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By use of the Landau–de Gennes phenomenological theory, we study the texture of a nematic liquid crystal
confined within a hybrid cell. Precisely, we consider cylindrically symmetric solutions containing topological
defects dictated by appropriate boundary conditions. We focus our attention on cells whose dimensions are
comparable with the biaxial correlation length �b. For such severe confinements the order reconstruction �OR�
configuration could be stable. Its structural details reflect the balance among boundary-enforced frustration,
elastic penalties, and finite-size effects. In particular, we analyze the interplay between finite-size effects and
topological defects. We show that defects are always pinned to the negatively �planar� uniaxial sheet of the OR
structure. The presence of a ring defect can dramatically increase the critical threshold below which the OR
structure is stable.
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I. INTRODUCTION

Recent years witnessed an increasing interest for nanode-
vices �1,2� that can be employed, inter alia, as detectors
sensitive at the molecular scale, nanomachines or memory
elements �3� with possible applications in a broad range of
different areas. Soft-matter-based devices �4� seem promis-
ing as working materials since a relatively weak local pertur-
bation could trigger an apparent mesoscopic or even macro-
scopic response �5�. Such extreme responses could in
particular be achieved in phases or structures reached via a
continuous symmetry-breaking phase transition �6�. These
systems possess collective Goldstone fluctuation modes in
the symmetry-breaking continuum field which are relatively
easy to excite �7�.

Confined systems suffering continuous symmetry-
breaking transitions almost inevitably display topological de-
fects �4,6,8,9�. These exhibit order parameter configurations
that cannot be transformed locally into the ground state con-
figuration via continuous transformations. At the defect site,
the symmetry breaking field is not uniquely defined. Defects
can be treated as objects carrying a topological charge, which
is a conserved quantity �10�. In a bulk system, one can get
rid of defects only via mutual annihilation of their charges.
The region where the presence of a defect causes apparent
deviations from bulk ordering is referred to as the defect core
�11�. Its linear dimension is roughly given by the correlation
length � of the order parameter field employed to describe
the phase transition. The defect core typically exhibits a dif-
ferent phase with higher energy density than that in the sur-
rounding phase.

Simple representatives of such systems used in various
applications are thermotropic uniaxial liquid crystals �LCs�
�8,12� consisting of rodlike molecules exhibiting an isotropic
�I� to nematic �N� phase transition at the critical temperature
T=TIN. In the isotropic phase, the molecules strongly fluctu-
ate isotropically whereas in the nematic phase they tend to

align themselves along a single symmetry-breaking direc-
tion.

Strictly speaking, this picture is valid for an unconstrained
nematic LC. When it is confined in the submicrometer re-
gime, its structural and phase behavior can significantly dif-
fer from that of bulk samples. In fact, a confined LC equi-
librium configuration results from the interplay among
surface interactions, elastic distortions and finite-size effects.
When the confinement is particularly severe, in the presence
of antagonistic, sufficiently strong uniaxial anchorings, order
reconstruction �OR� �13,14� is a mechanism apt to relax
surface-induced frustrations. An appropriate mathematical
description of OR requires an order tensor Q: it occurs when
two eigenvalues of Q gradually approach each other until
they coalesce without involving a rotation of the eigenframe
of Q. Two conflicting uniaxial orderings can thus be recon-
ciled through a range of biaxial states that erect a bridging
wall, whose innermost core is negatively �planar� uniaxial.
OR structures have been investigated in detail �13,15–17� for
various boundary conditions in nematic cells bounded by
parallel walls for which the characteristic linear size of the
confining plates is large—virtually infinite—compared to the
cell thickness. As a result, the corresponding structures ex-
hibit spatial variations along a single spatial coordinate. OR
structures could be stable in thin enough cells �13,15,16�,
where the critical thickness is comparable to the biaxial order
parameter length �b, or when a sufficiently strong electric or
magnetic field is applied �17�.

Order reconstruction was actually introduced to study the
fine structure of defects in �18�, where it was originally
named eigenvalue exchange. Through this mechanism, biax-
ial core structures arise that avoid local melting of nematic
ordering. Theoretical investigations �19–23� for conventional
LCs suggest that biaxial, rather than isotropic, core structures
of both line and point defects are more likely to occur, par-
ticularly in the deep nematic phase. The predicted nematic
core structures are so small that they have not yet been ac-
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cessed experimentally: for biaxial structures, the linear size
of the defect core is comparable to �b, and so it is a nano-
scopic length-scale. However, it has been shown that defect
structures obtained from theories in the same league as
Landau–de Gennes’ are in good agreement with those ob-
tained from molecular simulations, where clusters of nematic
molecules are represented as Gay-Berne ellipsoids �24,25�.

In this paper, we analyze the structural behavior of a rela-
tively simple system consisting of a nematic LC confined
within a cylindrically symmetric hybrid cell of thickness
comparable to �b. Structural features are retraced by using a
mesoscopic Landau–de Gennes approach in which the nem-
atic ordering is described in terms of a tensorial order param-
eter. Recent studies �26–28� reveal that mesoscopic
Landau–de Gennes theories well predict structural and phase
behaviors of severely confined LCs, although the thermody-
namic limit is far from being reached. Here, we analyze dif-
ferent OR structures and show that large nonsingular elastic
distortions are pinned to topological defects.

The plan of the paper is as follows. The theoretical back-
ground is presented in Sec. II where the expression of the
free energy is discussed and the system is described. We use
two parameterizations for the order tensor: one for computa-
tional purposes, and the other to visualize better the different
examined structural variations. Appropriate dimensionless
Euler-Lagrange equations are written and boundary condi-
tions are discussed. Section III contains the main results of
the paper and Sec. IV summarizes our conclusions. Technical
details are deferred to two Appendices.

II. THEORETICAL BACKGROUND

A. Free energy

At the mesoscopic scale we describe the nematic ordering
by a symmetric, traceless order tensor Q represented as �4�

Q = �
i=1

3

�iei � ei, �1�

where ei are orthogonal unit vectors representing the eigen-
vectors of Q and �i are its eigenvalues, which, to interpret Q
as the traceless second-moment tensor of the molecular dis-
tribution function, must be such that �i� �− 1

3 , 2
3 �. In this de-

scription, a nematic LC is in a uniaxial configuration when Q
has two coincident eigenvalues and so we can write Eq. �1�
as

Q = S�n � n −
1

3
I� , �2�

where n is the nematic director field, S the uniaxial scalar
order parameter, and I stands for the identity tensor. The unit
vector n lies along the local uniaxial ordering direction.
Equation �2� suggests that there is indeed no difference be-
tween +n and −n, which is often referred to as the head-to-
tail invariance. The scalar order parameter S also expresses
the magnitude of fluctuations about the nematic director.

