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As the behavior of a system composed of cyclically competing species is strongly influenced by the presence
of fluctuations, it is of interest to study cyclic dominance in low dimensions where these effects are the most

prominent. We here discuss rock-paper-scissors games on a one-dimensional lattice where the interaction rates
and the mobility can be species dependent. Allowing only single site occupation, we realize mobility by
exchanging individuals of different species. When the interaction and swapping rates are symmetric, a strongly
enhanced swapping rate yields an increased mixing of the species, leading to a mean-field-like coexistence
even in one-dimensional systems. This coexistence is transient when the rates are asymmetric, and eventually
only one species will survive. Interestingly, in our spatial games the dominating species can differ from the

species that would dominate in the corresponding nonspatial model. We identify different regimes in the
parameter space and construct the corresponding dynamical phase diagram.
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I. INTRODUCTION

Evolutionary game theory [1,2] has led in the past to
novel and interesting insights into the complex behavior that
can emerge in a multispecies ecological system (see, for ex-
ample, [3-5] and references therein). Cyclic dominance of
competing “species” is not restricted to biological systems,
but can also be found in economic and social systems. This
competition can lead to a large variety of phenomena, rang-
ing from the emergence of regular spatiotemporal pattern to
chaotic dynamics. Intrinsic fluctuations and omnipresent
nonlinearities yield a rich variety of scenarios, the two ex-
treme cases being everlasting biodiversity or rapid domi-
nance of a single species and extinction of the others.

The three species rock-paper-scissors game [6-20] is one
of the simplest cyclic dominance model where the influence
of fluctuations can be studied systematically. On the level of
the mean-field rate equations this system is characterized by
a reactive fixed point, corresponding to species coexistence
where every species yields one third of the total population.
When adding fluctuations, one has to distinguish between
spatial and nonspatial systems. In a nonspatial system, the
presence of stochastic fluctuations yields as the final state
one of the three absorbing states where only one species
survives whereas the other two have become extinct [14,20].
Interestingly, the “weakest” species, i.e., the less efficient
predator, survives in the case of asymmetric interactions
[20,21]. In a spatial system without diffusion, species extinc-
tion takes place in one dimension [6-8], whereas in two
dimensions spatiotemporal pattern can emerge in the form of
rotating spirals [8,10,15,16,18,19]. Recent studies of two-
dimensional lattice models have revealed that the mobility of
individuals, realized in the form of an exchange of individu-
als, destabilizes the spirals for larger swapping rates, thus
leading to species extinction in the long-time limit
[16,18,19].

Real-world examples discussed in terms of rock-paper-
scissors models range from coral reef invertebrates [3] to
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lizard populations in California [22] and from competing
bacterial strains [11,13] to self-organizing Min proteins [23],
to name but a few examples. It is worth noting that some of
the recent theoretical studies of low-dimensional rock-paper-
scissors games have been motivated by the intriguing bacte-
ria experiments.

It follows from our brief discussion of the recent work on
systems with cyclic dominance that stochastic fluctuations
have important and, sometimes surprising, effects on this
type of systems. Motivated by this observation, we wish to
fully elucidate the role of fluctuations in low-dimensional
systems composed of cyclically dominating species. We
therefore propose in the following to complement this line of
research by studying numerically one-dimensional systems
of mobile individuals, with species-dependent interaction
and swapping rates. As we shall show, biodiversity is made
possible in one dimension through high mobility, which is
different to the behavior in two dimensions where an in-
creased mobility leads to species extinction. In addition, and
in contrast to the nonspatial case, we discover for asymmet-
ric interaction and swapping rates that the law of the weakest
is not strict in the spatial case and that it depends on the
system parameters whether the weakest survives or dies out.

Another motivation for our study of one-dimensional sys-
tems comes from the recent studies of bacterial populations
in nanofabricated landscapes (see, for example, [24] where
linear arrays of coupled microscale patches of habitat are
discussed). These investigations open the intriguing possibil-
ity of a future study of competing bacterial populations in
quasi-one-dimensional systems.

