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We use a computationally efficient phase-field formulation �B. Echebarria et al., Phys. Rev. E 70, 061604
�2004�� to investigate the origin and dynamics of sidebranching in directional solidification for realistic pa-
rameters of a dilute alloy previously studied experimentally �M. Gorgelin and A. Pocheau, Phys. Rev. E 57,
3189 �1998��. Sidebranching is found to result either from noise amplification or from deterministic oscilla-
tions that exist both in two dimensions and in a three-dimensional thin-sample geometry. The oscillatory
branch of growth solutions bifurcates subcritically from the main steady-state branch of solutions and exists
over a finite range of large array spacings. In contrast, noise-induced sidebranching is associated with a smooth
transition where the sidebranching amplitude increases exponentially with spacing up to nonlinear saturation
due to the overlap of diffusion fields from neighboring cells, as observed experimentally. In the latter case
where sidebranching is noise-induced, we find that increasing the externally imposed thermal gradient reduces
the onset velocity and wavelength of sidebranching, as also observed experimentally. We show that this
counterintuitive effect is due to tip blunting with increasing thermal gradient that promotes noise amplification
in the tip region.
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I. INTRODUCTION

Dendritic growth is a remarkable example of spontaneous
pattern formation in nature of both fundamental and techno-
logical interest �1�. An ubiquitous feature of this growth pro-
cess is the emission of secondary branches on the sides of a
growing primary needlelike structure, and the subsequent
emission of higher order branches leading to a highly orga-
nized treelike pattern �2–4�. For freely growing dendrites,
where primary branches emerge from a solid seed along
equivalent crystallographic directions, current theories at-
tribute sidebranching to noise amplification �5–8�. Consistent
with this prediction, phase-field simulations in two dimen-
sions have shown that sidebranching without noise is only
transient, and that the addition of noise produces the type of
sidebranching activity observed experimentally �9�. At a
more quantitative level, noise amplification theories predict
that noise of microscopic origin should suffice to produce
sidebranches when the departure of the needle crystal shape
from a paraboloid of revolution far behind the tip is taken
into account �3,8�.

For cellular-dendritic arrays that form during the con-
strained solidification of an alloy in a thermal gradient, the
origin of sidebranching has remained more poorly under-
stood. In a casting, columnar dendrites are the predominant
structures that grow with one preferred crystallographic axis
generally aligned with the thermal gradient. Hence, they
typically grow as an array of dendrites perpendicular to the
cooler walls of the mold toward the hotter central liquid
region of the casting. These structures can be studied in a
more controlled way by directional solidification, i.e., by
pulling a thin sample containing a binary alloy at constant
velocity, V, parallel to the axis of an externally imposed tem-
perature gradient, G �10�. The solid-liquid interface under-

goes the classic Mullins-Sekerka instability when V exceeds
a threshold value, Vc �11�. For V up to a few times Vc, the
interface evolves after a long dynamical transient into a
steady-state cellular array structure of wavelength �primary
spacing� �, where cells are separated by narrow liquid
grooves that become deeper with increasing V. For even
higher velocities, cellular arrays become dendritic.

The transition from cell to dendrite is generally associated
with a qualitative change in the cell tip shape, which be-
comes more parabolic with increasing growth rate. This
shape change, in turn, promotes the appearance of side-
branches. The origin of the cell to dendrite transition has
been studied experimentally for over two decades. In some
experiments, this transition has been found to be accompa-
nied by a discontinuous increase in primary spacing when
cellular arrays become dendritic �12–14�. Numerical studies
�15,16� have related this jump of spacing to the existence of
different steady-state growth shapes for different spacings.
Those studies showed that, for a range of intermediate
growth velocities, cells and dendrites belong to different
branches of solutions that exist only for small and large spac-
ings, respectively, but not for spacings in between. In other
experiments, however, the cell-to-dendrite transition has
been observed to be continuous �17–20�. In those experi-
ments, deep cells with blunt tips became progressively more
needlelike and developed sidebranches of progressively
larger amplitude as the primary spacing was increased at
fixed velocity.

In this paper, we focus on understanding the formation of
sidebranches in this latter case where the cell-to-dendrite
transition is continuous as a function of the primary spacing
�. This case is common experimentally since cells and den-
drites generally belong to the same branch of steady-state
growth solutions for large enough growth velocity. This was
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highlighted in a recent phase-field study of steady-state
growth shapes in two and three dimensions, which showed
that, when the growth rate exceeds some threshold, the tip
shape changes continuously from a blunt finger to a sharp
needle with increasing � �16�. This threshold was also
shown to depend sensitively on the magnitude of the surface
energy anisotropy. As a basis of quantitative comparison for
our predictions, we use the experiments of Refs. �17–20�.
Those experiments exploited the history dependence of
wavelength selection in directional solidification to select the
array spacing and to maintain it spatially uniform �17�,
thereby making it possible to treat � as a control parameter
on equal footing with G and V. Thus, those experiments
explored the onset of sidebranching systematically in the
three-dimensional �3D� parameter space �V ,G ,�� for a
range of V where cells and dendrites belong to the same
branch of steady-state growth solutions.

The experimental observations revealed that this space
splits into two distinct domains of branched and non-
branched cells separated by a critical surface VSB�� ,G�,
which defines the onset of sidebranching �17�. This onset
turns out to be well-defined because the velocity range over
which sidebranches become ‘visible’ is extremely narrow.
The critical speed VSB�� ,G� is a monotonously decreasing
function of � at fixed G, consistent with the expectation that
sidebranching can be induced by increasing either velocity or
spacing. More surprising, however, was the finding that side-
branching is induced when G is increased at fixed V and �
�i.e., VSB�� ,G2��VSB�� ,G1� if G2�G1�. Naively, this ob-
servation appears counterintuitive since increasing G has a
strong stabilizing effect on the primary instability.

So far, it has not been possible to extend the theory of
noise amplification to directional solidification in order to
explain those observations. While the tip shape in free
growth is close to the Ivantsov paraboloid �21�, the steady-
state growth shape in directional solidification is not known
analytically, except in two limiting cases. The first is the
limit �� lD, where the array spacing is much smaller than
the solutal diffusion length lD�D /V where D is the solute
diffusivity. In this limit, cells tip shapes are predicted to be
well described by Saffman-Taylor fingers, based on the
mathematical analogy between directional solidification in
this limit and viscous fingering �33�. The second is the op-
posite limit �� lD where needle tips interact weakly via the
diffusion field and grow essentially as free dendrites. For
typical experimental spacings in between those two limits,
approximate expressions for growth shapes have being ob-
tained by matching the cell tip and tail regions �22�. Analyti-
cal expressions for cell shapes have also been derived em-
pirically from fits to experimental observations �19�.
However, the lack of reliable analytical solutions for steady-
state shapes have hindered the extension of noise amplifica-
tion theories to this problem.