The degree of biaxiality is measured by the scalar param-
eter �29�

�2
ª 1 −

6�tr Q3�2

�tr Q2�3 , �3�

ranging in the interval �0,1�. Uniaxial configurations corre-
spond to �2=0, while an ordering with the maximum degree
of biaxiality is characterized by �2=1. Since tr Q=0, and so
tr Q3=3 det Q, the maximum value of �2 is attained when Q
has at least one vanishing eigenvalue.

Let a nematic LC occupy a region B of the three-
dimensional Euclidean space, with boundary �B. We express
the free-energy functional F�Q� of the nematic LC as

F�Q� ª �
B

�fc + fe�dV + �
�B

fsdA , �4�

where V and A are the volume and area measures and the
condensation and elastic free-energy densities, fc and fe, are
expressed as

fc ª
A

2
tr Q2 −

B

3
tr Q3 +

C

4
�tr Q2�2, �5�

fe ª
L

2
	�Q	2, �6�

respectively �4,8,12�. The temperature T enters the model
through the coefficient A=A0�T−T��, where T� is the super-
cooling temperature of the isotropic phase, while A0, B, and
C are material constants. The elastic term fe penalizes depar-
tures from a spatially homogeneous ordering. For simplicity,
we limit attention to the one-constant approximation where
the elasticity of the system is represented by a single positive
elastic constant L �4,8,12�. In an unconstrained system, the
bulk free energy enforces a homogeneous isotropic ordering
with Seq=0, when T�TIN, and a uniaxial nematic ordering
along a symmetry-breaking director n characterized by the
equilibrium value Seq= B

4C �1+
1− 24AC
B2 �, when T�TIN.

We model the surface free-energy density fs as �38�

fs ª
1

2
w tr�Q − Qs�2, �7�

where w�0 is the anchoring strength and Qs describes the
preferred nematic ordering at the substrate. Within this
model, the strong anchoring limit is recovered when w→�
and so it requires Q=Qs on �B. For example, if the uniaxial
orientational ordering is enforced along the unit vector ns,
also called the easy axis, then

Qs = Ss�ns � ns −
1

3
I� , �8�

where Ss describes the surface enforced degree of uniaxial
ordering, which can differ from the bulk equilibrium value
Seq. Other, more general anchoring energy densities have
been proposed in the literature; they are briefly described in
Appendix A along with an argument that shows how the
simple form �7� can be considered as a good approximation
to these.

The relevant material characteristic lengths �4� are the bi-
axial correlation length �b�
L /B, where L is the elastic con-
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stant in �6�, and the surface extrapolation length de�L /w.
Ratios of these lengths to the characteristic confinement
length h determine regimes with qualitatively different be-
haviors. The biaxial length measures the distance over which
a locally induced biaxial distortion persists in a uniaxial
nematic phase. Such distortions could propagate into the
whole system if h��b. The strong anchoring limit, in which
the preferred surface ordering prevails, is reached for
h /de	1.

B. Geometry

We consider a nematic LC sample confined within a pla-
nar cell between two parallel disks of radius R, a distance h
apart �see Fig. 1�. We assume that the LC texture exhibits a
cylindrical symmetry about the ez-axis. To describe this situ-
ation we introduce standard polar cylindric coordinates
�r ,
 ,z� and the corresponding local frame �er ,e
 ,ez� where
er is the radial unit vector emanating from the symmetry
axis, ez is directed along the symmetry axis, and e
ªez
�er. At the upper and lower plates, at z=h and z=0, we
impose uniaxial anchoring along er and ez, respectively.
These anchoring conditions are commonly referred to as the
tangential and homeotropic anchorings �4,12�. For large
enough anchoring strength, such conditions enforce a surface
point defect �also called a boojum �4,12,30�� at the center of
the upper plate. The frustrating conditions at the lower plate
can induce an OR structural transition in thin enough cells,
that is, when h��b �13,15,16�.

In our study we consider regimes where different charac-
teristic lengths of the system are comparable, namely,
h��b, R��b, and de��b. We shall see below that these
choices give rise to a rich structural behavior.

C. Parametrization

We assume that the order tensor Q can be represented as

Q�r,z� = − 2q0e
 � e
 + �q0 + q��er � er + �q0 − q��ez � ez

+ qm�er � ez + ez � er� , �9�

where q0, q�, and qm are functions of r and z. Hence, e
 is
always an eigenvector of Q. This choice rules out, for ex-
ample, distortions that are twisted along e
. The parameter
qm in Eq. �9� reveals departures of the eigenframe �e1 ,e2 ,e3�
of Q from �er ,e
 ,ez�, the two frames being coincident when
qm=0. In general, the eigenvectors �e1 ,e3� in the plane
�er ,ez� are rotated by an angle 
� �0,�� with respect to the
pair �er ,ez�, so that we can write

e1 = sin 
er + cos 
ez,

e2 = e
,

e3 = − cos 
er + sin 
ez. �10�

The parameters q are also related to the eigenvalues of Q
through the equations �1=−2q0, �2=q0−�, and �3=q0+�,
where

� ª

q�

2 + qm
2 . �11�

The exchange of eigenvalues �2↔�3 occurs wherever �=0
�18�. It takes place at the core of either point or line defects
�31� and can be viewed as a local OR �13,15�. The assumed
cylindrical symmetry of the solutions requires the parameters
q involved in the representation �9� to depend only on the
coordinates r and z.

To illustrate our results, in the sequel we shall need the
following alternative parametrization of the eigenvalues of
Q:

�1 =
2

3
s cos � ,

�2 = −
2

3
s cos�� −

�

3
� ,

�3 = −
2

3
s cos�� +

�

3
� . �12�

By Eq. �1�, we clearly have

s =
3

2
tr Q2, �13�

so that s=0 corresponds to an isotropic, or disordered state.
The degree of biaxiality �2 can be expressed as
�2=sin2 3�, and so it is a periodic function of � with period
� /3. Possible configurations of the system attained as � and
s are varied for a fixed eigenframe of Q are depicted in Fig.
2. For example, the configurations with �=0, �=2� /3, and
�=−2� /3 correspond to uniaxial states with positive scalar
order parameter s and director along e1, e2, and e3,
respectively. Similarly, the configurations �=�, �=−� /3,
and �=� /3 correspond to uniaxial states with negative sca-
lar order parameter. The degree of biaxiality attains its maxi-
mum at the angles �= �� /6, �= �� /2, and �= �5� /6.

