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We present a study of hydrogen at pressures higher than molecular dissociation using the coupled electron-
ion Monte Carlo method. These calculations use the accurate reptation quantum Monte Carlo method to
estimate the electronic energy and pressure while doing a Monte Carlo simulation of the protons. In addition
to presenting simulation results for the equation of state over a large region of the phase diagram, we report the
free energy obtained by thermodynamic integration. We find very good agreement with density-functional
theory based molecular-dynamics calculations for pressures beyond 600 GPa and densities above �

=1.4 g /cm3, both for thermodynamic and structural properties. This agreement provides a strong support to
the different approximations employed in the density-functional treatment of the system, specifically the
approximate exchange-correlation potential and the use of pseudopotentials for the range of densities consid-
ered. We find disagreement with chemical models, which suggests that a reinvestigation of planetary models—
previously constructed using the Saumon-Chabrier-Van Horn equations of state—might be needed.
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I. INTRODUCTION

Although hydrogen is the first element in the Periodic
Table, it undergoes a number of transformations as tempera-
ture and density are varied. As the most abundant element in
the universe, it is important to have an accurate prediction of
its properties for a large range of pressures and temperatures.
A qualitative description is not always sufficient. For ex-
ample, models of hydrogenic planets require accurate results
to make correct predictions �1,2�. Estimates are that the
equation of state �EOS� �the pressure as a function of density
and temperature� needs to be accurate to 1% to answer fun-
damental questions about the composition and formation of
the Jovian planets �3�.

The high-pressure phases of hydrogen have received con-
siderable attention in recent years, both from theory and ex-
periment. At lower temperatures, static compression experi-
ments using diamond-anvil cells can reach pressures of 320
GPa, where the quest to find the metal-insulator and
molecular-atomic transitions in the solid phase still continues
�4�. Dynamic compression experiments using either isentro-
pic compression or shock waves are used at higher tempera-
tures and can now reach pressures above 200 GPa �5,6�.
Even though experimental techniques at high pressure have
improved considerably over the last decade, they are still not
accurate enough to measure the EOS to the required preci-
sion. Although this situation might change in the near future
with the construction of more powerful machines such as the
National Ignition Facility, computer simulations today pro-
vide the most reliable method for determining the thermody-
namic properties at high pressures and temperatures.

Many theoretical techniques have been used including
free-energy minimization methods in the chemical picture
�7–9�, restricted path integral Monte Carlo �PIMC� �10�, and
density-functional theory based molecular dynamics �DFT-
MD� �11–17�. All of these methods employ different ap-
proximations that can affect properties in ways that are dif-
ficult to quantify due to the lack of conclusive experimental
results. While free-energy methods are typically accurate in
the molecular phase at low pressures, where molecules are
tightly bound and there are enough experimental results to
produce accurate empirical potentials, at higher density, with
the onset of dissociation and metallization in the liquid, they
become unreliable. These methods must interpolate between
the low and high pressures �i.e. the plasma state�. One ex-
pects possibly large errors at intermediate pressures, i.e., at
conditions directly relevant to planetary interiors.

Restricted PIMC, on the other hand, is accurate at very
high temperatures where the nodes of the density matrix are
known, but at temperatures below approximately 20 000 K
its accuracy �and efficiency� has been limited. For interme-
diate temperatures and high pressures, DFT-MD has become
the computational method of choice over the last decade,
mainly due to its advanced development stage and easy ac-
cessibility with many available packages. Practical imple-
mentations of DFT employ pseudopotentials and approxi-
mate exchange-correlation functionals and do not typically
estimate quantum proton effects; these approximations limit
its accuracy and applicability, especially at high pressures.
Despite its possible limitations, DFT is a state of the art in ab
initio simulations. For example, planetary models are being
built with its equation of state, superseding the well-known
Saumon-Chabrier-Van Horn �SCVH� multiphase equation of
state �7,18�.

Because of its widespread use and potential impact in the
near future, it is important to test the validity of the DFT
approximations at extreme conditions and to determine its
range of applicability. In order to obtain more accurate re-
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sults, especially at intermediate temperatures, we need to em-
ploy methods that can go beyond the usual single-body
mean-field approximations typically used in DFT. Quantum
Monte Carlo �QMC� is a perfect candidate for the task, pre-
senting a good balance between speed and accuracy. It does
not rely on pseudopotentials, and electronic correlation ef-
fects are treated explicitly in the full many-body problem. At
present, QMC has the potential to be more accurate for elec-
tronic properties than DFT, while being considerably less
expensive than correlated quantum chemistry methods
�19–21�.