The alternate possibility that sidebranching results from
deterministic oscillations of the tip region was proposed pre-
viously for freely growing dendrites �23�. However, free-
growth dendrites were subsequently shown numerically to be
linearly stable �24� in support of a noise amplification
mechanism. For directional solidification, a limit cycle be-
havior cannot be ruled out since the temperature gradient,

absent in free growth, strongly influences the interface dy-
namics in the tip region. Recent experimental analysis of the
bursting behavior of sidebranches in fact suggests the exis-
tence of a nonlinear limit cycle �25�.

In this paper, we use phase-field simulations to shed light
on the origin of sidebranching in directional solidification.
Our main goal is to sort out to what degree the sidebranching
activity is due to noise or deterministic dynamics. A second-
ary goal is to explain the counterintuitive experimental ob-
servation that increasing the magnitude of the thermal gradi-
ent promotes sidebranching. As in the experiments where
this observation was made �17�, we treat the cell spacing �
as a control parameter together with V and G. We do not
address here the question of how � is dynamically selected,
which is not essential for understanding the nature of the
critical surface separating branched and nonbranched struc-
tures. We use a quantitative phase-field formulation for the
directional solidification of dilute binary alloys in the experi-
mentally relevant low velocity limit of local equilibrium at
the interface �26,27�. In addition, we exploit the fact that a
phase-field approach is ideally suited to study quantitatively
the effect of a small amplitude thermal noise �9�.

Our main finding is that sidebranching can be due either
to noise amplification or to a nonlinear limit cycle. When
increasing the array spacing in the presence of noise, we find
that sidebranches increase exponentially in amplitude above
some critical spacing that depends both on growth rate and
temperature gradient. Furthermore, in a large spacing range
where sidebranches already form due to noise amplification,
a limit cycle bifurcates subcritically with increasing � from
the underlying branch of steady-state cells. Sustained oscil-
lations appear due to a resonant interaction in which side-
branches produce a perturbation of the tip, which in turn
becomes amplified, creating a positive feedback. While re-
cent experiments have hinted to the existence of a limit cycle
�25�, we are able to demonstrate unequivocally its existence
by showing that tip oscillations persists over a finite range of
spacings in simulations in which noise is switched off. When
noise is switched back on, this oscillatory state is found to
coexist with a state with noise-induced sidebranches of
smaller amplitude. This limit cycle, therefore, provides a
natural explanation for bursts of almost periodic side-
branches that have been recently evidenced experimentally
�20,25�.

In addition, our results shed light on the role of the ther-
mal gradient. We find that increasing G makes the cell tip
shape more blunt and hence more susceptible to noise,
thereby promoting sidebranching. The results also provides
detailed quantitative insights into the characteristics of side-
branching, including the dependence of the sidebranch am-
plitude and spacing on the distance behind the tip and the
control parameters. Due to the amount of computational time
needed to investigate the �V ,G ,�� parameter space, we per-
form primarily two-dimensional �2D� simulations. However,
we also present three-dimensional simulations that confirm
the existence of a limit cycle in three dimensions.

The paper is organized as follows. In Sec. II, we write
down sharp-interface equations that describe the directional
solidification of a dilute binary alloy with the incorporation
of thermodynamic fluctuations. The corresponding phase-
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field equations that reduce to those equations in a computa-
tionally tractable thin-interface limit are then discussed in
Sec. III. Next, we present and discuss in Sec. IV the results
of the phase-field simulations. Finally, concluding remarks
and future prospects are given in Sec. V. The application of
noise amplification theories to directional solidification are
discussed in the Appendix.

II. SHARP-INTERFACE MODEL

We model the directional solidification of a dilute binary
alloy with solvent A and solute B atoms. In the dilute limit,
the liquidus and solidus are straight lines of slopes m and
m /k, respectively, where k is the partition coefficient. The
interface is assumed to be in local equilibrium with a local
growth temperature given by the Gibbs-Thomson relation

T = Tm − �m�cl − �K , �1�

and the concentrations on the solid �cs� and liquid �cl� sides
of the interface �defined as mole fractions of the dilute im-
purity B� related by

cs = kcl, �2�

where Tm is the melting temperature of pure A, �=�Tm /L is
the Gibbs-Thomson coefficient, � is the surface energy, L is
the latent heat of fusion per unit volume, K is the local
interface curvature, and Vn is the interface normal velocity.
Surface tension is assumed isotropic for simplicity here, but
anisotropy is incorporated in the phase-field model.

We use the frozen temperature approximation

T�z� = T0 + G�z − Vpt� , �3�

which assumes that the rejection of latent heat has a negli-
gible effect. Furthermore, we use the so-called “one-sided”
approximation that assumes zero solute diffusivity in the
solid. The concentration field then obeys the set of equations

�tc = D�2c − �� · j�c, �4�

cl�1 − k�Vn = − D�nc�+ + n̂ · j�c, �5�

cl/cl
0 = 1 − �1 − k�d0K − �1 − k��Vn − �1 − k��z − Vpt�/lT,

�6�

where �nc �+ is the normal gradient of concentration on the
liquid side of the interface, d0=� /	T0 is the chemical
capillary length, 	T0= �m��1−k�cl

0 is the freezing
range, and lT= �m��1−k�cl

0 /G is the thermal length.
Equation �6� is obtained using Eqs. �1� and �3�, where
cl

0= �Tm−T0� / �m�=c
 /k, is the equilibrium concentration on
the liquid side of a steady-state planar interface at T0, and
c
�c�z=+
� is the alloy composition.

Concentration fluctuations in the liquid are represented by
the current j�c= jc

xx̂+ jc
zẑ, whose components are random vari-

ables obeying a Gaussian distribution with variance

�jc
m�r�,t�jc

n�r��,t��	 = 2DFc�mn��r� − r�����t − t�� . �7�

The noise magnitude Fc is determined through the
fluctuation-dissipation relation

���c�2	 =
c

�NA/v0�	V
=

Fc

	V
, �8�

where ���c�2	 is the equilibrium average of the square of the
departure of the concentration from its equilibrium value in-
side a microscopically large but macroscopically small vol-
ume 	V. The first equality in Eq. �8� above follows straight-
forwardly from the standard relation ���n�2	=n, where n is
the number of solute atoms in the small volume 	V. Using
the definition c=n /N, and the expression N=	VNA /v0 for
the number of solvent atoms in the same volume, where NA
is Avogadro’s number and v0 is molar volume of solvent
atoms, we obtain at once Eq. �8�. The second equality on the
right-hand side of Eq. �8� is obtained by computing ���c�2	
directly from the sharp-interface Eqs. �4�–�7� and is a simple
form of the fluctuation-dissipation theorem.