�

ez

er

eϑ

h

R

FIG. 1. Sketch of a cylindrical hybrid cell. At the lower plate the
enforced ordering is homeotropic and positively uniaxial. At the
upper plate, the enforced ordering is again positively uniaxial, but
radial, which, for strong enough anchorings, induces a boojum at
the center of the upper plate. On the lateral wall, either free bound-
ary conditions or different uniaxial configurations are prescribed.
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To illustrate order textures relevant to our geometric set-
ting in the strong anchoring limit, we consider the conflicting
uniaxial boundary orientations n�r ,0�=ez and n�r ,h�=er. We
record the inner texture along a cylinder of radius r� such
that r��R. There are two possible ways to accommodate
these conflicting boundary conditions. In one way, the
eigenframe of Q rotates about e
 by setting for example,

�z�= z

h
�
2 , while keeping the nematic LC in a uniaxial state.

In the other way, the eigenframe of Q remains fixed with

= �

2 , while ��z� varies from ��0�=0 to ��h�=2� /3.
We note that the representation of Q in terms of �
 ,��

suffers from a drawback that makes its use in computations
awkward: it is not injective. A typical transformation of
�
 ,�� that leaves Q unchanged, and that we need to employ
when a defect is present, is �20�

�
,�� → �
 +
�

2
,
2�

3
− �� . �14�

This transformation interchanges �1 and �3, it maps e1 into
e3, and e3 into −e1, while leaving both �2 and e2 unaffected.

D. Scaling and dimensionless equilibrium equations

It is desirable to rescale appropriately the variables, so as
to write dimensionless equilibrium equations. Following
�15�, we introduce the reduced temperature

� ª

24AC

B2 =
T − T�

T�� − T�

, �15�

where T�� is the nematic superheating temperature, and the
superheating nematic order parameter

s0 ª
B

4C
. �16�

In these variables, a stable homogeneous uniaxial configura-
tion exists whenever ��

TIN−T�

T��−T�
= 8

9 , and it is characterized by
the equilibrium scalar order parameter

Seq = s0�1 + 
1 − �� . �17�

Other metastable states exist, as long as �� �0,1�. We also
define the biaxial correlation length �b as

�b ª
 4LC

B2�
1 − � + 1�
=

�b
�0�


�
, �18�

where �b
�0�
ª

2
LC
B is the bare, temperature-independent, biax-

ial correlation length, and �ª
1−�+1. For conventional
nematics, �b�20 nm. Accordingly, we also introduce the
surface extrapolation lengths

de
�i�
ª L/w�i�, �19�

where the superscript i=0,1 refers to either the lower or the
upper plate, respectively.

If we rescale Q to s0 and all lengths to h, we obtain the
following rescaled free-energy functional:

32C3

�B4h3F�Q� = �
0

1

dz�
0

R

r�fe + fc�dr + �
i=0

1 �
0

R

rfs
�i�dr ,

�20�

where all dimensionless quantities retain the same name as
the original, dimensional variables, to avoid clutter. More
precisely, in Eq. �20�,

fc =
�

6
�qm

2 + q�
2 + 3q0

2� − 2q0�qm
2 + q�

2 − q0
2�

+
1

4
�qm

2 + q�
2 + 3q0

2�2, �21�

fe = � �b
�0�

h
�2�3	�q0	2 + 	�q�	2 + 	�qm	2 +

�3q0 + q��2 + qm
2

r2 
 ,

�22�

fs
�i�
ª

��b
�0��2

2hde
�i� tr�Q − Qs

�i��2, �23�

where the gradient � is now intended in the dimensionless
space variables, and Qs

�i� is the preferred order tensor at the
plate indexed by i.

At the lower plate �i=0�, we impose a strong uniaxial
homeotropic anchoring, that is, we set Qs

�0�=��ez � ez− 1
3I�,

where use of Eq. �17� has also been made, and consider the
limit de

�0�	1. At the upper plate �i=1� we allow a finite
anchoring strength to favor the radial uniaxial configuration,
that is, Qs

�1�=��er � er− 1
3I�. Consequently,

fs�r,0� =
��b

�0��2

hde
�0� �1

3
�2 − q0�� − 3q0� + q��q� + �� + qm

2 
 ,

�24�

FIG. 2. Nematic states in the phase space �s ,��. Solid lines:
positively uniaxial states �S�0� with n=ei: i=1, �=0; i=2,
�=− 2�

3 ; and i=3, �= 2�
3 . Dashed lines: negatively �planar� uniaxial

states �S�0� with n=ei: i=1, �=�; i=2, �= �

3 ; and i=3, �=− �

3 .
Dotted lines: states with maximal degree of biaxiality �2=1. Along
the circle, the parameter s in Eq. �13� attains its maximum value,
s=1. At the center of the circle, s=0 and the phase is isotropic.
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fs�r,1� =
��b

�0��2

hde
�1� �1

3
�2 − q0�� − 3q0� + q��q� − �� + qm

2 
 ,

�25�

with d�e�
0 sufficiently large. At the cell’s lateral boundary,

r=R, we impose either free boundary conditions �BC�free�� or
positive uniaxial alignments. In this latter case, we either
choose a uniform alignment along the z axis, by which we
enforce a ring defect residing at the rim of the upper plate
�BC�rim��, or a progressive rotation of the nematic director
field along ez, so as to reconcile the conflicting boundary
conditions �BC�rot��. For a nematic LC with a positive field
anisotropy, BC�rim� could be experimentally realized by ap-
plying in the region r�R a strong enough electric field along
the z axis �12�. We also consider BC�rot� to mimic the order
texture that is likely to arise in a number of atomic force
measurements �AFM� �32�, which could be used to probe
OR structures in nematics. Our setup mimics the situation in
which a spherical AFM tip enforces tangential anchoring at
the upper plate and its radius of curvature is so large relative
to the thickness h that the tip can effectively be approxi-
mated as a plane. In such an ideal setup, the AFM apparatus
should enforce homeotropic anchoring at the lower plate.

Minimization of the free energy yields the following bulk
Euler-Lagrange equations for q0�r ,z�, q��r ,z�, and qm�r ,z�
�details are given in Appendix B�

� �b
�0�

h
�2��q0 −

3q0 + q�

r2 � −
�

6
q0 +

1

3
�q�

2 + qm
2 − 3q0

2�

−
q0

2
�3q0

2 + q�
2 + qm

2 � = 0, �26�

� �b
�0�

h
�2��q� −

3q0 + q�

r2 � −
�

6
q� + 2q0q� −

q�

2
�3q0

2 + q�
2 + qm

2 �

= 0, �27�

� �b
�0�

h
�2��qm −

qm

r2 � −
�

6
qm + 2q0qm −

qm

2
�3q0

2 + q�
2 + qm

2 � = 0,

�28�

where �ª

�2

�r2 + 1
r

�
�r + �2

�z2 is the Laplace operator in polar cy-
lindric coordinates.