Coupled electron-ion Monte Carlo �CEIMC� is a QMC
based ab initio method devised to use QMC electronic en-
ergy in a Monte Carlo simulation of the ionic degrees of
freedom �22,23�. Thanks to recent advances in QMC meth-
odology we can now obtain results with small and well con-
trolled systematic errors. Specifically, the use of twist aver-
aged boundary conditions �TABCs� �24� on the phase of the
electronic wave function, together with recently developed
finite-size correction schemes �25,26�, allows us to produce
energies that are well converged to the thermodynamic limit
with �100 atoms; see Appendix A for additional details.
Improvements in the wave functions used for high-pressure
hydrogen allow us to get very accurate results �27� and avoid
the main limitations of previous applications of the CEIMC
method.

The impressive increase in computational power in recent
years made possible a calculation of the EOS of hydrogen
over a broad range of temperatures and pressures. In this
paper we present the results of free-energy calculations of
hydrogen in its atomic liquid phase for pressures greater than
150 GPa. In Sec. II, we present a brief description of the
CEIMC method. In Sec. III we present the results for the
EOS, including the free-energy calculations. In Sec. IV we
present a comparison with other methods, with a special at-
tention to DFT-MD results, while in Sec. V we draw some
conclusions. Finally, in Appendixes A and B we describe
details of the method to estimate the finite-size corrections
and of the reptation quantum Monte Carlo �RQMC� method
implemented in CEIMC, respectively.

II. COUPLED ELECTRON-ION MONTE CARLO
METHOD

CEIMC, in common with the large majority of ab initio
methods, is based on the Born-Oppenheimer �BO� separation
of electronic and ionic degrees of freedom. In addition, the
electrons are considered to be in their ground state for any
particular arrangement of the protons. This approximation is
well justified in the regime of the phase diagram studied here
because the Fermi temperature for the electrons is well above
250 000 K. To estimate the electronic thermal effects on the
thermodynamic properties we performed DFT simulations at
a temperature of 10 000 K �the highest temperature reported
in this work� and a density of 2.03 g /cm3, using both
ground-state and finite-temperature versions of DFT �28�. We
obtained changes of 0.3%, 0.4%, and 2% for the pressure,
Helmholtz free energy, and entropy of the liquid, respec-
tively. Details of DFT simulations will be given below. As

further support of the validity of the ground-state assump-
tion, note that we have previously observed �29� a good
agreement for the radial distribution functions �proton-
proton, proton-electron, and electron-electron� between CE-
IMC and finite-temperature restricted PIMC at rs=1.0 and
T=5000 K. Protons, either considered as classical or quan-
tum particles �23,29�, are assumed to be at thermal equilib-
rium at a temperature T. In the present calculation, the sys-
tem of N protons and N electrons is enclosed in a fixed
volume V at a number density n=N /V, which we often ex-
press with the parameter rs= �3 /4�n��1/3�. The mass density
is related to rs by �= �3mh� / �4�rs

3�, with mh as the mass of a
hydrogen atom, which provides the following conversion
formula: ��g /cm3�=2.696 /rs

3.
We start from the nonrelativistic Hamiltonian

Ĥ = − �
i=1

2N
�2

2mi
�i

2 +
e2

2 �
i�j

zizj

�r�̂i − r�̂ j�
, �1�

where zi, mi, and r�̂i represent, respectively, the valence, mass,
and position operators of particle i. Let us denote with R
= �r�1 , . . . ,r�N� and S= �r�N+1 , . . . ,r�2N� the set of coordinates of
all electrons and protons, respectively �30�.

Within the BO approximation, the ground-state energy of
the system for a given nuclear state S is the expectation value

of the Hamiltonian Ĥ over the corresponding normalized ex-
act ground state ��0�S��,

EBO�S� = 	�0�S��Ĥ��0�S�� , �2�

which is a 3N-dimensional integral over the electron coordi-
nates in configuration space,

EBO�S� =
 dR�0
��R�S�Ĥ�R,S��0�R�S�

=
 dR��0�R�S��2EL�R�S� , �3�

with the local energy defined as

EL�R�S� =
Ĥ�R,S��0�R�S�

�0�R�S�
. �4�

In this work, we use RQMC �31� with the bounce algorithm
�32� to solve the electronic problem.

For an isolated hydrogen molecule, the error of the BO
energy is approximately 0.3 mhartree/atom �33�, roughly
�me /mp�E. This is about the size of the statistical error in our
most converged calculations �see Table I�. Because these cor-
rections arise from the perturbation 	�2 / �2mp���S�0�R ,S��2�,
we expect much smaller corrections in the atomic liquid or
plasma state studied here since the electrons are less coupled
with the protons, resulting in smaller gradients.

With the ability to compute the BO electronic energy, the
METROPOLIS algorithm is able to generate a sequence of ionic
states according to the Boltzmann distribution P�S��exp�
−�EBO�S�� at the inverse temperature �. In CEIMC the esti-
mate of EBO�S� for a given trial function is computed by
QMC and it is therefore affected by statistical noise which, if
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ignored, will bias the result. In the penalty method �34�, we
require detailed balance to hold if averaged over the noise
distribution. The noise on the energy difference causes extra
rejection with respect to the noiseless case.