Our paper is organized in the following way. After having
introduced our model in Sec. II, we discuss in Sec. III the
case of symmetric, i.e., species independent, rates and show
that a high mobility can lead in one dimension to the emer-
gence of species coexistence. In Sec. IV we allow for asym-
metric, i.e., species dependent, interaction and swapping
rates and show that this asymmetry leads to an interesting
dynamical phase diagram not observed in the nonspatial
case. Finally, we conclude in Sec. V.
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II. ONE-DIMENSIONAL ROCK-PAPER-SCISSORS GAMES

In our spatial rock-paper-scissors games we consider three
species living on a one-dimensional support that are compet-
ing in a cyclic way. Calling A, B, and C the three species,
these interactions can be cast in the following reaction
scheme:

kab

A+B, B+A—A+A, (1)
kbz:

B+C, C+B—B+8B, (2)
kL‘(l

C+A, A+C—C+C, (3)

where we allow for species-dependent interaction rates k&,
kp., and k. In the following we restrict ourselves to the case
where every site is occupied by exactly one individual, such
that interactions only take place between nearest neighbors.
In this setting mobility is realized by swapping the positions
of individuals on neighboring sites [16,18]

S!Zb

A+BZ=B+A, (4)
Sbc

B+C=C+B, (5)

C+AZA+C, (6)

where the swapping rates s,,, S,., and s., can again be spe-
cies dependent. Note that mobility can also be realized
through simple diffusion steps if empty sites are allowed
and/or more than one individual can occupy a given lattice
site [7,18,25].

In our numerical simulations, every lattice site is initially
occupied by any of the three species with the same probabil-
ity 1/3. The total number of individuals, Ny+Nz+N-=N, is a
conserved quantity. Here Ny is the number of individuals of
species X in the system and N is the number of lattice sites.
We consider periodic boundary conditions and use sequential
dynamics. Having selected a neighboring pair of individuals
belonging to species A and B, we allow for the following
events: A dominates B with probability k,,, A and B ex-
change positions with probability s,,, or no interaction takes
place with probability 1-k,,—s,,. After having selected N
such pairs the time is increased by one unit.

First studies of one-dimensional systems with M compet-
ing species have been published some time ago [6-8,26]. If
the individuals are immobile, exact results can be obtained
[6,7]. For example, it is found that the individuals organize
in single-species domains whose average size (\) ~ t* grows
algebraically with time. The exponent « governing this do-
main growth depends on the number of competing species as
well as on the chosen dynamics (parallel or sequential dy-
namics). For the case most relevant to our study (M=3 and
sequential updates) the exact result is a=3/4. Interestingly,
for parallel dynamics an asymptotic equivalence was estab-
lished between the diffusion-reaction approach and the lat-
tice model with immobile individuals [7]. Recent simulations
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FIG. 1. Space-time plots of one-dimensional rock-paper-scissors
games with symmetric interaction rates k and swapping rates s.
White, gray, and black correspond to the three different species. In
the left panel, the individuals have a low mobility, with s=0.1 and
k=0.9, yielding segregation of species, similar to what is observed
for immobile individuals. In the right panel, high mobility, with s
=0.9 and k=0.1, continuously mixes the different species, such giv-
ing raise to coexistence even in one dimension. The system size is
2500 and the first 10 000 time steps are shown.

of lattice models with sequential dynamics, where diffusion
is made possible through multiple occupancy of a site and/or
the presence of empty sites [25], also indicate that inclusion
of simple diffusion does not lead to a qualitative different
behavior. However, as we show in the following, this is no
longer the case when the mobility of individuals is realized
through exchanges.

III. SYMMETRIC INTERACTION AND SWAPPING RATES

Let us start our discussion of mobility effects in one-
dimensional rock-paper-scissors games by first looking at the
symmetric case where all rates are species independent. We
therefore set in the following k=k,,=k,.=k, and s=s,,
=Spe=Scq With k+s5=1.