To facilitate the link between sharp- and diffuse-interface
models, we rewrite Eqs. �4�–�7� in terms of the local super-
saturation with respect to the point �cl

0 ,T0�, measured in units
of the equilibrium concentration gap at that point,

U =
c − cl

0

	c0
, �9�

where we have defined 	c0=cl
0�1−k�=c
�1 /k−1�, which

corresponds to the concentration jump at a reference moving
planar interface with concentration cl

0=c
 /k �c
� on the liq-
uid �solid� side of the interface. We obtain

�tU = D�2U − �� · j�u �liquid� , �10�

�1 + �1 − k�U�Vn = − D�nU�+ + n̂ · j�u �interface� , �11�

U = − d0K − �Vn − �z − Vpt�/lT �interface� , �12�

with

�ju
m�r�,t�ju

n�r��,t��	 = 2DFu�mn��r� − r�����t − t�� , �13�

and Fu defined via the relation

���U�2	 =
���c�2	
�	c0�2 �

Fu

	V
. �14�

Combining Eqs. �8� and �9� with the above second equality,
we obtain that

Fu = Fu
0�1 + �1 − k�U� , �15�

where we have defined the constant noise magnitude

Fu
0 =

kv0

�1 − k�2NAc


, �16�

which is the value of Fu for the reference planar interface at
temperature T0 �U=0�.

For completeness, it is instructive to show that the present
incorporation of noise in the sharp-interface model yields the
correct equilibrium interface fluctuation spectrum. Following
the procedure outlined in Refs. �28�, this spectrum can be
calculated from Eqs. �10�–�13� by considering a planar inter-
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face in the limit of vanishing growth rate, which is essen-
tially in equilibrium with c
 /k �c
� on the liquid �solid� side
of the interface. The result is

�zqz−q	 =
Fu

d0q2 =
kBT

�q2 , �17�

where zq is the Fourier coefficient defined in two dimensions
by z�x�= �1 /2��
dq exp�iqx�zq where z�x� is the interface
profile. The second equality above is obtained by eliminating
Fu using �i� the expression for the chemical capillary length
d0=� / ��m�c
�1 /k−1��, �ii� the definition of the Gibbs-
Thomson coefficient �=�T0 /L, where L is the latent heat of
melting per unit volume and � is the surface energy, and �iii�
the Clausius-Clapeyron relation �m� / �1−k�=kBT0

2 / �Lv0 /NA�
where Lv0 /NA is the latent heat per mole.

III. PHASE-FIELD MODEL

A. Basic equations

We use a phase-field formulation of dilute-alloy direc-
tional solidification that makes use of an “antitrapping” cur-
rent �26� to model the limit of local thermodynamic equilib-
rium at the solid-liquid interface. The equations of this model
are described in details in Ref. �27�. They reduce to the
sharp-interface model of the previous section in a computa-
tionally tractable thin-interface limit where the interface
thickness is only constrained to be chosen smaller than the
characteristic scale of the pattern �e.g., the cell tip radius�,
but can be much larger than the nanometer width of a real
interface. The complete set of phase-field equations includ-
ing crystalline anisotropy are given by

��n̂,z�
��

�t
= �� · �W�n̂�2�� �� + �x���� ��2W�n̂�

�W�n̂�
���x��

�
+ �z���� ��2W�n̂�

�W�n̂�
���z��

�
+ � − �3 − �g�����U +

z − Vpt

lT
� , �18�

U
�U

�t
= �� · �Dq����� U + j�at� + �1 + �1 − k�U�

1

2

��

�t
− �� · J� ,

�19�

with

U =
1

1 − k
 c/cl

0

�1 − ��/2 + k�1 + ��/2
− 1�, q��� = �1 − ��/2,

�20�

j�at = �1/2�2�W�1 + �1 − k�U�
��

�t

�� �

��� ��
, �21�

��n̂,z� = �n̂��1 − �1 − k��z − Vpt�/lT� ,

U = �1 + k − �1 − k���/2. �22�

The correlation of the fluctuating current

�Jm�r�,t�Jn�r��,t��	 = 2Dq���Fu
0�1 + �1 − k�U�

��mn��r� − r�����t − t�� , �23�

now depends explicitly on the phase-field � via the solute
diffusivity Dq��� that vanishes in the solid and has a con-
stant value D in the liquid. Equation �23� reduces to Eq. �13�
of the sharp-interface model in the liquid phase and Fu

0 is
defined as before by Eq. �16�. The orientation-dependent
functions W�n̂� and �n̂� are related by W�n̂�=Was�n̂� and
�n̂�=0�as�n̂��2 �27,29�, where n̂=−�� � / ��� �� is the normal
to the interface, and we choose here a fourfold crystalline
anisotropy as�n̂�=1−3�4+4�4�nx

4+nz
4�, which yields

as�n̂� = 1 − 3�4 + 4�4 �
m=x,z

�m
4 �/��� ��4. �24�

Finally, the above equations are easily extended to three di-
mensions by adding partial derivative terms in y that are
identical to those in x.

B. Computational parameters

We have simulated the phase-field model of the direc-
tional solidification of a dilute binary alloy defined by the
anisotropic version of Eqs. �18� and �19� for parameters cor-
responding to the impure succinonitrile �SCN� alloy of Ref.
�17�. The alloy parameters together with the range of values
of the pulling speed and the temperature gradient are listed in
Table I. To choose the phase-field model parameters, we
first note that the ratio of the capillary and thermal lengths,
�=d0 / lT, and the dimensionless pulling speed vp=Vpd0 /D
completely specify the interface evolution in the sharp-
interface equations. This can be seen by scaling length and
time in these equations by d0 and d0

2 /D, respectively. In the
phase-field model, we have the additional length W and con-
verged results should be independent of the ratio
�=W /d0. The coupling constant is then obtained from
�=a1W /d0=a1� �27�. In order to avoid kinetic effects, absent
for solidification at low pulling speeds, we have to impose
the additional constraint: D=a2�W2 /0=a1a2�W2 /0 �27�.
We have chosen the phase-field parameters in such a way
that the pulling speed is constant in phase-field units

TABLE I. Parameters for the impure succinonitrile �SCN� alloy
system of Ref. �17� used in the phase-field simulations and corre-
sponding characteristic length scales for directional solidification.
The anisotropy of the interfacial free energy is taken to be �4

=0.007 �0.7% anisotropy�.