At the upper plate, the weak tangential anchoring condi-
tion entails the equations

de
�1�q0,z + q0 =

�

6
, �29�

de
�1�q�,z + q� =

�

2
, �30�

de
�1�qm,z + qm = 0. �31�

Here and in the following, a comma denotes differentiation
with respect to a space variable. At the lower plate �z=0� we
enforce an infinitely strong uniaxial homeotropic anchoring,

corresponding to the limit when de
�0�→0 and Eq. �24� is re-

placed by

q0 =
�

6
, qm = 0, q� = − 3q0 = −

�

2
. �32�

At the lateral boundary, r=R, we impose either the free
boundary condition BC�free�, resulting in the equations

q0,r = qm,r = q�,r = 0, �33�

or the positive uniaxial ordering described by

q0 =
�

6
, qm =

�

2
sin 2
, q� =

�

2
cos 2
 . �34�

Moreover, we set 
�R ,z��0 for BC�rim� and 
�R ,z�= �
2 z for

BC�rot�.
To prevent the integral in Eq. �20� from diverging as a

consequence of fe in Eq. �22� being singular at r=0, we
require that there

q� = − 3q0 and qm = 0, �35�

which, by Eq. �9�, amounts to prescribe Q to be uniaxial. The
cylindrical symmetry about the z axis implies that

q0,r�0,z� = q�,r�0,z� = qm,r�0,z� = 0. �36�

Equations �26�–�28� are solved by standard relaxation
methods �33�, which have often been used to study LC tex-
tures in the presence of topological defects �20,34,35�. These
methods retrieve the solutions to the equations of the static
theory from an initial configuration of order by mimicking a
dynamical process along which the total free energy is de-
creased. In a process of this sort, the nematic ordering could
easily be trapped in a local minimum of the free-energy func-
tional: several attempts are needed to ensure that the static
configuration arrived at is indeed the one where the free-
energy functional attains its absolute minimum. In the com-
putations illustrated in the following section we repeatedly
applied this sanity strategy. Moreover, especially when de-
fects structures are found with this method, one should also
ensure that it could also be reached through an ideal quench-
ing from the isotropic, completely disordered state. This was
also checked by including the disordered state Q=0 in the
list of textures whence the relaxation process began. It
should be noted, however, that the axial symmetry embodied
in the equilibrium equations above prevents more elaborate
defect textures from arising, even temporarily, during relax-
ation. In this respect, the question of how the defect texture
we envisage here can indeed emerge from quenching re-
mains unanswered.

III. NUMERICAL OUTCOMES

We analyze qualitatively different equilibrium textures
within the cell when either h or R is O��b�. The equilibrium
configurations mirror the interplay between elastic and sur-
face forces, and are severely affected by the degree of con-
finement. Special attention is paid to interactions between
regions where the presence of topological defects enhances
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elastic distortions. Here we consider the main sources of
elastic distortions within the cell, under different circum-
stances. They are first analyzed in the limit where R	h, so
that different distorting sources may have a negligible mutual
influence. We then examine the core structure of a typical
isolated boojum which is imposed topologically at r=0,
when h /�b	1. Finally, we study cells with R�h, where
different sources of elastic distortions are bound to interact
strongly.

A. Order reconstruction

In large cells �R	h� structural variations in the equilib-
rium solutions mainly occur along the z axis. Significant de-
partures from this behavior are restricted to the region sur-
rounding the symmetry axis r=0 by the presence of a
boojum induced topologically on the upper plate, or close to
the rim r=R when the imposed boundary conditions are
BC�rim�.

Averaged characteristics of OR in large cells are almost
identical to those of the OR occurring in a classical hybrid
cell, which is hereafter referred to as OR�cl�, for brevity. In
this latter case, the bounding surfaces impose homogeneous
competing alignments. The resulting nematic configurations
exhibit spatial variations only along the z axis. In our setting,
a similar structure exists far from both the cell’s symmetry
axis and its boundary. Structural characteristics of OR�cl�

have already been studied in detail in the strong anchoring
limit by Palffy-Muhoray et al. �13� and by Bisi et al. �15,16�.
They considered frustrated cells where either a pure bend or
a pure twist elastic distortion is imposed. In fact, in the one-
constant approximation, these cases are equivalent from the
mathematical point of view. In such cells there are two com-
peting equilibrium solutions, one exhibiting an essentially
uniaxial structure and the other characterized by the OR�cl�

texture. In the strong anchoring limit their properties are as
follows. The uniaxial structure is stable in thick enough cells,
that is, for h�hc

�cl�, where hc
�cl��5�b �16�. For h�hc

�cl�, the
equilibrium OR�cl� texture, which exists for all values of h,
becomes stable. Typical structural variations are shown in
Fig. 3. For h	hc

�cl� �h /�b=10 in Fig. 3�, the energy mini-
mizer is essentially uniaxial, as it displays weak spatial
variations in both S and �2. Hence, the nematic configuration
is well described by S�Seq and �2�0, with a director field
n=sin 
er+cos 
ez, where 
�z��z �

2 . In the parametrization
�9�, this texture is given by

q0 =
�

6
, qm =

�

2
sin 2
, q� = −

�

2
cos 2
 . �37�

For smaller values of h �h /�b=5 in Fig. 3�, the degree of
biaxiality within the essentially uniaxial structure progres-
sively increases until h=hc

�cl�, where the equilibrium textures
loses completely its uniaxial character. For h�hc

�cl� no equi-
librium uniaxial texture survives, while the OR�cl� texture
becomes stable. Here, the eigenframe of Q remains the same
throughout the cell, and so qm�0. Consequently, sufficiently
away from the symmetry axis at r=0, strong variations in
biaxial ordering are only displayed along z. Typical graphs of
s, �2, and �, as defined in Eqs. �13�, �3�, and �11� are shown

in Fig. 4 against z for h /�b=4. In this configuration �2 ex-
hibits a double-peak profile, where it attains both its maxi-
mum �2=1 and its minimum �2=0. This latter corresponds
in real space to a sheet with negative uniaxial order along e
,
as witnessed by the vanishing of �, see Eqs. �11� and �9�. In
the limit of strong anchoring on both plates, this negatively
uniaxial sheet is placed at z=h /2.

In Fig. 5, we plot the averaged degree of biaxiality
��2�ª 1

h�0
h�2�z�dz as a function of h /�b; the plot clearly re-

veals a structural transition. Here, for �=−8 and in the limit
of strong anchoring on both plates, the transition occurs at
h�4.9�b, in agreement with the results obtained in �16� for a
twist hybrid cell.

B. Boojum

We now consider the core structure of an isolated boojum
enforced at r=0 by the boundary condition at the upper plate.
The defect exists only for strong enough anchorings
�h /de

�1��5� and its structure is not affected by the geometri-

FIG. 3. Structural variations in the essentially uniaxial configu-
ration: � stands for either 


�/2 �dash-dotted lines�, �2 �dashed lines�,
or S

Seq
�solid lines�. Here �=−8, h /de

�0�=100, h /de
�1�=10. The ratio

h /�b is set equal to 10 �thick lines� or to 5 �thin lines�.