As already mentioned, earlier studies [6—8,26] of immo-
bile individuals have highlighted the existence of species
segregation through the formation of single-species domains
that grow algebraically in time. If one allows for mobile
individuals, the conclusions drawn in [6,7] remain un-
changed for not too high swapping rates s. As an example we
show in the left panel of Fig. 1 the space-time diagram for a
system composed of 2500 individuals where the rates are k
=0.9 and s=0.1. Segregation sets in immediately, yielding
the formation of numerous small single-species domains.
These domains then coarsen, and the system rapidly decom-
poses into a few large domains. At this stage, swapping has
become irrelevant and the behavior of the system is deter-
mined by the movement of the interfaces between different
clusters. The time evolution of the system is then similar to
the time evolution of the system composed of immobile in-
dividuals, yielding the same exponent a=3/4 for the average
domain size, see Fig. 2. Eventually, this process leads to the
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FIG. 2. Average domain size as a function of time for different
swapping rates s, with k+s=1. The results shown here have been
obtained after averaging over 40 000 independent runs for systems
composed of 160 000 individuals. The dashed line indicates the
exactly known result that for s=0 the time-dependent average do-
main size increases algebraically with an exponent 3/4 for large
times.

extinction of two of the three species as one species domi-
nates the others in the long-time limit.

If one keeps increasing the mobility of the individuals,
one eventually reaches a critical swapping rate s.=0.84(1)
above which the exchange mechanism very effectively mixes
the different species. This yields completely different space-
time plots, see the right panel of Fig. 1, with a mosaic of
ordered domains that emerge at some time and vanish again
later. In addition to these regular pattern one also observes
more chaotic space-time regions where no large domains are
formed. This intriguing spatial-temporal behavior also shows
up in the average domain size, see Fig. 2, as (\) does no
longer increase algebraically with time for s>s,. but satu-
rates at a finite s-dependent value. In this regime the particle
densities of all three species display an irregular oscillatory
behavior, see Fig. 3. Obviously, the mixing induced by the
high exchange rates promotes the coexistence of species and
therefore biodiversity in our one-dimensional system.

This observation of coexistence in an ecological system of
highly mobile individuals agrees with the intuitive picture
that a mixing of species should lead to a mean-field-like
behavior. This is different to the more complex situation in
two space dimensions where for medium values of the mo-
bility an intermediate regime exists in which rotating spirals
are destabilized, yielding rapidly a uniform state where only
one species survives. A coexistence regime similar to that
observed by us in one space dimension eventually emerges
in two dimensions for very high mobilities [16,18,19].

Remarkably, a comparison of our results with the few
existing results with simple diffusion (made possible through
the presence of empty sites and/or sites with multiple occu-
pancy) [7,25] indicates that the mechanism through which
mobility is realized matters. At this stage we can only specu-
late on the origin of these unexpected differences. We note
that in a field-theoretical description our exchange mecha-
nism yields a nonlinear term, in contrast to simple diffusion
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FIG. 3. Time-dependent particle densities for all three species
for a typical run with k=0.1 and s=0.9 and N=10 000 lattice sites.
In this regime, where s>s., an irregular oscillatory behavior is
observed.

which enters linearly [27]. It is, however, beyond the scope
of this article to explore this further using field-theoretical
techniques.