�m�c
 �shift in melting temperature� 2 K

D �diffusion coefficient� 10−9 m2 /s

� �Gibbs-Thompson coefficient� 6.48�10−8 Km

Vp �pulling speed� 8–32 �m /s

G �thermal gradient� 35–140 K/cm

d0 �capillary length� 1.3�10−2 �m

lT �thermal length� 3.33–13.33�102 �m

lD �diffusion length� 62.5–250 �m

k �partition coefficient� 0.3
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Vp0 /W=0.3. This implies, using the former expressions,
that the value of � must be �= �0.3D /a1a2Vpd0�1/2

= �0.3 /a1a2vp�1/2, which completely specifies the problem.
The resulting values of the parameters in the phase-field Eqs.
�18� and �19� are shown in Table II. For the present values of
�=36–72, the system has been shown to be fairly well re-
solved �27�. Still, one could expect a discrepancy of about a
10% in the tip radius for the lower pulling speed �larger ��,
resulting in a flatter tip.

Equations �18� and �19� are discretized with finite differ-
ence formulas and time stepped with a simple Euler scheme.
For the Laplacian of the phase field, we use the maximally
isotropic discretization,

�	x�2�2�i,j =
2

3
�i+1,j + �i−1,j + �i,j+1 + �i,j−1 +

1

4
��i+1,j+1

+ �i−1,j+1 + �i+1,j−1 + �i−1,j−1� − 5�i,j� , �25�

which avoids the grid corrections to the anisotropy that are
discussed in Ref. �29�. For the anisotropy of SCN we take
the value �4=0.7%.

As in Ref. �9�, the noise was discretized in the form

�� · J� � �Jx,i+1j
k − Jx,ij

k + Jz,ij+1
k − Jz,ij

k �/	x �26�

where Jx,ij
k and Jz,ij

k are independent Gaussian random num-
bers with variance

�Jm,ij
k Jm,i�j�

l 	 = 2Dq����1 + �1 − k�U�
Fu

0

	x2	t
�ii�� j j��kl,

�27�

where the superscripts k and l refer to discrete times t=k	t
and t�= l	t. The above algorithm conserves U as long as
nonflux boundary conditions are applied to the random vari-
ables Jm,ij

k . It follows from Eq. �27� above that the magnitude
of noise is generally proportional to Fu

0 /	xd in d dimensions.
Since 	x is proportional to the interface thickness, i.e.,
	x /W is set to a fixed value in the range 0.4 to 0.8 for
numerical accuracy, Fu

0 /	xd increases when the interface
thickness is decreased in the computations to examine the
convergence of the results. Therefore, unless otherwise
stated, we choose in our two-dimensional simulations

Fu
0= F̄u

0 /�2, with F̄u
0=10−7, where the factor of � accounts for

the variation in the effective noise amplitude with interface
thickness.

IV. NUMERICAL RESULTS

The parameters in the phase-field model were chosen
to reproduce the experimental situation in �17�. The
characteristics and evolution of the cells were studied as a
function of velocity and wavelength for different tempe-
rature gradients G �G=35,70,105,140 K /cm, correspond-
ing to �=d0 / lT=1–4·10−5� and of the pulling speeds
�Vp=8,20.5,32 �m /s�. It should be stressed that a complete
quantitative agreement with experiments is difficult to reach,
due to the uncertainty in some of the parameters, and also to

TABLE II. Parameters in the phase-field equations.

�=W /d0 D0 /W2 �

Vp=32 �m /s 36.1 20 31.91

Vp=20.5 �m /s 45.1 25 39.89

Vp=8 �m /s 72.2 40 63.82
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FIG. 1. Tip �a� undercooling
�, �b� radius �, and �c� spacing
over radius � /�, as a function of
the cell spacing �, for fixed pull-
ing speed Vp=32 �m /s�10 Vc,
and several values of the thermal
gradient G.
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the fact that our simulations are two-dimensional, while in
experiments cells are fully three-dimensional. Any difference
in the cell shape can affect the amplification of sidebranches,
both at the tip, and along the sides. However, we expect our
results to be valid qualitatively, and even to obtain a semi-
quantitative agreement with experimental results.

A. Characterization of the cells and their instabilities

For given G and Vp, we study the characteristics of the
cells as a function of cell spacing �. For computational con-
venience, we simulate only half a cell x� �0,� /2�, with non-
flux boundary conditions on the sides. We start with a cell at
a small cell spacing and then increase the spacing at intervals
of 	��7 �m, after which the system is allowed to relax
for about 50 diffusion times to its new state. The first cell is
obtained starting from the equilibrium concentrations at
z= lT, adding a sinusoidal perturbation, and letting it relax to
its final configuration as half a cell. In some cases we simu-
late one or two full cells. This was necessary to study, for
instance, the cell elimination instability.

In Fig. 1, we show the tip radius � and dimensionless
tip undercooling �=1−ztip / lT for the cellular branch, as a
function of the cell spacing, obtained simulating Eqs. �18�
and �19� without noise. This provides us with the determin-
istic branch onto which fluctuations will be later added.
From these results it is clear that there is a single cellular
branch, and we therefore expect a smooth transition to side-
branching. Depending on the ratio � / lD=�Vp /2D we can
distinguish two different regimes: at small cell spacings
��� lD=62.5 �m� the cells become self-similar, with a tip
radius proportional to the width of the cell �similar to a
Saffman-Taylor finger�, while at cell spacings much larger
that the diffusion length, the tip radius becomes constant, and
the cells dendritelike. As we have already mentioned, the
values of both � and � will change with respect to those
obtained in full 3D simulations. In typical experiments, the
depth of the sample is comparable to the cell spacing, and
therefore the cells are fully three-dimensional. Comparisons
of phase-field simulations of 2D and 3D cells have shown
that the tip radius is systematically smaller in 2D, and the tip
undercooling larger �16,30�. This agrees with experimental
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measures of the tip radius, that is found to be larger than in
our present simulations �i.e., ��16.5 �m, in �31�, for �
�105 �m, G=140 K /cm, and Vp=20 �m /s vs �
�10 �m in our simulations�. Alternatively, since the tip ra-
dius depends sensitively on the anisotropy, one cannot com-
pletely discard that our value of the anisotropy overestimates
that in real experiments. In whichever case, a larger tip
means that sidebranching will be expected to occur for a
smaller value of cell spacing in experiments than in our
simulations. For all these considerations, we do not expect a
perfect quantitative agreement on the onset and characteris-
tics of sidebranches. However, we expect to be able to obtain
the right trends and even a semiquantitative agreement. For a
complete quantitative agreement with experimental results,
3D simulations of solidification cells are needed.

