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Clustering in rapid granular flows of binary and continuous particle size distributions
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The dynamic clustering phenomenon in two-dimensional simple shear flows has been investigated using
molecular dynamic simulations of systems containing binary and continuous size distributions of equal-
material-density particles. Particular attention has been paid to two questions: (1) Does the presence of size
nonuniformities serve to enhance or attenuate the presence of clusters? (2) Do particles of a given size
preferentially segregate within the clusters? With respect to the first question, the prominence of clustered
regions increases with increasing deviation from the monodisperse limit in the case of both binary and con-
tinuous size distributions. With respect to the second question, the larger particles of both binary and continu-
ous size distributions are consistently observed to segregate within the rransient clustered regions. Further
investigation of granular temperatures within the clustered and dilute regions reveals that this segregation is
consistent with previously observed temperature-driven segregation in steady-state systems; large particles
favor the lower-temperature (clustered) regions. Moreover, observation of clustering length scales suggests that
large particles may favor the center of the clustered regions, where granular temperatures are expected to reach

a minimum.
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I. INTRODUCTION

The coffee that we grind each morning and the sandy
beaches on which we run each summer serve as simple re-
minders of the impact of granular materials on our daily
lives. Industrial settings further reflect our dependence on
these materials by the fact that both raw materials and final
products are often solid in form [1]. In spite of this preva-
lence, the understanding of systems containing granular ma-
terials is limited [2—-6]. Inhomogeneities in the spatial distri-
bution of particles (clusters) and de-mixing (in mixtures of
unlike particles) are a few of the ill-understood phenomena
that arise. From the perspective of the pharmaceutical, agri-
cultural, mining, and chemical industries, such lack of pre-
dictive understanding translates into significant losses and
inefficiencies. For example, it is not uncommon for solids-
handling operations to run at 40%—-50% of their design ca-
pacity [7]. Tt follows that the study of granular materials and
their behavior is crucial to the improvement of design and
efficiency. Accordingly, the current effort aims to further in-
sight regarding two ill-understood phenomena noted above:
clustering and segregation (de-mixing) within mixtures of
unlike particles. More specifically, the nature of dynamic
clusters in simple shear flow systems is studied with respect
to the effect of multiple particle sizes, and attention is di-
rected to rapid granular flows.

Hopkins and Louge [8] reported early molecular dynam-
ics (MD) observations of dynamic clusters for systems under
simple shear, where clusters were observed to be most
prominent at moderate particle concentrations and low resti-
tution coefficients. Clustering has since been well established
in MD simulations of a variety of idealized granular systems
(e.g., homogeneous cooling systems [9-11], simple shear
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systems [12—14], and Couette systems [15,16]), though the
form of the density inhomogeneities may depend on the sys-
tem in which they appear. Practically, the importance of clus-
ters has been noted for such varied systems as planetary rings
[17-19], high-velocity fluidized beds [20-22], and granular
jets [23].

While the majority of MD investigations pertaining to
clusters have focused on monodisperse systems, the presence
of clusters has been shown to persist in systems containing
multiple particle sizes. Alam and Luding [24] made a series
of observations regarding clusters in binary systems under
simple shear flow. Consistent with the monodisperse obser-
vations of Tan and Goldhirsch [12], the life cycle of these
clusters consisted of rotation with time, stretching along an
angle of 45° from the direction of shear, and collision with
each other to form new clusters. Cluster sizes were found to
vary. Moreover, a mass disparity between species of a binary
(in size) mixture was shown to increase average and maxi-
mum cluster sizes compared to the same binary mixture in
which both species had the same mass (i.e., the two species
had different densities). For a Couette geometry, Conway
and Glasser [16] considered a system of equally sized par-
ticles that were mildly polydisperse with respect to material
density (and mass), and noted that the standing wave cluster
formations persist in the polydisperse system, similar to the
monodisperse counterparts. Later, Conway et al. [15] consid-
ered a Couette system containing a continuous size distribu-
tion. In addition to the persistence of clusters within these
systems, the distribution of particle sizes was shown to vary
strongly along the length of the standing wave. This nonho-
mogeneous distribution of particle species hints at the next
key issue pertaining to polydisperse systems, namely, species
segregation.

The issue of species segregation (and mixing) within
granular systems is wrapped with great practical significance.
For example, the inappropriate (or inconsistent) blending of
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beneficial. Accordingly, much research has been devoted to
the understanding of prominent driving forces and mecha-
nisms by which species segregate.