FIG. 4. Typical graphs of s�z�, �2�z�, and ��z� away from the
axis r=0 for �=−8, and h /�b=4 in the limit of strong anchoring on
both plates. Here �=� /�eq �dash-dotted line�, where �eq is the equi-
librium value of �, �=�2 �dashed line�, and �=S /Seq �solid line�.
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cal details of the problem, provided that h /�b	1, as dis-
cussed in �30�. Its structure differs qualitatively from the core
of half a hedgehog. We summarize here the main features of
this defect, referring the interested reader to �30� for details.

As already discussed above, at the symmetry axis r=0 all
equilibrium textures must be uniaxial along ez, which, by Eq.
�9�, requires 3q0=−q� and qm=0. Similarly, the upper surface
imposes uniaxial states, and so �2 vanishes both on it and
along the symmetry axis. The defect core is thus character-
ized by a uniaxial finger protruding into the cell’s interior
along its symmetry axis. This is shown in Fig. 6, where we
plot the degree of biaxiality �2 that surrounds the defect for
a value of the anchoring strength at the upper plate that
makes the finger sufficiently pronounced. We refer to such a
core structure as the fingered boojum. In Fig. 7, we show
cross sections of the graphs of 
�r ,z�, s�r ,z�, and �2�r ,z�,
for fixed values of either r �left pannel: �a�, �c�, and �e�� or z
�right pannel: �b�, �d�, and �f��. The finger is negatively

uniaxial �S�0�. It ends in a tip, an isotropic point �S=0� at
a distance � f ��b from the upper surface �see Fig. 7�c��.
Below the tip, the nematic texture is positively uniaxial
�S�0� along the axis r=0. The finger is embraced by a
biaxial shell with �2=1, which joins the finger’s tip to the
upper surface �see Figs. 6 and 7�. The order parameter s
defined in Eq. �13� vanishes only at the finger tip for a finite
value of w �Fig. 7�c��.

C. Interaction between the boojum and the uniaxial sheet

We now analyze textures resulting form allowing h and R
to be comparable, so that the interaction between a defect
core and the negatively uniaxial sheet of the OR structure
plays a significant role. To this purpose, we consider values
of h and R that are still larger than, but comparable to �b. We
recall that, according to recent experimental studies �26–28�,
nematic structures are surprisingly well described within the
mesoscopic approach we use here, also at such small length-
scales.

We first consider textures arising when strong anchoring
is imposed at both plates and h�hc, so that an OR structure
prevails. A representative structure for R /h�1 induced by
the free boundary condition BC�free� is shown in Fig. 8�a�. We
refer to the resulting configuration as the OR�free� texture,
where the superscript refers to the type of boundary condi-
tion. We draw level curves for �2�r ,z� in dark blue where the
nematic state is essentially uniaxial and in red where the
nematic state is strongly biaxial. For R /h�1 the equilibrium
texture almost coincides with the OR�cl� structure and it is
characterized by a negatively �planar� uniaxial sheet in the
middle of the cell. The structure of the boojum residing at
r=0 is slightly affected by the OR structure extending itself
for r�0. On the other hand, the boojum strongly influences
the OR profile near r=0. The uniaxial sheet is anchored at
the tip of the boojum finger and then approaches the mid
plane z=h /2 as r increases, as shown in Fig. 8. When R is
small enough, the whole uniaxial sheet could be appreciably
lifted above the mid plane, as shown in Fig. 8�b�. Moreover,
if we impose a strong uniaxial ordering along the symmetry
axis, by setting Q�0,z�=��ez � ez− 1

3I�, with ��0, the finger
is moved toward the upper plate of the cell and, for cells with
R�h, the uniaxial sheet then rigidly follows the finger �see
Fig. 8�c��. This scenario could be tested experimentally by
applying locally a strong enough electric field along the z
direction for a nematic LC with positive dielectric aniso-
tropy. Some cross-sections of the graph of �2 at fixed values
of either z or r are plotted in Fig. 9. Correspondingly, Fig. 10
shows the trajectories that represent the solutions in the
�s ,�� space introduced through Eq. �12�.

In Fig. 11, we illustrate the influence of the anchoring
strength on the existence of OR. For any r� sufficiently large,
there are three values of z, denoted by zmax

�1� , zmin, and zmax
�2� ,

and characterized by being �2�r� ,zmax
�1� �=1, �2�r� ,zmin�=0,

and �2�r� ,zmax
�2� �=1. In the strong anchoring limit for both

plates, 0�zmax
�1� �zmin�zmax

�2� �1. We then retrace the values
of zmax

�1� , zmin, and zmax
�2� at r=R /2, when the anchoring strength

at the upper plate is decreased. It turns out that, upon de-
creasing the anchoring strength, elastic distortions gradually

FIG. 5. The averaged degree of biaxiality ��2�ª 1
h�0

h�2dz as a
function of h /�b for the OR�cl� texture. The structural transition
occurs at hc /�b�4.9, sufficiently away from the symmetry axis
r=0.

FIG. 6. �Color online� Cross-section orthogonal to the surface
hosting the boojum, showing a color plot of the degree of biaxiality
�2. A biaxial shell joins the isotropic finger tip and the upper sur-
face. The negatively �planar� uniaxial finger is the thick solid line
along the symmetry axis. Along the yellow lines �white, in print�,
�2�0.6; along the dark blue lines �black, in print�, �2�0; along
the dark red lines �light gray, in print�, �2�1.
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exit the cells. In Fig. 11, where h /�b=4 and R /h=0.5, the
critical value dc

�1� of de
�1� for which zmin=1 is given by

dc
�1��1.5h.

We also studied the influence of the boundary conditions
at r=R on the details of the equilibrium texture. Some rep-
resentative plots of �2 for BC�free�, BC�rim�, and BC�rot� for
decreasing h are shown in Figs. 12–14, respectively. We fo-
cus attention on OR structures arising when either of the two
uniaxial boundary conditions is enforced. A typical pattern
for BC�rot�, which we label OR�rot�, is shown in Fig. 13�f�.

The canyon surrounded by the ridges with �2=1 is in this
case closed because of �2�R ,z�=0. For BC�rim�, an additional
ring defect is formed at r=R and z=h, as shown in Fig. 14�f�.
We refer to this configuration as the OR�rim�. Like the boo-
jum, the ring defect lifts the uniaxial sheet toward the upper
plate.