In Figs. 2�a� and 2�b�, we show the dependence of the tip
radius on thermal gradient and pulling speed. In �31� the
following relation was found: ��Vp

−1/4�3/4G1/2, that fitted
the experimental results over a wide range of parameters. We
find, however, that for fixed � and Vp the tip radius seems to
be nearly proportional to the thermal gradient ��G �Fig.
2�a��. The change with G is, therefore, larger in our simula-
tions than in experiments, and we expect this to be also re-
flected in a stronger dependence of the onset of sidebranch-
ing with thermal gradient. As for the tip undercooling, in

�32�, they found that measurements at different temperature
gradients all collapsed into the relation �=Vc /V. From
Fig. 2�c�, we see that our results at different temperature
gradients also collapse to a single line, with the fit
�=0.189+0.989Vc /Vp. Thus, the slope seems to agree well
with �32�, but with this fit the undercooling does not go to
zero as Vp→
. Again we presume that the main difference
will be due to the two-dimensional nature of our cells, since
3D cells typically present a lower undercooling than their
two-dimensional counterparts �16,30�.

At small cell spacings we encounter the well known os-
cillatory instability of deep cells �33�. It results in big oscil-
lations in the velocity and position of the tip �Fig. 3�. Both
the critical value of the cell spacing for the onset of the
instability, and the frequency of oscillations agree perfectly
with the theoretical predictions. For k=0.3 and �=VplT /2D
=21.33 �corresponding to Vp=32 �m /s and G=35 K /cm�,
the instability is predicted for a value of

k�1 − 1/2��
1 − �1 − k��

�2Vp

d0D
� 90, �28�

where the relative cell width � can be obtained fitting the tip
region to a Saffman-Taylor finger, in which case we obtain
��0.58. Then, the critical value of the cell spacing results
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�c=8.6 �m, while in the numerical simulations the onset is
located somewhere between �=8.26 �m and �=9.01 �m.
For the frequency the prediction is �= �1+k�Vp

2 / �2D�k��
=0.263 rad /s �with the corresponding period T=23.9 s�, to
be compared with the numerical result of �=0.25 rad /s at
�=8.26 �m.

In practice, this region of self-similar solutions is never
reached in an array of cells �remember that up to this point
all the results we have shown have been obtained with half a
cell�. For small values of �, there is a cell elimination insta-
bility �see Fig. 4� in which one out of two cells disappears,
thus doubling the wavelength of the cellular array. For large
cell spacings there is another instability limiting the region of
stable cells, the tail instability, where a perturbation at the tail
will grow into a new cell. If there is sidebranching activity
prior to reaching this instability, then one of the sidebranches
will be responsible of creating a new cell, resulting in tertiary
branching. Sidebranching will occur at an intermediate value
of the cell spacing, and therefore in a region where the cells
are neither Saffman-Taylor-like, nor dendritelike. Thus the
difficulty to treat the problem analytically.

The cell branch, however, is not the only possible solu-
tion. At large cell spacings there exists also a branch of cells
with perfectly periodic sidebranches �Fig. 4�. They appear
through a subcritical Hopf bifurcation off the cell branch,
and are bistable with cells for a range of cell spacings. Thus,
these are not noise-induced sidebranches, but completely de-
terministic. We will defer a complete analysis of this branch
until Sec. IV C, and study first the effect of noise on the cell
branch.

B. Sidebranching

To study the onset of sidebranching we add noise to the
cell states obtained in the previous section, and let the system
evolve. Sidebranches are artificially constrained to grow
symmetrically about the tip and to grow into a rigid side wall
because of the reflective boundary conditions imposed on the
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diffusion field at x=0 and x=� /2, respectively. In simula-
tions with a full cell we found, however, that the sidebranch-
ing amplitude was not significantly different. Consequently,
we expect that the present simulations suffice to characterize
the essential features of the sidebranching onset in the
present context.

For a given gradient, we observe the expected dependence
of the onset of sidebranching on velocity and cell spacing.
Sidebranching is induced by increasing velocity at fixed pri-
mary spacing, or by increasing spacing at fixed velocity. In-
creasing the pulling speed makes the system more unstable,
since then the diffusion length diminishes, and the side-
branches have more room to develop. More relevant here is
the fact that for a fixed velocity and wavelength, the present
computations produce the same observation as in the experi-
ment of Georgelin and Pocheau �17�. Namely, increasing G
increases the amplitude of sidebranching and thus reduces
the onset velocity and wavelength of sidebranching. This is
illustrated in Fig. 5 where we compare the shapes for three
different temperature gradients at fixed velocity and wave-
length.

The sidebranching activity was characterized by
recording the horizontal displacement of the interface,
w�z� , t�=xint�z� , t�, from the central growth axis, where
z��ztip�t�−z is the distance behind the instantaneous tip po-
sition. A typical time series is shown in Fig. 6. From the
Fourier spectrum it is clear that there is a preferential period
that is amplified by the system, with a noisy signal on top of
it. It is also apparent the presence of bursts of almost periodic
sidebranches of large amplitude. This agrees very well with
�17,25�, where spatial and temporal coherence of sidebranch-
ing was reported. They observed a phase order that extended
over five to ten sidebranches, that would correspond to the
size of the bursts observed in the present simulations. The

period of oscillation changes slightly with G, from
T�0.88 s at G=140 K /cm ��SB=Vp /T�28 �m� to
T�0.77 s at G=35 K /cm ��SB�25 �m�. The period,
however, remains almost constant along the side of the cell.

In Fig. 7, we show the evolution of the tip velocity, and its
Fourier spectrum. The first thing to notice is that the fluctua-
tions in the tip velocity are very small, and therefore they
cannot be the cause of sidebranching. In order to understand
its origin we also plot the Fourier spectrum of the evolution
of the interface at several distances behind the tip. It is then
clear the emergence of a well-defined frequency as noise is
amplified along the interface. This frequency is, however, not
present in the Fourier spectrum of the tip velocity. This
seems to suggest that there is an intrinsic frequency in the
system, a damped oscillatory mode, that is excited by noise.
The decay rate can be obtained setting the noise strength to
zero, after which sidebranches dissappear �Fig. 8�.