For rapid flows of unlike particles, one prominent feature
of species segregation in steady flows is the association of
more massive particles with the low-granular-temperature re-
gions. Hsiau and Hunt [25] employed the kinetic theory of
Jenkins and Mancini [26] to the study of oscillatory no-flow
systems of elastic particles and sheared systems of inelastic
particles, both of which exhibited steady-state temperature
gradients. In both cases, predictions indicated that more mas-
sive particles favored the cooler regions. Later, binary mix-
tures with respect to size (and mass) were shown to exhibit
similar segregation trends for zero-mean-flow systems
bounded by thermal reservoirs [27], a moving bumpy bound-
ary [28], and two walls of different temperature [29]. Fur-
thermore, MD simulations of continuous particle size distri-
butions bordered by two walls of different temperature
revealed that the larger particles of the distribution also fa-
vored the cooler regions [30].

In addition to the temperature-gradient driving force
noted above, several other driving forces associated with
species segregation have been identified via an analysis of
kinetic-theory-based equations, including concentration gra-
dients, pressure gradients, external forces, and gradients in
species temperature [29,31-34]. Such equations have been
used by numerous researchers to predict segregation patterns
in steady granular flows (i.e., systems without clustering in-
stabilities) [35-41].

In comparison, few studies exist on species segregation in
systems which exhibit clustering instabilities. Conway et al.
[15] examined various types of binary mixtures in Couette
flows with a plug instability. Comparisons of MD simula-
tions (with clusters) with kinetic-theory-based prediction for
one-dimensional steady-state flows (assuming no clustering)
are favorable with the exception of a segregation reversal
observed for equal-density mixtures. In a homogeneous cool-
ing system, Cattuto and Marconi [ 10] reported segregation of
the more massive particles of an equal-sized mixture toward
the clustered regions. The explanation for this segregation
relied not on gradients within the system, but on a particle
mobility argument. The energy exchange between the light
and heavy species was stated to result in the “effective re-
pulsion of the light particles by the heavy particles,”
whereby small particles were able to more easily escape the
clustered regions.

In the current work, the effect of both binary and continu-
ous size distributions on the dynamic clusters observed in
two-dimensional (2D) simple shear flow is investigated. For
both size distributions, two primary questions are addressed:
Does the presence of size nonuniformities serve to enhance
or attenuate the presence of clusters? Do particles of a given
size preferentially segregate within the clusters? Addition-
ally, a potential driving force for the observed segregation,
namely the presence of a granular temperature gradient, is
explored.

II. COMPUTATIONAL APPROACH

The current study investigates clustering in two-
dimensional, simple shear flow of polydisperse systems via
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MD simulations. Simple shear is achieved by Lees-Edwards
boundary conditions. Due to a lack of body forces, the par-
ticles move along linear trajectories according to an event-
driven algorithm [42]. Particles are treated as frictionless,
inelastic, circular disks of constant material density, and col-
lisions are resolved via a hard-sphere model [42],

e > m; 7> N
U; =0;-——(1 +e)(kij‘vij)ki,', (1)
ey > m; 7 S N7
V; =0+ 1+ e)(kij : vij)kip (2)
m[+mj

where ¥ is the velocity of a particle (i or j), 7;; is the relative
velocity defined as v;-0;, Eij is the unit vector pointing from
the center of particle i to the center of particle j, m is the
particle mass, e is the restitution coefficient, and the asterisk
(**) indicates a postcollision quantity.

Both binary and continuous particle size distributions
(Gaussian and lognormal) are investigated. The preparation
of continuous particle size distributions are detailed in [43].
Further details of the computational algorithm are available
in [44], in which monodisperse systems were examined.

In the case of both binary and continuous size distribution
systems, the restitution coefficient (¢) and the concentration
(area fraction) of the particle mixture in the system (v) are
dimensionless inputs. Further dimensionless parameters de-
pend, however, on whether the system contains a binary or
continuous size distribution. Binary systems are defined by
two further dimensionless groups: the ratio of large- to
small-particle diameters (d;/dg) and the area fraction of
large particles relative to the total area fraction of the system
(v, /v). Systems containing continuous particle size distribu-
tions, on the other hand, are defined by one further dimen-
sionless group: the coefficient of variation, i.e., the standard
deviation of the particle size distribution normalized by the
number average particle diameter (0/d,,,). Investigated pa-
rameter ranges for binary systems are v=0.2-0.4, e
=0.6-0.8, d;/dg=1.0-2.5, and v;/v=0.4—1.0. For systems
containing continuous size distributions, investigated param-
eter ranges are v=0.2, ¢=0.6-0.8, and o/d,,,=0.05-0.2 for
Gaussian, and o/d,,,=0.1-0.2 for lognormal.