Figures 12–14, further illustrate some stages of the nucle-
ation of the OR structure, when the cell thickness is de-
creased and when R��b so that finite-size effects are evi-
dent. This OR structure develops continuously, as does

(b)(a)

(c) (d)

(f)(e)

FIG. 7. Representative cross-sections of the boojum structure. Variations along the z axis are in the left panel and those along the r axis
are in the right panel. The following cross-sections are shown: �a� 
�r� ,z�, �b� 
�r ,z��, �c� s�r� ,z�, �d� s�r ,z��, �e� �2�r� ,z�, and �f� �2�r ,z��,
where r�=� f /2,� f ,3� f /2 and h−z�=� f /2,� f ,3� f /2. Moreover, we set throughout h /�b=10, �=−8, R=h, and h /de

�1�=100.
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OR�cl�. Above a critical thickness hc
�BC�, which depends on the

boundary condition imposed at r=R, the onset of OR can be
inferred from the attraction exerted by the defect’s core,
which for h�hc

�BC� makes the degree of biaxiality larger
close to either the boojum or the ring defect. To determine
hc

�BC�, we decrease gradually h and we record both the
local average degree of biaxiality, ��2�rª

1
h�0

h�2�r ,z�dz
at r=R /2 and the total average degree of biaxiality
��2�ª 2

hR2 �0
R�0

h�2rdrdz. The biaxial defect cores promote the
onset of OR and, in fact, both hc

�free� and hc
�rim� increase upon

decreasing R. To enrich our analysis we also monitored
��2�R/2 which reveals changes in the inner biaxial texture.

Figure 15 illustrates how ��2� �thick lines� and ��2�R/2 �thin
lines� vary as h is varied. Due to the imposed uniaxial
boundary conditions, ��2�� ��2�R/2 for both OR�rim� and
OR�rot�. Conversely, the influence of the boojum on the
OR�free� texture is relatively weak. We found ��2����2�R/2
and consequently we plotted only ��2� in Fig. 15. Upon de-
creasing R, hc

�free� slightly increases. On the contrary, the in-
fluence of the ring defect can dramatically enhance hc

�rim�, as
shown in Fig. 16. One sees a large increase in hc

�rim� as R
approaches h. In the case of BC�rot�, the “noncritical” char-
acter of the essentially uniaxial region at r=R masks the
clear onset of the OR�rot� structure. In this case, the transition

(b)

(a)

(c)

FIG. 8. �Color online� The level curves of �2�r ,z� in the OR
texture corresponding to the free boundary condition �BC�free�� at
r=R. We set h /�b=2, �=−8, h /de

�1�=100. �a� R /h=5, �b�
R /h=0.5, �c� R /h=5, and Q�0,z�=Seq�ez � ez− 1

3I�. In all cases, the
uniaxial sheet is pinned to the tip of the boojum finger. The color
code is the same as in Fig. 6.

(b)

(a)

(c)

FIG. 9. One dimensional graphs of �2 at selected values of r or
z. �a� BC�free�, R /h=0.5, �b� BC�rim�, R /h=1.5, �c� BC�rot�, and
R /h=1.5. For all graphs, h /de

�1�=100 and �=−8.

FINITE-SIZE EFFECTS ON ORDER RECONSTRUCTION… PHYSICAL REVIEW E 81, 021702 �2010�

021702-9



between the different competing structures also seems to be
gradual.

IV. CONCLUSIONS

We studied equilibrium order textures in nematic liquid
crystals confined within a submicrometer hybrid cell. En-
couraged by the recent success of mesoscopic approaches
�26–28� in predicting the material’s behavior in severely con-
fined geometries, we employed the Landau–de Gennes
theory in regimes where the geometric and physical length
scales are comparable with one another. In particular, we
explored the interaction between regions of nonsingular se-
vere elastic distortions and topological defects, along with

the structural transitions that could be drastically affected by
the presence of topological defects.

Within a cylindrical cell of thickness h and radius R we
considered axially symmetric configurations induced by a
radial planar anchoring at the upper plate and a homeotropic
anchoring at the lower plate, which have the potential to
promote topological defects, provided that the anchoring on
the upper plate is strong enough. On the lateral surface of the
cell, we imposed either free boundary conditions �BC�free��,
or a homogeneous uniaxial alignment along the z axis

FIG. 10. �Color online� The trajectories in the �s ,��-space join-
ing points within the cell for the equilibrium texture shown in Fig.
8�a�. In cylindrical coordinates, the relevant points are described by
A: �r=0, z=h�, B: �r=0, z=0�, C: �r=R , z=0�, and D:
�r=R , z=h�. The trajectories in real space are straight segments.

FIG. 11. Evaluation of �zmax
�1� ,zmin,zmax

�2� � at r=R /2, upon decreas-
ing the anchoring strength w1�1 /de

�1� at the upper plate. The OR
structure gradually exits the cell. At zmax

�1� and zmax
�2� the degree of

biaxiality �2 attains its maximum �2=1, whereas at zmin it attains its
minimum �2=0. For strong enough anchoring, the OR is character-
ized by 0�zmax

�1� �zmin�zmax
�2� �1. Here, we chose BC�free� with

h /�b=4, R /h=0.5, and �=−8.

FIG. 12. �Color online� Nucleation of OR�free� upon decreasing
the cell thickness h shown through the level curves of �2�r ,z�. The
scale and the color code are the same as in Fig. 8�a�. �a� h /�b=8, �b�
h /�b=7.33, �c� h /�b=6.67, �d� h /�b=6, �e� h /�b=5.33, and �f�
h /�b=4.67. In all pictures R /h=1.5, h /de

�1�=100, and �=−8. A typi-
cal OR�free� structure is achieved in �f�.

FIG. 13. �Color online� Nucleation of OR�rim� upon decreasing
the cell thickness h, shown through the level curves of �2�r ,z�. The
scale and the color code are the same as in Fig. 8�a�. �a� h /�b

=8.67, �b� h /�b=8, �c� h /�b=7.33, �d� h /�b=6.67, �e� h /�b=6, and
�f� h /�b=5.33. In all pictures R /h=1.5, h /de

�1�=100, and �=−8. A
typical OR�rim� texture is achieved in �f�.
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�BC�rim��, or a prescribed uniaxial rotation of the nematic
director �BC�rot��, all meant to relax or contrast the frustration
induced by the boundary conditions on the plates. Besides a
boojum, a ring defect also emerges on the upper plate at
r=R when BC�rim� is imposed. Values of h and R are set to be
larger than, but comparable to the biaxial correlation length
�b, that is, where the OR can be stabilized �13,16�.