IV. ASYMMETRIC INTERACTION
AND SWAPPING RATES

There are usually no compelling reasons that require all
interaction rates to be the same for a system with competing
species. On the contrary, one should expect to have species
dependent rates in any real system, as has also been observed
in a recent study of the self-organization of Min proteins
[23]. Theoretical studies usually neglect this aspect and ex-
clusively focus on species independent interaction rates. One
exception of which we are aware of is the study of small
asymmetries in a four-state rock-paper-scissors game (where
the forth state means that a site is unoccupied) in two dimen-
sions [18]. For that model, it was shown through first-order
perturbation theory that rotating spirals are robust against
small asymmetries. Similar conclusions where drawn re-
cently from a four-state rock-paper-scissors model that was
constructed to describe the symbiosis between an ant-plant
and two protecting ant symbionts [28]. In nonspatial rock-
paper-scissors games an asymmetry in the reaction rates was
shown to lead to a “law of the weakest,” as the less efficient
predator always survives [20].

In principle, we have to explore for our three species
model a six-dimensional parameter space. We will in the
following not try to present a comprehensive study of all
possible cases. Instead we fix the interaction and swapping
rates between (1) B and C and (2) C and A particles and
systematically change the rates for the processes involving A
and B particles. Concretely, we set k,.=k.,=0.4 and s,
=s.,=0.4. In fact, this two-dimensional slice through our six-
dimensional parameter space already captures our main re-
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FIG. 4. (Color online) (a) Survival probability of the different
species as a function of s, for k,,=0.45. The total population is
5000 individuals. The data result from averaging over 16 000 dif-
ferent runs with different realizations of the noise. The dashed lines
indicate the locations of the two transitions, see main text. The
errors are comparable to the size of the symbols. (b) Survival prob-
ability as a function of time for k,;,=0.45 and s,,=0.10. The differ-
ent curves correspond to different system sizes N, with N=2500
(full black lines), N=5000 [gray (green) lines], and N=10 000
(dashed lines). (c) The same as (b) but now for k,,=0.45 and s,
=0.50.

sult, namely, that the law of the weakest is not a strict one in
spatial games.

We first remark that an asymmetry in the rates yields the
dominance of a single species both in the spatial and in the
nonspatial game. Whereas in nonspatial games the weakest
predator, i.e., the species X for which the interaction rate k,,
on another species Y is smaller than the other interaction
rates, always survives, this is different in one space dimen-
sion. We discuss in Fig. 4 the survival probabilities for the
fixed interaction rate k,,=0.45> k., k... Writing the survival
probability of species A in a total population of N individuals
as P4(N), one readily verifies that the nonspatial game yields
for this situation Pgz(N)—1 and P(N),P4,(N)—0 in the
macroscopic limit N— o, i.e., the species B, which is domi-
nated by A and dominates C, survives. In the one-
dimensional case, however, the situation is much more com-
plex, as the surviving species changes as a function of the
value of the exchange rate s,,. As shown in Fig. 4(a) for a
system with 5000 individuals, we can identify three different
regimes. Whereas for small exchange rates s,,<<s; with s,
=0.225(5) the species A has the highest survival probability,
this changes for larger values as then either species B [for
§1<5, <5, With 5,=0.32(1)] or species C (for s,,>s,) pre-
vails. The transition at s,,=s; is a smooth one, as none of the
survival probabilities change dramatically when crossing the
transition point. This is different for the transition at s,,=s,
which is characterized by a very abrupt change in the sur-
vival probabilities. The latter transition has therefore typical
characteristics of a discontinuous transition, whereas the be-
havior at the former transition is reminiscent of that at a
continuous transition. We carefully checked the robustness of
our results against a change in the number of individuals, see
Figs. 4(b) and 4(c).

Repeating this for other values of k,,, we obtain the dy-
namical phase diagram shown in Fig. 5. Note that with our
definition of the rates only the triangle defined by k,,+s,,
=1 is accessible. We can distinguish three different phases
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FIG. 5. (Color online) Dynamical phase diagram for a two-
dimensional slice through the six-dimensional parameter space,
with k,.=k.,=0.4 and s,.=s.,=0.4. Three different phases charac-
terized by the dominating species (species A in I, B in II, and C in
III) are identified. Along the dashed, respectively, full line, one has
the following relation between the survival probabilities: P,=Pp
> P, respectively, Py=Pg=P,. The vertical dotted line indicates
the line along which the data shown in Fig. 4(a) have been obtained.
The inset shows the transition lines for different system sizes.