All system sizes have been chosen to allow for full devel-
opment of clusters, as established for monodisperse systems
by Liss et al. [13], i.e., the periodic domain size is large
enough such that it does not limit the formation of clusters.
Accordingly, binary systems are sized such that the ratio of
the system size (L,,,) to the large-particle diameter (d;) is
90. Likewise, continuous size distribution systems are sized
such that the ratio of the system size to the root-mean-square
diameter (d,,,) is 90. A common root-mean-square diameter
has been chosen based on the work of Dahl et al. [43], in
which d,,,; was determined to be an appropriate characteris-
tic diameter for the normalization of stresses in systems con-
taining continuous size distributions. Given the common
value of d,,,, for the current continuous size distribution sys-
tems, “large” and “small” particles are defined as those
greater than and less than d,,,, respectively. Consequently,
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FIG. 1. (Color online) Radial distribution functions (g) for sys-
tems defined by L,,,/d=110, »=0.2, and ¢=0.6 (light gray), 0.8
(medium gray), and 1.0 (black). The r/d location of the long-scale
minimum provides the normalized length scale (L/d) as indicated
on plot for e=0.6. The value of L/d is also shown to scale by inset
system snapshot for e=0.6.

continuous size distribution systems may be evaluated in a
manner similar to systems containing a binary size distribu-
tion.

The MD outputs are targeted at cluster characterization
and follow from the previous work on monodisperse systems
[44]. Sections IT A and II B contain further detail on the ap-
plication of these cluster characterizations to polydisperse
systems.

A. Radial distribution function for polydisperse systems

The radial distribution function (g) is a measure of the
local particle density compared to the overall particle den-
sity, where local is defined as a given distance from the cen-
ter of any particle. In the current work, distances are defined
(nonconventionally) in a direction perpendicular to cluster
alignment, as detailed in [44]. One further modification is
made to the calculation of g in order to better reflect particle
packing within polydisperse systems; local particle densities
are evaluated on an area fraction basis, rather than the typical
number basis, in order to account for the different size of
particles and thus better reflect the mixture packing.

As first detailed in [44], a new feature arises in the radial
distribution function of inelastic systems, namely a long-
scale minimum. Figure 1 illustrates the appearance of this
long-scale minimum for monodisperse simple shear flow
systems as particles becomes more inelastic. The elastic sys-
tem (e=1.0, black line) yields no long-scale minimum, while
increased inelasticity (i.e., decreasing e) increases the promi-
nence of this feature. The location of the long-scale mini-
mum provides a length scale (L/d in Fig. 1, due to normal-
ization by the particle diameter) associated with the distance
between clustered and dilute regions. More specifically, this
length scale is determined primarily by two physical at-
tributes of the clustered system: the average distance from
the center of a clustered region to the center of a dilute re-
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gion in the direction perpendicular to cluster alignment, and
the average width of the thinnest region (clustered or dilute).
The connection between the length scale and these two
physical attributes was established by the study of ideal one-
dimensional systems [44]. More specifically, when clustered
and dilute regions were patterned such that all clustered re-
gions have equivalent widths and all dilute regions have
equivalent widths, the length scale was determined by the
width of the thinnest region (clustered or dilute). However,
when clustered- and dilute-region widths were varied around
a mean, the length scale tended toward the average distance
from the center of a clustered region to the center of a dilute
region. This latter scenario is expected to reflect the dynamic
nature of two-dimensional simple shear flow systems exam-
ined here. In order to visualize this length scale, the inset of
Fig. 1 illustrates the length scale L for e=0.6 alongside a
corresponding system snapshot. For further discussion of the
interpretation of the length scale, see [44] or [45].

In the case of polydisperse systems, the radial distribution
function may be obtained separately for each species, as well
as the mixture. As such, binary systems yield three length
scales: L (mixture), L; (large particles only), and Lg (small
particles only). For systems containing continuous particle
size distributions, three similar length scales are assessed,
where large and small particles are defined relative to the
d,.s» as discussed above.

B. Concentration and temperature measurements in clustered
and dilute regions

Concentrations (area fractions) and temperatures associ-
ated with the clustered and dilute regions are measured as
described in [44] for monodisperse systems, but a brief re-
view of the methodology is provided here along with the
natural extensions to polydisperse systems. As a first step,
the discrete particle system is converted to a concentration
grid, wherein the grid cells are approximately 20% of a ref-
erence particle size (d; for binary distributions and d,,,, for
continuous distributions). Next, the grid is smoothed via a
Gaussian filter, which is defined by its standard deviation
(0g=L/2, with L obtained from the radial distribution func-
tion) and the number of standard deviations (four) that com-
prise the filter. After this smoothing of the concentration pro-
file, each smoothed grid cell is designated as clustered or
dilute depending on whether the cell concentration is above
or below the average system value, respectively. Averaging
of large-particle, small-particle, and mixture concentrations
within the designated clustered and dilute regions then yields
average region-specific concentrations of a particular particle
type.

