of CCMV are slightly un-
derdamped. Generalizing these results to other low-

frequency modes besides just the lowest gives Q values from
about 0.5 to 5, with H symmetry being less damped than A
symmetry. This is consistent with the work of Talati and Jha
�45� who found for a 100 nm diameter spherical capsid a
value of �
�5 and Q�1. Thus, overall it appears that viral
modes of spherical capsids are near the overdamped to
slightly underdamped border with a trend that the highest
symmetry �e.g., A symmetric� modes lie on the overdamped
side, while less symmetric �e.g., H symmetric� modes are on
the slightly underdamped side.

An appealing means to incorporate dampening into the
phonon functional, at least approximately, is by means of
Langevin modes introduced by Lamm and Szabo �46�. This
model includes phenomenological friction with the solvent
through a Stokes viscous drag interaction of solvent acces-
sible atoms on the virus capsid. The method produces a non-
Hermitian Langevin matrix that is 6N square instead of 3N
square �N is the number of atoms�. The eigenvalues have an
imaginary part describing dampening. This method has yet to
be implemented in the phonon functional method and repre-
sents a future and challenging problem.

VIII. CONCLUSIONS

We have presented a method for determining the low-
frequency modes of large symmetric biological molecules
�such as viruses� with atomic detail using the phonon func-
tional method with a symmetry reduction in the dynamical
matrix. As an illustration of the technique, we determined the
low-frequency mechanical modes of three icosahedral vi-
ruses to atomic detail: the polio virus, the hepatitis B virus,
and the cowpea chlorotic mottle virus. Additionally, the full
atomic displacement pattern of the modes has allowed for the
prediction of Raman spectra profiles of the viral capsids
within a bond polarizability framework.

The ability to calculate the mechanical modes of viral
capsids to atomic detail and by symmetry irreducible repre-
sentation has allowed for comparisons of coarse-graining
models of viral capsids, such as the elastic network models,
with the fully atomic methods presented in this work. Com-
parison of the displacements patterns and frequencies show
that coarse-graining models can produce good estimates of
the displacement patterns and relative frequencies of at least
the first few global modes ��5� that involve collective mo-
tions of protein subunits. The key approximation in the elas-
tic network model is the building of a collective network of
springs between C� atoms. More �or fewer� connections be-
tween C� atoms are how rigid �floppy� regions of the protein
are described in the model. Thus, we expect that the elastic
network model will do well in describing the first few modes
when the strength of the atomic forces can be represented to
a good degree by the number of connective springs. Thus,
regions of the protein, which are weakly interacting but very
compact �such as a weakly bound ligand�, will produce a
stiff area in the elastic network model with a corresponding
high frequency, while the fully atomic method predicts a
lower-frequency localized mode.

TABLE VI. Estimates of the damping of three low-frequency
modes of the CCMV virus. The damping estimates are based on the
continuum elastic theory work of Murray and Saviot �44�. Frequen-
cies � and periods T are given for the lowest-frequency mode from
the l=0,1 ,2 angular momentum numbers. The value 
 is the ap-
proximate lifetime of the mode, i.e., the time at which the amplitude
is decreased by exp−1.

l=0 �A modes� l=1 �T1 modes� l=2 �H modes�

� a 1.19 cm−1 1.35 cm−1 0.71 cm−1

T a 28.0 ps 24.7 ps 46.9 ps

� b 1.28 cm−1 0.84 cm−1 0.56 cm−1

T b 25.9 ps 39.6 ps 56.8 ps


 b 6.87 ps 27.3 ps 65.5 ps

aThis work.
bFrom Murray and Saviot �44�.
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