From the time series of the position of the interface w�z , t�
we calculate the root mean square sidebranching amplitude,
defined by

A�z�� = ��w�z�,t�2	 − �w�z�,t�	2, �29�

where � 	 denotes a time average. The temporal averages are
taken over times of approximately 50 diffusion times
tD=D /Vp

2 �ranging from tD�1 s at Vp=32 �m /s to
tD�8 s at Vp=8 �m /s�. Plots of A�z�� for different gradi-
ents and cell spacings are shown in Fig. 9. This figure shows
that A�z�� has a peak at a distance, zSB� , that decreases when
G is increased. As can be seen in Fig. 10, the peak side-
branching amplitude Amax�A�zSB� � increases exponentially
with cell spacing, up to a given spacing, at which side-
branches are constrained by the walls and the amplitude satu-
rates. There is, therefore, no real threshold and the instability
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is noise-induced. We define the critical cell spacing for the
onset of sidebranching as the value of � for which the maxi-
mum amplitude Amax=0.1 �m. Clearly this definition is
somehow arbitrary, although it roughly corresponds to the
experimental accuracy in �17�. As the growth is exponential
with the cell spacing, a change in the definition of the critical
amplitude would only change slightly the onset. The peak
sidebranching amplitude, Amax�A�zSB� �, increases when G is
increased, which gives a quantitative characterization of the
thermal gradient enhancement of sidebranching. As can be
observed in Fig. 11 the amplitude of sidebranching grows
also exponentially with G.

As we have mentioned before, in all these simulations the
tip velocity remains almost constant. Thus, the tip motion
does not drive sidebranching here, which must be due to
noise amplification along the interface. There are two main
theories of noise amplification, depending if the amplifica-
tion is produced on the tip region, or on the sides �see Ap-
pendix�. Amplification at the tip requires that the wavelength
of sidebranching be smaller than the tip radius, and predicts
a constant amplification rate. Since none of these agree with
the results from the simulations, sidebranching is expected to
result from the amplification of noise along the sides. For an
isolated cell with arbitrary shape �this is, not taking into ac-
count the interaction with the diffusion field of the neighbor-

ing cells�, the expression for the noise amplification along
the sides is

A = Anoise exp�I�z��� , �30�

I�z�� = �2

3
 x0�z�;G�3Vp��1 − Vc/�Vp�

6�k + �1 − k���d0Dz�
�1/2� . �31�

An important consequence of these equations is the predic-
tion that the rate of noise amplification on the sides, and
hence the distance from the tip to the first visible sidebranch,
is very sensitive to the steady-state shape of the needle crys-
tal. This effect has a simple physical interpretation. The local
amplification rate of a perturbation of a fixed wave number q
within the wave packet depends on the velocity normal to the
interface Vn=Vp cos � �see Eq. �A5��. It follows that pertur-
bations are amplified at a faster rate if the sides are less steep
since cos � is larger.

Therefore, one can see from Eq. �31� that there are two
competing effects of the thermal gradient: one destabilizing
via the shape, i.e., the fact that x0�z� ;G�3 /z� increases with G
at fixed z�, and the other stabilizing via the thermal gradient.
A larger thermal gradient increases the critical pulling speed
Vc, and therefore reduces the amplification rate. The ampli-
tude of Anoise can be estimated to remain approximately con-
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stant for the purpose of interpreting the present simulations
because the thermal gradient only damps long wavelength
fluctuations of the interface q� �d0lT�−1/2 that are not selec-
tively amplified. Assuming Anoise constant, the effect of G on
the sidebranching amplitude is contained solely in the depen-
dence of I�z� ;G� on G. To compute it, we obtain the cell
shapes numerically, simulating the phase-field equations
without noise. Figure 12 shows that the main effect of the
thermal gradient on the steady-state shape is to render the
cell sides less steep behind the tip. This is to be expected
since the thermal gradient tends to flatten the interface pro-
file. Evaluating the different terms in Eq. �31�, we see that
this must be the relevant effect. Undercooling does not
change much with thermal gradient, and the dependence of
the growth rate with pulling speed is small, since we are
always far from onset. In fact, this effect enters Eq. �31�
through the term Vp−Vc�Vp since in all cases Vp�Vc. It is,
therefore, tempting to conjecture that the thermal gradient
enhancement of the sidebranching amplitude is due to this
shape change.

In Figs. 12�b� and 12�c�, we plot I�z�� vs z� with x0�z� ;G�
taken from the simulated steady-state shapes shown in Fig.
12�a�. This plot shows that in fact the effect of the thermal
gradient on the shape is enough to explain the enhancement
of sidebranching with G. There is also a value of z� at which
amplification reaches a maximum, although it happens
slightly earlier than in simulations. Furthermore, this maxi-
mum is also shifted to larger values of z� as G is increased.
After the maximum, the decrease in the amplification rate
from Eq. �31� is overestimated. At that point, though, the
assumptions under which Eqs. �30� and �31� are obtained are
no longer fulfilled, and we should not expect a perfect agree-
ment. From these considerations, one would expect that
close to onset, the opposite effect could observed, since then
the change in the term Vp−Vc could become relevant, and
overcome the effect on the change in cell shape.

In Fig. 13, we compare our phase diagram for the onset of
sidebranching with the results obtained in �17�. As expected,
only a semiquantitative agreement is obtained. In particular,
we find a bigger change in onset as the thermal gradient is
changed. This is to be expected, according to the discussion
in the previous section. There we found that in our simula-

tions ��G while in experiments ��G1/2. Thus, the thermal
gradient has a bigger effect on cell shapes in our simulations,
and that is reflected in a bigger change in onset.

C. Oscillating states

Besides noise amplified sidebranches, we have found that
there is also another branch where sidebranches behave de-
terministically, and are not due to the influence of noise.
Such a state can be obtained from a cell state, changing the
local temperature at the tip during a time t�� /Vp, with a
perturbation

U +
z − Vpt

lT
→ U +

z − Vpt

lT
+ Ae��x − xtip�2+�y − ytip�2�/R2

�32�

in Eq. �18�. We choose the width of the Gaussian to be a
fraction of the tip radius �R�� /5�. If the perturbation is not
too strong �in which case the tip splits�, the system under-
goes a transition to a state with perfectly periodic side-
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branches �Fig. 14�. Studying the amplitude of sidebranching
as a function of cell spacing we see that this branch appears
through a subcritical Hopf bifurcation from the underlying
cell state �Fig. 15�, and it persists up to a cell spacing at
which tertiary branches develop. This oscillatory state also
persists in the presence of noise, in which case there is a
noisy response on top of the deterministic oscillations. The
bursts of almost perfectly oscillating sidebranches obtained
in the previous section �and in experiments, e.g., �25�� are
probably due to the presence of a saddle-node remnant, that
attracts the orbit for some time, until it goes back to the noisy
oscillations close to the cell state.