Following the calculation of average region-specific con-
centrations, cluster prominence is assessed based on normal-
ized mixture concentration differences between the clustered
and dilute regions: (v.;,,— v4i)/ v. A similar analysis of con-
centration differences may also be applied to individual spe-
cies, in order to reveal segregation trends. Alternatively, spe-
cies segregation trends can also be gleaned via comparison
of the ratio of large- to small-particle concentrations in the
two regions: (VL/ VS)CZMS/(VL/ VS)dil'
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In the case of the temperature analysis, clustered and di-
lute regions are defined such that moderate concentrations,
namely 15% above and below the average concentration, are
excluded in order to better distinguish between the two re-
gions. To determine the temperature, local bulk (average)
velocities in the x direction (flow direction) are first found as
a function of y by averaging the velocities of particles whose
centers lie within bands of width L, (grid cell size) at each y
value. Average velocities in the y direction are assumed to be
zero. Fluctuating velocities (0') may then be calculated for
each particle in each snapshot as the difference between the
actual particle velocity and the local bulk velocity. Granular
temperatures (7) for the given instant may then be calculated
with respect to each species (X) and each region (R, repre-
senting either the clustered or dilute region) via

Nx.r
2 m; ?
T I i=1 (3)
) Nxg
where m represents the particle mass and Ny p represents the
number of particles of species X in region R. Mixture tem-
peratures for each snapshot are calculated via

_ NprTpr+ NsgTsr
Npr+Nsr

Tr (4)
where subscripts L and S indicate the large and small-particle
species, respectively. Ratios of clustered- to dilute-region
temperatures are obtained based on these instantaneous tem-
perature calculations, and final temperature ratios are deter-
mined by averaging the temperature ratios over all instants.

III. RESULTS AND DISCUSSION

The behavior of systems containing multiple particle sizes
(i.e., binary and continuous size distributions) are investi-
gated below. All data pertain to systems with a total particle
concentration (v) of 0.2. Binary data are shown for a resti-
tution coefficient (e) of 0.6, and continuous size distribution
data are shown for e=0.8. The higher restitution coefficient
used for the continuous size distribution systems is necessary
in order to avoid inelastic collapse [43,46]. Binary systems
have also been considered for two higher total particle con-
centrations of »=0.3 and 0.4 and a higher restitution coeffi-
cient of e=0.8. This broader parameter space reveals conclu-
sions consistent with those discussed below, though a
complete presentation of these additional data have not been
shown here for the sake of brevity (see [45] for all data).

Binary data are generally presented as a function of diam-
eter ratio (d;/dg) with each data set pertaining to a particular
concentration of large particles relative to the overall particle
concentration of the system (v;/v). Data for systems con-
taining continuous particle size distributions are presented as
a function of the coefficient of variation, i.e., the standard
deviation of the size distribution normalized by the mean of
the distribution (o7/d,,,). Gaussian and lognormal distribu-
tions are studied. Error bars are shown for a subset of the
data and indicate one standard deviation above and below the
mean based on two duplicates.
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FIG. 2. (Color online) Normalized mixture concentration differ-
ences between the clustered and dilute regions. Horizontal lines
indicate the monodisperse limits associated with the respective set
of data. (a) Binary systems with »=0.2 and ¢=0.6. Circles indicate
vy /v=0.40, squares indicate v;/v=0.5, diamonds indicate v;/v
=0.57, upright triangles indicate v;/v=0.9, and upside down tri-
angles indicate v;/v=0.95. (b) Continuous size distribution systems
with »=0.2 and e¢=0.8. Circles indicate Gaussian particle size dis-
tributions. Squares indicate lognormal particle size distributions.

Results presented below follow from the questions posed
in the introduction. Section III A addresses the first question:
Does the presence of size nonuniformities serve to enhance
or attenuate the presence of clusters? Section III B addresses
the second question: Do particles of a given size preferen-
tially segregate within the clusters?

A. Cluster prominence

The question of whether multiple particle sizes serve to
enhance or attenuate the presence of clusters in 2D simple
shear flows may be observed by a measure of cluster promi-
nence. For the purposes of the current work cluster, promi-
nence is measured by the relative concentration (area frac-
tion) in the clustered and dilute regions. Accordingly,
normalized differences between the clustered- and dilute-
region (mixture) concentrations are shown in Fig. 2. Binary
mixture concentration differences are provided in subfigure
(a) as a function of diameter ratio (d;/ds) for a variety of
v,/ v values. Continuous size distribution data are provided
in subfigure (b) as a function of the coefficient of variation
(0/d ) for both Gaussian and lognormal distributions. The
monodisperse limit is indicated by the lower limit of the x
axes shown, i.e., d;/dg=1 in subfigure (a) and o/d,,,=0 in
subfigure (b).