Our study reveals that a negatively �planar� uniaxial sheet,
a characteristic feature of OR, can be locally molded by to-
pological defects. In particular, both the boojum and the ring
defect attract the uniaxial sheet toward themselves. These
effects are even more pronounced for R�h��b. We also
observed that severe elastic distortions virtually abandon the
cell upon decreasing the anchoring strength at the upper
plate. Furthermore, we demonstrated that a line defect could
dramatically increase the critical thickness hc below which
the OR is observed: actually, hc can be doubled if h�R. This
phenomenon has already been observed in �31,36�, where
structural changes in the nematic equilibrium textures were
induced by an applied field. In that case, the critical electric
field promoting the onset of OR was approximately de-
creased by a factor two when a line defect was present in the
cell.

Our main concern in this paper was to assess the possible
influence of point and line defects on the structural details of
OR and on the threshold for its appearance. To enforce a
point defect on a plate of a nematic cell, we considered a
rather simple surface energy, given by Eq. �7�. This raises the
question that our conclusions could have been different, had
only a different choice for the surface energy been made. We
regard Eq. �7� as the prototype of a general family of surface
energies enforcing one and the same uniaxial alignment of Q
in the strong anchoring limit. It is shown in Appendix A how
to choose the energy strength w in Eq. �7� to approximate a
general surface energy density with appropriate growth prop-

erties. We believe that the coincidence of the surface mini-
mizers in the strong anchoring limit would make qualita-
tively similar the ordering textures from both the general and
the prototypical surface energies, especially near the strong
anchoring limit. Qualitative changes in the structure of the
boojum could be obtained by choosing an anisotropic surface
interaction energy that promotes with different strengths the
orientation of the eigenframe and the degree of ordering of
Q. If the latter anchoring strength is much weaker than the
former, then the boojum structure would resemble the struc-
ture of a half-hedgehog as discussed in detail in �30�. How-
ever, here our main objective was to illuminate how defects

FIG. 14. �Color online� Nucleation of OR�rot� upon decreasing
the cell thickness h shown through the level curves of �2�r ,z�. The
scale and the color code are the same as in Fig. 8�a�. �a� h /�b

=7.33, �b� h /�b=6.67, �c� h /�b=6, �d� h /�b=5.33, �e� h /�b=4.67,
and �f� h /�b=4. In all pictures R /h=1.5, h /de

�1�=100, and �=−8. A
typical OR�rot� structure is achieved in �f�.

(a)

(b)

(c)

FIG. 15. �Color online� Graphs of ��2� �thick lines� and ��2�R/2
�thin lines� against h for �a� OR�free�, �b� OR�rim�, and �c� OR�rot�. As
a reference, we also plot the graph of ��2� against h for OR�cl�.
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may alter the OR structure. We showed that both line and
point defects—for which we enforced different biaxial core
structures by choosing appropriate forms of the surface
potential—pin the negatively �planar� uniaxial OR sheet.
Therefore, OR textures could be effectively modulated in
space via topological defects, with potential use in diverse
applications �for example, to establish structures with con-
trolled periodic modulations for photonic crystals �37��. In
the absence of defects, the OR uniaxial sheet is placed in the
middle of the cell, for equal anchoring strengths at both
plates. If defects are introduced, say, at the top plate the
whole sheet could be lifted toward this plate. In addition, we
found that, at variance with a point defect, a line defect could
strongly influence the threshold for the formation of OR tex-
tures. Our results suggest that line defects could in general
affect strongly phase or structural transitions, where one
phase or structure is preferred by the defect core structure, if
the characteristic linear size of the region confining the LC
sample is comparable to the length of the defect.

APPENDIX A: SURFACE ENERGIES

The surface free-energy density fs in Eq. �7� was proposed
by Nobili and Durand in �38�. When, as in our setting, the
tensor Qs in Eq. �7� is uniaxial, fs is a special case of the
function

fw ª W11e · Qe + W21 tr Q2 + W22�e · Qe�2 + W23Qe · Qe ,

�A1�

where W11, W21, W22, and W23 are material constants. The
surface free-energy density fw is the most general function
depending quadratically on the order tensor Q and on a pre-
ferred unit vector e, which represents the single local direc-
tion of anisotropy of the substrate: e is usually taken to be
the unit normal vector � to the substrate; for our purposes,
however, it is to be identified with the radial unit vector er.
This free-energy density, originally proposed by Poniwierski
and Sluckin in �39�, can be derived from both a molecular
mean-field theory �40,41� and a density functional theory
�42�; it has been applied extensively in studying wetting phe-
nomena.

The stationary points of fw are identified by requiring that

� fw

�Q
= 0 . �A2�

It follows from Eq. �A1� that Eq. �A2� reads as

W11e � e + 2W21Q + 2W22�e · Qe�e � e + 2W23Qe � e = 0 ,

�A3�

Q0e = �e ,

where

� = −
W11

2�W22 + W23�
.

For such a tensor to comply with its statistical interpretation,
� must be bound to the interval �− 1

3 , 2
3 �. If W21�0, the only

solution of Eq. �A3� is

Q0 = �e � e ,
�A4�

where

� = −
3

2

W11

3W21 + 2�W22 + W23�
� �−

1

2
,1
 .

With Q0 as in Eq. �A4�, to within an inessential additive
constant, fw reduces to

fs =
1

2
w tr�Q − Q0�2, �A5�

provided that

W11 = − �w, W21 =
1

2
w, W22 = W23 = 0. �A6�

Q0 in Eq. �A4� is an isolated minimizer of fw whenever
the fourth-rank tensor

S ª

�2fw

�Q2

is positive definite. By differentiating in Q the left-hand side
of Eq. �A3�, one arrives at

S = 2�W21I + W22e � e � e � e + W23E� ,
�A7�

where I is the identity on the five-dimensional linear space U
of all symmetric, traceless second-order tensors, and E is the
linear mapping onto U defined by

FIG. 16. Dependence of the critical thickness hc
�rim� on R. For

R�hc
�rim�, the presence of the ring defect strongly increases the

threshold value hc
�rim�.

KRALJ, ROSSO, AND VIRGA PHYSICAL REVIEW E 81, 021702 �2010�

021702-12



E�U� ª Ue � e for all U � U .

E is a symmetric forth-rank tensor onto U; its eigentensors b
are members of U that satisfy the equation

be � e = �b
�A8�

with � real. It is easily seen that

b=e � e

is a solution of Eq. �A8� with �= 2
3 . Then the other eigenten-

sors of E are orthogonal to

and so they satisfy

e · be = 0. �A9�

By applying both sides of Eq. �A8� to e, making use of Eq.
�A9�, we obtain

1

2
be = �be ,

whence it follows that either be=0 or �= 1
2 . In the former

case, again by Eq. �A8�, �=0. We thus conclude that the
eigenvalues of E are 2

3 , 1
2 , and 0. While the eigenspace U2/3

corresponding to the first eigenvalue has dimension 1, both
eigenspaces U1/2 and U0 corresponding to the other eigenval-
ues have dimension 2. It can be easily proved that U1/2 is
generated by the tensors �e � e�+e� � e� and �e � e�� +e��
� e�, where both e� and e�� are unit vectors orthogonal to e
and to each other. Similarly, U0 is generated by the tensors
�e� � e�� +e�� � e�� and �e� � e�−e�� � e�� �. U2/3, U1/2, and
U0 are also the eigenspaces of S, with corresponding eigen-
values

�2/3 = 2�W21 +
2

3
W22 +

2

3
W23� ,

�1/2 = 2W21 + W23,

�0 = 2W21.