As can be seen in Fig. 16 the period is very similar, but
not exactly the same as for the sidebranches induced by
noise. Also the tip position �and curvature� in this case pre-
sents oscillations of the same frequency �Fig. 16�c��. The
mechanism of the oscillations is probably due to a feedback
between the change in the concentration field at the tip in-
duced by the sidebranches and the amplification of the per-
turbation along the sides. Note that the frequency here is
very different from that obtained in the oscillatory instability
at small cell spacings in Sec. IV A. There, there were big
oscillations around the tip position that induced periodic
changes in the tip radius. Here, the tip position remains al-
most constant, while the tip radius oscillates. Thus, it seems
that sidebranches excite a damped oscillatory mode of the
tip. It is also interesting to note that the different dendrites
interact in such a way that their corresponding sidebranches
oscillate in opposition of phase �Fig. 17�.

For other values of the parameters, the hysteretic region
can be small, and thermal noise enough to produce a transi-
tion to this oscillating state. This is shown in Fig. 18, where
the initial condition is a cell without oscillations, at a slightly
smaller cell spacing. The sidebranching and tip oscillations
grow as the system jumps from the branch corresponding to

noise-induced sidebranches to the oscillating cell. For the
parameters in Fig. 15, this transition can be achieved increas-
ing the strength of noise, thus assessing the bistability be-
tween the cell and oscillating branches.

To make sure that this oscillating state is not an artifact of
the two-dimensional nature of our simulations, we have re-
peated the simulations with three-dimensional cells. As in the
experiments, we consider cells in a thin slab of thickness
�=36 �m. We take the parameters G=140 K /cm and
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FIG. 16. �a� Amplitude
of oscillation, at 3.75 �m
�solid�, 18.77 �m �dashed�, and
37.54 �m �dotted� behind the tip,
for Vp=32 �m /s, G=140 K /cm,
�=138.9 �m. �b� Fourier spec-
trum. The peak is for T=0.94 s.
�c� Amplitude in tip radius and �d�
tip undercooling for the same
parameters.

FIG. 17. �Color online� Oscillatory state for Vp=32 �m /s,
G=140 K /cm.
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Vp=32 �m /s. The expression for the perturbation is now
given by:

Uperturb = Ae−��x − xtip�2+�y − ytip�2+�z − ztip�2�/R2
. �33�

The strength of the perturbation has to be set as to avoid tip
splitting if too strong, or the relaxation back to the stable
state if too weak. Within a range of spacings, this temporary
perturbation induces a transition to an oscillatory state, and
the resulting shape presents perfectly periodic sidebranches
�Fig. 19�, while the tip position and curvature oscillate.

As in the bidimensional case, we characterized the oscil-
latory states by the amplitude of the oscillation at a distance
behind the tip. Figure 20 includes a plot showing the evolu-
tion of oscillations at several distances behind the tip, as well
as the evolution of the tip undercooling �calculated from the
tip position� and curvature. The frequency of oscillation of
these three quantities is clearly the same, as expected from
the feedback mechanism that sustains the oscillations. This is
further confirmed by the Fourier spectrum �Fig. 20�d��. In
Fig. 21, we show the oscillation amplitude at a distance of
3.8 �m behind the tip as a function of spacing. This plot
suggests that the oscillatory branch appears through a Hopf
bifurcation from the stable state, up to a critical spacing be-
yond which tertiary branches develop, as was found in the

bidimensional case. However, in this case, the supercritical
or subcritical nature of the bifurcation is not clear. The range
for which the oscillatory states exist is shifted toward lower
spacings when compared to the bidimensional case, suggest-
ing the role of the additional curvature as a stabilizing factor.

V. CONCLUSIONS AND FUTURE PROSPECTS

In summary, we have used a computationally efficient
phase-field formulation to investigate the dynamics of side-
branching during directional solidification for realistic pa-
rameters of a dilute alloy. Our main finding is that side-
branching can result either from noise amplification or from
a nonlinear limit cycle that exists both in two dimensions and
in a three-dimensional thin-sample geometry. The oscillatory
branch of growth solutions bifurcates subcritically from the
main steady-state branch of solutions and exists over a finite
range of large array spacings. In contrast, noise-induced side-
branching is associated with a smooth transition where the
sidebranching amplitude increases exponentially with spac-
ing up to nonlinear saturation due to the overlap of diffusion
fields from neighboring cells.

In the latter case where sidebranching is noise-induced,
we have shown that increasing the externally imposed ther-
mal gradient reduces the onset velocity and wavelength of
sidebranching, as observed experimentally. We have argued
that this counterintuitive effect results from a change in tip
shape with increasing thermal gradient, i.e., the cell tip be-
comes blunter with increasing G, which promotes noise am-
plification in the tip region. This difference can be attributed
to the strong effect of the temperature gradient on the tip
dynamics. In particular, this gradient induces a solute gradi-
ent along the interface that helps secondary branches grow
out of the side regions and rotate toward the growth axis.

Whether sidebranching is caused by noise amplification
or a limit cycle has been a long standing issue in solidifica-
tion for several decades. For freely growing dendrites, theory
and experiments support the predominance of a noise ampli-
fication scenario. Our results show that the picture is funda-
mentally different for directional solidification due to the
presence of a nonlinear limit cycle, whose existence is dem-
onstrated here for the first time in two and three dimensions.
In our simulations in two dimensions, we observe a transi-
tion from small noisy sidebranches at small cell spacings, to
bursting behavior as we reach the critical spacing for the
onset of the limit cycle, and finally, noisy oscillations, when
the amplitude of the limit cycle is large. In this picture, the
bursting observed in �25� could be explained as coherent
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FIG. 19. �Color online� Thin-sample geometry oscillatory state
corresponding to G=140 K /cm and Vp=32 �m for a spacing of
�=115 �m and a thickness of �=36 �m.
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oscillations due to noise in a region of parameters below the
saddle-node that gives rise to the limit cycle �34�. Additional
three-dimensional phase-field simulations that include ther-
mal noise should be able to validate this scenario.
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APPENDIX: THEORIES OF NOISE AMPLIFICATION

In this section, we interpret our results within the existing
theories of noise amplification. We find that none of the ex-
isting analyses reproduces quantitatively our simulation re-
sults, whether based on noise amplification at the tip or on
the sides of freely growing needle crystals. This is to be
expected, at least for the latter case, since noise amplification
is strongly affected by the interaction of the diffusion fields
between neighboring cells. Nonetheless, the examination of
these limits allows us to better pinpoint the factors that gov-
ern the onset of sidebranching and the role of the thermal
gradient.