For binary systems [Fig. 2(a)], normalized concentration
differences between clustered and dilute regions increase
with increasing diameter ratio. This observation holds for all
values of v;/v tested, each of which is represented by a
particular symbol on the plot. Similarly, for systems contain-
ing continuous particle size distributions [Fig. 2(b)], normal-
ized concentration differences increase with an increased co-
efficient of variation. Both Gaussian and lognormal particle
size distributions demonstrate this dependency. Therefore,
regardless of the type of particle size distribution (i.e., bi-
nary, Gaussian, or lognormal), an increase in the particle size
disparity leads to an increase in normalized concentration
differences. In other words, the presence of increasingly dis-
parate particle sizes serves to enhance the prominence of
clusters (i.e., the clusters are more tightly packed with par-
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FIG. 3. (Color online) Species-specific concentration differences
between the clustered and dilute regions for systems at »=0.2 and
e=0.6. “X” refers to either the large (solid symbols) or small (open
symbols) particles. Horizontal lines represent monodisperse con-
centration differences associated with the respective set of data. (a)
Binary systems with v=0.2 and e=0.6. Circles indicate v;/v
=0.40, squares indicate v;/v=0.5, diamonds indicate v;/v=0.57,
upright triangles indicate v;/v=0.9, and upside down triangles in-
dicate v;/v=0.95. (b) Continuous size distribution systems with »
=0.2 and e=0.8. Circles indicate Gaussian particle size distribu-
tions. Squares indicate lognormal particle size distributions.

ticles). This observation is distinct from, but complementary
to that of Alam and Luding [24], who showed that the pres-
ence of a mass disparity in a binary (in size) mixture yields
larger cluster sizes than the equivalent binary mixture in
which the masses of the two species were equal. Combined,
these two works indicate that clusters become larger and
denser with size disparity.

B. Segregation

The question of species segregation between the transient
clustered and dilute regions of a 2D simple shear flow
may be addressed via a measure similar to that used for
the assessment of cluster prominence. Normalized species
concentration differences—(vy 5= vy gi)/ v, and (Vg
—vg 4i1)/ vs—reflect the extent to which each species is dis-
tributed between the clustered and dilute regions. Increasing
species concentration differences indicate that the species in
question is becoming increasingly segregated toward the
clustered regions, while decreasing species concentration dif-
ferences indicate that the species in question is more homo-
geneously distributed between the clustered and dilute re-
gions.

Figure 3(a) illustrates normalized species concentration
differences for binary systems as a function of diameter ratio
(d;/ds). Figure 3(b) illustrates normalized species concentra-
tion differences for continuous size distribution systems as a
function of coefficient of variation (¢/d,,,). For both sets of
data, solid and open symbols represent large and small par-
ticles, respectively.

Large-particle normalized concentration differences in-
crease with size disparity in both the binary (subfigure a) and
continuous size distributions (subfigure b). On the contrary,
normalized concentration differences of small particles de-
crease with increasing size disparity. These trends reflect the
tendency for large particles to become increasingly associ-
ated with clustered regions with increasing deviation from
the monodisperse limit, while small particles become more
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homogeneously distributed throughout the system. There-
fore, large particles do tend to segregate within clustered
regions, and this tendency increases with increasing size dis-
parity.

Having established the segregation of large particles
within clustered regions, a follow-up question arises regard-
ing the explanation for this segregation. Cattuto and Marconi
[10] observed a similar form of segregation in a homoge-
neous cooling system containing two equally sized (different
density) species. The observed segregation of the more mas-
sive species within the clustered regions was explained due
to the level of nonequipartition (i.e., the extent to which the
heavy-species temperature was greater than the light-species
temperature) exhibited by the system. A theoretical level of
nonequipartition was defined via a ratio of heavy- to light-
species temperatures, above which the lighter species might
be afforded greater mobility and consequent escape from
clustered regions. While the systems in the current investiga-
tion exhibit a substantial nonequipartition of energy, they do
not exhibit the level of nonequipartition deemed necessary
for the mobility argument set forth by Cattuto and Marconi
[10], as detailed in [45]. Moreover, the assumption of an
equipartition of energy in a kinetic-theory-based study of
species segregation in a system with a steady-state tempera-
ture gradient does not preclude species segregation [25]. In-
deed, in the presence of a steady-state temperature gradient,
the more massive particle species has been often observed to
segregate toward the low-temperature regions [25,27-30].
Though two-dimensional simple shear flows do not exhibit
steady-state temperature gradients, transient temperature gra-
dients have been shown to exist across the surface of clusters
in monodisperse systems [12,44]. To date, no observations of
temperature gradients in clustering simple shear flows con-
taining binary or continuous particle size distributions have
been made. If these transient temperature gradients persist
between clustered and dilute regions of polydisperse sys-
tems, the direction of the temperature gradient could provide
an explanation for the observed segregation: Large particle
may be driven toward the transient low-temperature clus-
tered regions.