Thus, S is positive definite, whenever �2/3, �1/2, and �0 are
all positive; in such a case, Q0 in Eq. �A4� is the absolute
minimizer of fw and it represents the preferred ordered state
on the surface.

Even when Eqs. �A6� are not satisfied, and so fw and fs do
not coincide, we may determine w in Eq. �A5� so as to make
fs the closest approximation to fw, when both have the same
minimizer Q0 as in Eq. �A4�. In the light of the above sta-
bility analysis, w can be determined by requiring that the
forth-rank tensor

S� =
�2fs

�Q2 = wI

be the closest to S in the tensor norm. Thus, we determine w
by requiring that

	S − S�	2 = �2�W21 +
2

3
W22 +

2

3
W23� − w
2

+ 2�2W21 + W23 − w�2 + 2�2W21 − w�2.

An easy computation gives

w =
2

15
�15W21 + 2W22 + 5W23� .

Inserting this value of w in Eq. �A5� delivers the function fs
that best approximates fw.

Modified versions of Eq. �A1� have also been introduced
to model substrates with more than a single direction of an-
isotropy. For example, in �43,44�, the following surface free-
energy density fa has been proposed, later also applied in
�45�:

fa ª − wa tr�QH� , �A10�

where H is a symmetric traceless second-rank tensor that
mimics the local properties of the substrate. In this model,
the surface free-energy density is linear in Q, and so it can be
minimized only by enforcing in an extrinsic, artificial fashion
the bounds on Q that justify its statistical interpretation.
However, as shown in �46� in the limit of strong anchoring,
there is no guarantee that these bounds are obeyed even in
bulk, where the Landau–de Gennes potential favors a definite
uniaxial state. Care must in general be used when employing
a surface energy density unbounded from below like Eq.
�A10�, to avoid the occurrence of a boundary layer where the
order tensor field minimizing the total free-energy functional
violates the statistical bounds. An expression for fa more
appropriate than Eq. �A10� would be a quadratic function in
Q, also depending on H, which attains an isolated minimum
as fw in Eq. �A1�.

APPENDIX B: EQUILIBRIUM EQUATIONS

To minimize the rescaled free-energy functional

F�Q� = �
0

1

dz�
0

R

�fe�Q� + fc�Q��rdr + �
0

R

fs�Q,Qs�rdr

�B1�

in the class of symmetric, traceless tensors Q represented by
Eq. �9�, we first compute the third-rank tensor �Q. Resorting
to components, we observe that Q has the following struc-
ture:

Qkh = q�ek
�eh

�,

where �=0,1 ,2, e0
ªe
, e1

ªer, e2
ªez, and summation

over the index � is understood. We then note that

Qkh,i = q,i
�ek

�eh
� + q�ek,i

� eh
� + q�ek

�eh,i
�

and that the gradients ek,i
� are diadic products, so that

ek,i
� =ak

�bi
�. By use of

�er =
1

r
e
 � e
, � e
 = −

1

r
er � e
, and � ez = 0

�see, e.g., p. 77 of �8�� and by reverting to intrinsic notation,
we arrive at
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�Q = − 2e
 � e
 � �q0 + er � er � ��q0 + q�� + ez � ez

� ��q0 − q�� +
2q0

r
�er � e
 � e
 + e
 � er � e
� + �er

� ez � �qm + ez � er � �qm� +
qm

r
�e
 � ez � e
 + ez

� e
 � e
� +
q0 + q�

r
�e
 � er � e
 + er � e
 � e
� .

�B2�

Applying a standard method, we change Q into a per-
turbed tensor Q� by altering q0, q�, and qm in Eq. �9� as
below

q0
�
ª q0 + �u1, �B3a�

q�
�
ª q� + �u2, �B3b�

qm
�
ª qm + �u3, �B3c�

where u1, u2, and u3 are the three smooth arbitrary functions
of r and z. We then expand F�Q�� in � retaining only the

first-order terms; the first variation of F is defined as

�F�Q��u,h,v� =� dF�Q��
d�

�
�=0

.

By Eq. �B2�, we obtain

	�Q	2 = 2��3	�q0	2 + 	�q�	2 + 	�qm	2�

+
1

r2 �qm
2 + �3q0 + q��2�� �B4�

and one can easily check that

tr Q2 = 2�qm
2 + q�

2 + 3q0
2� �B5�

and

tr Q3 = 6q0�q�
2 + qm

2 − q0
2� . �B6�

By inserting Eqs. �B4�–�B6� into F, after several integrations
by parts, we give �F the following expression:

�F�u1,u2,u3� = 2� �b
�0�

h
�2�

0

1 �
0

R

r� 1

r2 �3�3q0 + q��u1 + �3q0 + q��u2 + qmu3� − �3u1�q0 + u2�q� + u3�qm�
drdz

+ �
0

1 �
0

R

r�2A�3q0u1 + q�u2 + qmu3� − 2B�2�q�u2 + qmu3 − q0u1� + u1�qm
2 + q�

2 − q0
2��

+ 4C�qm
2 + q�

2 + 3q0
2��3q0u1 + q�u2 + qmu3��drdz + 2� �b

�0�

h
�2�

0

R

r�3u1q0,z�r,1� + u2q�,z�r,1� + u3qm,z�r,1��dr

+ 2
��b

�0��2

hde
�1� �

0

R

r�3q0u1 + q�u2 + qmu3�dr − � ��b
�0��2

hde
�1� �2�

0

R

r�− 2u1q


s + �u1 + u2�qrr

s + �u1 − u2�qzz
s + 2u3qrz

s �dr

+ 2� �b
�0�

h
�2�

0

1

�3u1q0,r�R,z� + u2q�,r�R,z� + u3qm,r�R,z��dz , �B7�

where the preferred order tensor Qs at z=1 was written as

Qs = qrr
s er � er + qzz

s ez � ez + q


s e
 � e


+ qrz
s �er � ez + ez � er� + Qn

with Qn a tensor that does not contribute to the first variation

in the surface free-energy, in view of the representation as-
sumed for Q in Eq. �9�. By recalling the expression of the
Laplace operator in cylindrical coordinates, we readily arrive
at the equilibrium equations �26�–�28� in the main text from
requiring �F in Eq. �B7� to vanish identically for all u1, u2,
and u3.
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