which differ by the dominating species: in phase I species A
dominates, in phase II species B dominates, and in phase III
species C dominates. These phases are separated by transi-
tion lines. The lower transition line (dashed line) is charac-
terized by the fact that Py=Pp> P, whereas along the line
separating phases II and III we have P,=Pz=P,. As shown
in the inset, the latter line does not show any size depen-
dence. This is different for the line separating the regimes I
and II as here finite-size effects are observed for the smaller
system sizes. In fact, these finite-size dependences are com-
patible with a continuous transition along the line separating
regimes I and II and a discontinuous transition along the line
separating regimes II and III.

Figure 5 seems to indicate the existence at k,,=0.355(5)
and s,,=0.47(1) of a triple point where the three phases
meet. Based on the continuous and discontinuous character
of the different transition lines, this triple point should in fact
be a tricritical point. However, the existing data do not allow
us to fully characterize the nature of this triple point, due to
subtle finite-size effects. Systems much larger than those
studied here might be needed in order to reliable determine
the location and the character of the triple point.

This complex dynamical phase diagram indicates that the
law of the weakest observed in a nonspatial game is not
strictly valid any more for spatial systems. Thus, for k,,
< 0.2 we indeed observe that the most inefficient predator
eventually survives, as expected for the law of the weakest.
However, the situation is much more complex for k,,>0.2,
as in addition to the regime where the weakest survives one
also encounters regimes where the weakest dies out.
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V. CONCLUSION

Cyclic dominance in ecological or chemical systems is
known to yield a very rich behavior and to lead to such
intriguing features as rotating spirals. Very recently, a range
of insights have been gained through the study of three spe-
cies rock-paper-scissors games, and this in a spatial as well
as in a nonspatial setting [14-20].

In this paper we complement this recent research activity
by a numerical study of one-dimensional rock-paper-scissors
games with mobile individuals. We thereby realize the mo-
bility through the exchange of neighboring individuals. In
addition, we allow for species-dependent interaction and ex-
change rates, thereby bringing our model closer to real sys-
tems. Interestingly, our study indicates that both the mobility
and the rate asymmetry yield intriguing new features.

In presence of symmetric rates, a high mobility leads to a
well-mixed system characterized by the prevalence of coex-
istence in one dimension. The effect of the mobility is there-
fore different from the effect in two dimensions where mod-
erate mobility dissolves existing space-time pattern and
ultimately leads to species extinction, whereas high mobility
leads to the emergence of coexistence [16,18,19], similar to
what we observe. Another surprising result is the observation
that mobility realized through the exchange of individuals
has a much stronger impact than mobility realized through
simple diffusion [7,25].

For asymmetric, i.e., species dependent, rates we observe
that the spatial support induces phenomena not observed in
nonspatial games. Thus the law of the weakest, which states
that the weakest predator survives and which is a strict one in
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nonspatial games [20], is replaced by a dynamic phase dia-
gram with different regimes that are characterized by the
surviving species. A behavior in accordance with the law of
the weakest can still be observed for certain ranges of the
system parameters, but it is no longer a strict one.

We are not aware of any (quasi-)one-dimensional experi-
mental realization of the rock-paper-scissors games. A pos-
sible way for a future realization of such a system could
involve nanofabricated landscapes as those used in [24] for a
study of bacterial populations. Our study points out the in-
triguing phenomena showing up in low dimensions and we
hope that these aspects will be addressed in future experi-
ments.

In conclusion, our numerical study highlights the impor-
tance of species specific interaction and mobility rates in
ecological systems. Our results raise some questions (the
most intriguing being the observation that the effect of the
mobility depends on how it is realized and the possible ex-
istence of tricritical points in the dynamical phase diagram),
and we plan to focus on these issues in the future.
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