Employing the methodology discussed in Sec. II B, aver-
age (in time and space) temperatures of clustered and dilute
regions may be obtained. The presence of temperature gra-
dients between the clustered and dilute regions is assessed by
ratios of clustered- to dilute-region temperatures (7, /Ty
for the particle mixture. Temperature ratios below unity in-
dicate that clustered regions exhibit lower temperatures than
dilute regions. Figure 4 illustrates such temperature ratios for
both binary (subfigure a) and continuous size distribution
systems (subfigure b). Clustered regions consistently exhibit
lower temperatures than dilute regions. Species-specific tem-
perature ratios (not shown for the sake of space) exhibit simi-
lar temperature ratios (i.e., T,/ T4 <1). Therefore, the di-
rection of the temperature gradient is consistent with the
segregation patterns found in steady systems, namely large
particles are driven toward the clustered (cooler) region.

Interestingly, in spite of increased segregation with in-
creased size disparity [see Fig. 3(b)], an increase in size dis-
parity yields a counterintuitive increase in the temperature
ratio toward unity (Fig. 4), at which point no temperature-
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FIG. 4. (Color online) Ratios of clustered- to dilute-region tem-
peratures. Horizontal lines indicate the monodisperse limits associ-
ated with the respective set of data. (a) Binary systems with v
=0.2 and e=0.6. Circles indicate v;/v=0.4, squares indicate v;/v
=0.5, diamonds indicate v;/v=0.57, upright triangles indicate
v;/v=0.9, and upside down triangles indicate v;/»=0.95. (b) Con-
tinuous size distribution systems with v=0.2 and e=0.8. Circles
indicate Gaussian particle size distributions. Squares indicate log-
normal particle size distributions.

based driving force would exist. Nevertheless, the tempera-
ture ratio itself is not a measure of the actual driving force
(e.g., dT/dx), but rather its direction (i.e., the clustered re-
gions are cooler than the dilute regions). Comparison of ac-
tual driving forces would be more desirable than the com-
parison of temperature ratios shown, but such calculations
are nontrivial at best. The actual driving force, as it appears
in kinetic theory, consists of a transport coefficient multiplied
by the pertinent temperature gradient. The transport coeffi-
cients are functions of local volume fraction and tempera-
ture, as well as the diameter ratio. Moreover, assessment of
the actual temperature gradient would require intimate
knowledge of the temperature profile across the boundaries
of the transient clusters. Appropriate averaging of these
quantities would require elaborate averaging schemes, such
as the spatial-temporal scheme utilized by Galvin et al. [29].
Unfortunately, the transient nature of the clusters in the cur-
rent work would inhibit these schemes, which are more vi-
able for systems with dense and dilute regions that are rela-
tively stable in time and space (e.g., granular systems
between two walls of different temperature, as in [29]).
Clustered- and dilute-region characteristics for the current
simple shear flow systems must be obtained by long-time
system-wide averaging of continually moving and evolving
clustered and dilute regions. Such averaging, as provided by
the region temperature analysis, elucidates the low-
temperature clusters, but not the explicit gradients across
their boundaries. The pertinent observation is that the direc-
tion of the temperature gradients across the cluster interface
is consistent with that expected to drive large particles to-
ward clustered regions.

Length scales obtained from the radial distribution func-
tion provide further insight into species segregation trends,
namely that related to species segregation within a cluster
(whereas the previous data shed light only on segregation
tendencies between clustered and dilute regions). This insight
is based on an interesting difference between the length
scales for a given system. Figure 5 reveals this difference for
binary systems with v=0.2, ¢=0.6, and d;/ds=1.5 over a
range of v;/v. Monodisperse limits are represented by hori-
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FIG. 5. (Color online) Length scales for binary systems with v
=0.2, e=0.6, and d;/dg=1.5. Length scales are provided for the
mixture (diamonds), large particles only (circles), and small par-
ticles only (squares). The horizontal line indicates the monodisperse
reference value associated with a system containing large particles
only and small particles only, as labeled.

zontal lines indicating length scales for systems containing
small (v, /v=0) or large (v, /v=1) particles only. Large-
particle, small-particle, and mixture length scales all follow a
trend with increasing v;/v consistent with the connection
(across v,/ v) between the monodisperse limits. However, the
key observation is the relationship between the three length
scales at a given value of v; /v, which may be summarized as
L¢>L>L,;. The forthcoming discussion provides a physi-
cally plausible explanation for this length scale observations
that is consistent with the temperature-driven segregation de-
scribed above. The stage for this explanation will first be set
by using an idealized system to demonstrate a supposed, yet
reasonable, relationship between species length scales and
species spatial distribution. Length scales for binary and con-
tinuous size distributions will then be discussed accordingly.

Consider first the ideal representation of clustered and di-
lute regions shown in Fig. 6. The system contains two spe-
cies, A and B. Shaded ellipsoidal regions represent the clus-
tered regions, in which the concentration of each species will
be greater than the respective species concentration in the
dilute regions (spaces between the ellipsoids). Species B is
(approximately) homogeneously distributed throughout the
clustered regions, while species A exhibits preferential seg-
regation toward the center of the clustered regions (dark
shading) and decreasing concentration toward the cluster sur-
face (light shading).