1. Noise amplification at the tip

One idea, developed originally by Zel’dovich in the con-
text of flame fronts �35�, consists of calculating the amplifi-
cation rate of a normal localized perturbation of amplitude,
Anoise /��1, as it is advected along the interface at a tangen-
tial speed V sin �. One can assume this perturbation to be

localized at a distance from the tip comparable to the stabil-
ity length, �s, at which the amplification rate ���� of sinu-
soidal perturbations of wavelength � of the planar interface
vanishes. As this perturbation is advected away from the tip,
its wavelength � is stretched and hence it becomes amplified
since �����0 for ���s. The amplitude A at a given ar-
clength distance s along the interface from the tip can then be
calculated by a WKB approximation, which assumes that
�s /��1. This analysis yields an exponential amplification,

A = Anoise exp�Itip�, ��s � s � �� , �A1�

where

Itip =
4��

3�s
=

2�

3�lDd0/�
�2/�1 + Ds/Dl� − �lD/lT. �A2�

It is important to emphasize that A is independent of s be-
cause the dominant part of the amplification occurs in the
region closest to the tip where the advection speed is the
smallest. The first equality above applies to an arbitrary
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curved front �flame, viscous finger, etc.� where the noise am-
plification is dominated by the tip region, and the second
equality applies specifically to directional solidification. It is
obtained by substituting the expression for �s at the cell tip
where Ds and Dl are the solute diffusivities in the solid and
liquid, respectively, and �=	ctip /	c0=cl /cl

0 is the ratio of
the concentration jump across the solid-liquid interface
evaluated at the tip temperature, and at the reference tem-
perature of the steady-state planar interface. This equation
was written down by Sarkar for the case where Ds=0 �36�
and is written down here for an arbitrary diffusivity ratio.

The effect of the thermal gradient is subtle because Itip has
both: �i� an explicit dependence on G via lT�G−1, and �ii� an
implicit dependence on G via � and �. The first is readily
seen to be stabilizing �i.e., increasing G decreases Itip�, con-
trary to experiment, whereas the second may be either stabi-
lizing or destabilizing depending on the dependence of the
tip radius and temperature on the thermal gradient. In our
simulations � ,��G, so they provide a destabilizing effect.
In fact, Itip increases with thermal gradient G. Hence, it is not
a priori incompatible with the observations in the simula-
tions. However, this theory assumes that noise amplification
occurs predominantly in the tip region. While this assump-
tion is justified for other interfacial pattern forming systems
�flame fronts, viscous fingers in a Hele Shaw geometry, etc.�
where the growth of perturbations normal to the interface is
suppressed by the walls in the region behind the tip, it re-
mains unclear whether it is justified for solidification cells.
Pocheau and Gorgelin, for example, have concluded that Eq.
�A2� does not seem to predict the correct G-dependence of
the sidebranching onset in their experiments. Figure 9 clearly
shows that the sidebranching amplitude reaches a maximum
at distance of several tip radii behind the tip. This result is
therefore incompatible with the assumption, on which Eq.
�A2� is based, that noise amplification occurs predominantly
in the tip region. The condition of validity of the WKB
analysis ��s��� leading to Eq. �A2� is also violated. Thus,
this theory does not describe correctly the amplification of
noise in our simulations. Near the onset of sidebranching,
cell shapes are somewhat intermediate between viscous fin-
gers and free dendrites where amplification is dominated by
the sides.

2. Noise amplification on the sides

The WKB analysis of Zel’dovich was extended to den-
dritic growth by Pelcé �37�, and Pelcé and Clavin �38�. They
made the important observation that noise amplification
along the sides of free dendrites is dominated by the region
far behind the tip �z����. In this case, the WKB analysis
leads to the result that A reaches a maximum value at a
distance from the tip that is fixed by the initial wavelength �
�or frequency �=2�V /�� of the perturbation. Since, for any
given wavelength, this perturbation eventually dies out far
from the tip, a finite threshold amplitude of noise is neces-
sary to produce a finite �visible� sidebranching amplitude.
Subsequently, Pieters and Langer using a boundary layer
model �5�, and then Barber et al. �6� in a nonlocal model,

correctly argued that a wave packet localized initially near
the tip contains an infinite range of frequencies. Therefore,
this wavepacket will continue to grow indefinitely far from
the tip because arbitrarily low frequencies are amplified ar-
bitrarily far from the tip. In this picture, there is no threshold
of sidebranching that can occur arbitrarily far from the tip for
an arbitrarily small noise. The sidebranching amplitude at a
distance z� behind the tip is given by the relation, valid in
two or three dimensions for z���

A�z�� = Anoise exp�I�z��� , �A3�

I�z�� =
2

3
Vx0�z��3

6Dd0z�
�1/2

. �A4�

An expression for Anoise was derived by Langer in three di-
mensions together with an expression for I�z�� that is equiva-
lent to Eq. �A4� above, but restricted to a paraboloid of revo-
lution �parabola in two dimensions�, with x0�z��=�2�z�. The
expression above for an arbitrary steady-state profile x0�z��
was subsequently derived by Brener and Temkin �8�. A
simple alternate derivation is also given in a phase-field
modeling study of noise-induced sidebranching in pure melts
�9�.

To investigate this further, let us extend the prediction of
Eq. �A4� to directional solidification. This extension is only
legitimate, of course, in the limit �� lD where the overlap of
the diffusion fields between dendrites can be neglected in the
region behind the tip up to the first visible sidebranch
�A /��1�. Clearly, far enough behind the tip the diffusion
fields must eventually overlap since the liquid fraction goes
to zero. Therefore, this extension will only be valid over
some intermediate region between the tip and the narrow
grooves. When a thermal gradient is included, the local am-
plification rate of a perturbation of fixed wave number q, on
an interface at position ztip= �1−�� / lT, is

��q� = �Vn�q�1 − lD/2�lT� − 2Dd0q3�/�k + �1 − k��� ,

�A5�

where Vn=Vp cos � is the pulling speed in the direction nor-
mal to the interface, the extra factor �1− lD /2�lT� that mul-
tiplies Vn reflects the “stabilizing” effect of the thermal gra-
dient, and the term k+ �1−k�� appears because of the
dependence of the local surface tension on the tip position.
Repeating the wave packet analysis leading to Eq. �A4�, us-
ing Eq. �A5�, leads to the result

A�z�;G� = Anoise exp�I�z�;G�� , �A6�

I�z�;G� =
2

3
Vp��1 − lD/2�lT�x0�z�;G�3

6�k + �1 − k���Dd0z�
�1/2

. �A7�

Some analytical theory seems needed to better understand
and characterize the interaction of a growing perturbation on
the cell sides with a wall. So far, however, we have not found
a simple way to proceed to develop such a theory, except in
limiting cases that do not pertain directly to our simulations
or experiments.
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