Application of the radial distribution function to such a
polydisperse system will assess each species independently
of other species. Consequently, the length scales resulting
from the analysis of a particular species will reflect physical
properties (e.g., different clustered- and dilute-region widths)
pertaining only to the distribution of that species. In the case
presented in Fig. 6, the preferential segregation of species A
toward the center of the clustered regions would cause the
analysis of species A to perceive clusters as “thin” (cluster
center only). On the contrary, the analysis of species B would
perceive clusters as “thick” (cluster center and surface re-
gion). Accordingly, the analysis of the mixture would per-
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Wclus Wdil

cluster center

Lclusfdil

cluster surface

FIG. 6. Ideal representation of clustered and dilute regions. The
region of darkest shading represents the center of the cluster, while
the region of lighter shading represents the cluster surface. The
distance from the center of the clustered region to the center of the
dilute region is represented by the line labeled as L ;,—gir-

ceive cluster widths between those of species A and B.

Recall from Sec. I A that the length scale value is af-
fected by two physical properties: the average distance from
the center of a clustered region to the center of a dilute re-
gion (L,,,_qi) and the average width of the thinnest region
(W,ys or Wyy). For systems in which clustered and dilute
regions vary about a mean, the value of L_;,_g; is expected
to be dominant. Since Fig. 6 represents averaged clustered
and dilute regions (i.e., cluster and dilute-region widths vary
around those shown), the length scale values for both species
(and the mixture) will tend toward L_,,_;;- Small differences
between the species length scales will arise due to the impact
of the thinnest region, which is the clustered region in the
case of both species. Deviation from L_;,,_4; Will occur to-
ward the width of the thinnest region, i.e., length scales as-
sociated with each species (L4 and Lg) will decrease relative
to the average width of the clustered regions perceived by the
respective species. Since clustered regions are perceived to
be thinner for species A compared to species B, L, is ex-
pected to deviate from L,;,,_,4; more than Lg, yielding length
scales that could be summarized as Lz>L,. Moreover, the
mixture length scale (L) will naturally tend to lie between the
two species length scales.

This Ly>L> L, relationship for the idealized system is
consistent with that exhibited by binary systems (Fig. 5), for
which Lg>L>L,;. The similarity suggests that large par-
ticles may tend toward the center of the clustered regions,
expanding upon the segregation observations offered earlier
by Fig. 3. More specifically, whereas the previous concentra-
tion data indicated species segregation between clustered and
dilute regions, species length scales offer added insight re-
garding species segregation within the clustered regions.

Further substantiation of the similarity between the ideal
scenario (Fig. 6) and binary systems is provided by the con-
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FIG. 7. (Color online) Length scales for systems with v=0.2,
e=0.8, and continuous particle size distributions. Circles indicate
Gaussian particle size distributions. Squares indicate lognormal par-
ticle size distributions. The horizontal lines indicates the monodis-
perse reference value associated with a system in which d=d,,,,
v=0.2, and ¢=0.8. (a) Mixture length scales. (b) Large- and small-
particle length scales, where X indicates the species. Closed sym-
bols represent large particles. Open symbols represent small
particles.

sideration of two points. First, via the concentration analysis,
which assesses clustered and dilute regions based on the
mixture concentration, both species may be shown to exhibit
higher concentrations in the clustered regions than in the
dilute regions. This observation suggests that both species
are present in the same clusters (rather than each species
forming separate clusters dominated by only one species;
this behavior is confirmed by visual analysis of snapshots as
well), implying that clustered-region centers are the same
from the perspective of both species. Second, clustered re-
gions are reasonably considered to be thinner than dilute
regions for this region of the parameter space; the low total
particle concentration (v=0.2) suggests that the overall sys-
tem will not be tightly packed with particles, while the low
restitution coefficient (e=0.6) is likely to result in more
tightly packed clusters. Consequently, the similarity of this
physical picture with that of Fig. 6 suggests that large par-
ticles may not only tend toward the low-temperature clus-
tered regions (Fig. 3), but also toward the center of the clus-
ter itself. Since the center of the clustered region will exhibit
an increased collision rate and consequent energy dissipa-
tion, a minimum in temperature is expected at this point.
Therefore, the segregation of large particles toward the cen-
ter of the clustered regions is consistent with the segregation
of large particles toward low-temperature regions.

Having established a plausible physical picture of intrac-
luster species segregation within binary systems, length scale
data for systems containing continuous particle size distribu-
tions are shown in Fig. 7 for systems with »=0.2 and e
=0.8. Mixture (subfigure a) and species (subfigure b) length
scales for systems containing Gaussian and lognormal par-
ticle size distributions are shown as functions of o/d,,,. The
horizontal lines indicate the monodisperse reference value
for a system in which d is the root-mean-square diameter
(i.e., the diameter that is consistent among all continuous
size distribution systems). Mixture length scales [Fig. 7(a)]
exhibit little deviation from the monodisperse reference
value, regardless of the particle size distribution. Such con-
sistency in the mixture length scale suggests that average
widths of the clustered and dilute regions change little with
the width of the particle size distribution.
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Species length scales demonstrate more change as a func-
tion of o/d,,,, as illustrated in Fig. 7(b). Within the con-
straints of the error shown, deviation of both large- and
small-particle length scales from the monodisperse reference
value appears to increase with an increasing width of the
particle size distribution (o/d,,,). Furthermore, large- and
small-particle length scales deviate from the monodisperse
reference value in opposite directions: the small-particle
length scales are greater, while the large-particle length
scales are less. Therefore, the physical picture painted for
large and small particles of binary systems at v=0.2 and e
=0.6 applies to the systems of continuous particle size dis-
tributions studied here. Namely, the large particles may tend
toward the center of the low-temperature, clustered regions,
where the temperature is expected to reach a minimum.

As a final note, the consistency of these species length
scale trends should be briefly discussed. While cluster promi-
nence and species segregation trends are consistent across
the broader parameter space not shown here (i.e., higher total
particle concentrations and restitution coefficients noted at
the beginning of Sec. III), the relationship between species
length scales is not consistent across this parameter space.
However, the relationship between species length scales may
be consistently explained by the segregation of large par-
ticles toward the center of the clustered regions. Detailed
discussion of this broad parameter space is reserved for the
thesis in [45].

IV. CONCLUSIONS

The dynamic clusters arising from instabilities in two-
dimensional simple shear flows have been investigated for
systems containing mixtures of equal-material-density par-
ticles. Binary size distributions have been studied for a range
of total particle concentrations, restitution coefficients, diam-
eter ratios, and relative fractions of each species, though the
presented data has been limited to an illustrative subset of
data at »=0.2 and e=0.6. Continuous size distributions have
been studied for a range of Gaussian and lognormal size
distributions at v=0.2 and ¢=0.8. An analysis of clustered-
and dilute-region concentrations has been employed in com-
bination with the radial distribution function in order to elu-
cidate the answers to two questions: Does the presence of
size nonuniformities serve to enhance or attenuate the pres-
ence of clusters? Do particles of a given size preferentially
segregate within the clusters?

Throughout the investigated parameter space, including
binary, Gaussian, and lognormal particle size distributions,
the answers to the above questions are consistent. The an-
swer to the first question is assessed by defining the cluster
prominence as the normalized difference between clustered-
and dilute-region concentrations [(v,;—vg;)/v]. Clusters
are consistently observed to become more prominent (tightly
packed) with increasing deviation from the monodisperse
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limit (i.e., increasing diameter ratio or increasing size distri-
bution width). The answer to the second question is found in
a similar manner using species-specific concentration differ-
ences. Specifically, large particles consistently segregate to-
ward the clustered regions. Further analysis of clustered and
dilute-region temperatures in these polydisperse systems re-
veals that clusters exhibit lower temperatures than surround-
ing dilute regions. Consequently, the observed species segre-
gation is consistent with temperature-driven segregation of
the more massive particles toward low-temperature regions.
While temperature-driven segregation has previously been
observed for systems exhibiting steady-state temperature
gradients, the current work demonstrates the potential for
such segregation in the context of the fransient temperature
gradients associated with the dynamic clusters of 2D simple
shear flow. Moreover, a plausible explanation for the behav-
ior of species-specific clustering length scales obtained from
the radial distribution function corroborates the possibility of
temperature-driven segregation by suggesting that large par-
ticles may favor the center of the clustered regions (i.e., seg-
regation within clustered regions), where granular tempera-
tures are expected to reach a minimum. Accordingly, an
important finding of the current effort is the presence of spe-
cies segregation in dynamic systems, in which the dominant
driving forces for segregation appear consistent with those in
steady systems, thereby implying that the time needed for
steady-state diffusion to occur is less than the lifetime of the
cluster itself. Confirmation of the proposed segregation ex-
planation is possible via a solution of the transient form of
the kinetic-theory-based description for mixtures (see, for ex-
ample [47,48], and works reviewed within). In granular
flows, such transient solutions have been applied to a mono-
disperse homogeneous cooling system [49], though an exten-
sion to polydisperse systems is expected to increase compu-
tational requirement considerably.

Furthered understanding of the role of multiple species in
the dynamic clusters of granular systems (i.e., those studied
in the current work) could provide insight into the well-
documented dynamic clusters observed in gas-solid systems.
In particular, this insight could shed light on the peculiar role
of fines [50,51] in the flow characteristics of fluidized beds
(e.g., fluidized catalytic cracking units), wherein both hydro-
dynamic and granular effects will affect the prominence and
nature (e.g., the presence of species segregation) of the clus-
tered regions.
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