The accuracy of the calculations depends crucially on the
choice of the trial wave function. The Slater-Jastrow wave
function has the form

�T�R,S� = D↑D↓e
−U, �5�

where D↑/↓ is a Slater determinant of single-electron orbitals
for electrons with spin up/down and U is the sum, over all

distinct pairs of particles, of the random-phase approxima-
tion �RPA�-Jastrow function �22�. The orbitals in the Slater
determinant are obtained from a DFT calculation in a plane-
wave basis, using the local-density approximation for the
exchange-correlation functional, as parametrized by Perdew
and Zunger �35� and Ceperley and Alder �36�. The resulting
orbitals are transformed to a cubic spline basis from which
they are interpolated in the QMC calculations. The use of a
spline basis in the RQMC runs represents a large increase in
the efficiency of the simulations. To reduce the computa-
tional overhead produced by the DFT calculations, which

TABLE I. Energy per atom and pressure as calculated with CEIMC and with BOMD. Statistical errors are
reported in parentheses as the uncertainty on the last digit.

Method CEIMC BOMD

T �K� � �g /cm3� rs Energy �hartree� Pressure �GPa� Energy �hartree� Pressure �GPa�

2000 2.329 1.05 −0.3846�3� 1576�2�
3000 2.329 1.05 −0.3777�2� 1607�1�
4000 2.329 1.05 −0.3707�5� 1640�3� −0.37438�5� 1635.4�4�
6000 2.329 1.05 −0.3569�4� 1701�2� −0.3610�1� 1701.0�7�
8000 2.329 1.05 −0.3458�4� 1753�2� −0.3484�1� 1762.4�7�

10000 2.329 1.05 −0.3316�8� 1814�4� −0.3360�2� 1823�2�
2000 2.026 1.10 −0.4170�2� 1157�2�
3000 2.026 1.10 −0.4097�2� 1190�1�
4000 2.026 1.10 −0.4026�3� 1219�1� −0.4059�1� 1218.7�7�
6000 2.026 1.10 −0.3898�4� 1270�2� −0.3927�1� 1276.1�9�
8000 2.026 1.10 −0.3777�5� 1315�2� −0.3804�1� 1328.8�6�

10000 2.026 1.10 −0.3660�4� 1362�2� −0.3690�3� 1378�2�
2000 1.773 1.15 −0.4419�2� 861�1�
3000 1.773 1.15 −0.4356�3� 883�2�
4000 1.773 1.15 −0.4285�7� 911�3� −0.43137�9� 916.5�3�
6000 1.773 1.15 −0.4151�6� 956�3� −0.41883�7� 964.8�4�
8000 1.773 1.15 −0.4018�9� 1003�3� −0.40686�8� 1010.1�5�

10000 1.773 1.15 −0.3891�8� 1048�2� −0.39542�8� 1053.8�5�
2000 1.380 1.25 −0.4790�2� 482�1�
3000 1.380 1.25 −0.4721�2� 501�1�
4000 1.380 1.25 −0.4673�4� 514�2� −0.46886�7� 528.0�4�
6000 1.380 1.25 −0.4549�6� 553�1� −0.45675�9� 565.1�5�
8000 1.380 1.25 −0.4419�7� 588�3� −0.4451�1� 600.4�6�

10000 1.380 1.25 −0.4324�7� 616�2� −0.4344�1� 633.2�5�
2000 0.983 1.40 −0.5117�4� 213�1�
3000 0.983 1.40 −0.5057�2� 220�1�
4000 0.983 1.40 −0.4993�5� 232�1� −0.50203�6� 241.9�3�
6000 0.983 1.40 −0.4869�5� 256�3� −0.4905�1� 267.0�3�
8000 0.983 1.40 −0.4767�5� 275�1� −0.4796�1� 291.6�3�

10000 0.983 1.40 −0.4674�4� 295�1� −0.4692�1� 315.0�6�
2000 0.724 1.55 −0.5330�2� 111�1�
3000 0.724 1.55 −0.5230�2� 105�1�
4000 0.724 1.55 −0.5157�3� 116�1�
6000 0.724 1.55 −0.5027�4� 134�1�
8000 0.724 1.55 −0.4938�2� 143�1�

10000 0.724 1.55 −0.4831�6� 162�2�
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must be converged to self-consistency for every ionic step,
we perform a single self-consistent DFT calculation at the 	
point of the supercell; in other words we assume that the
orbitals are periodic in the supercell �37�. Using the resulting
electron density, we build and diagonalize the Kohn-Sham
Hamiltonian at the points in the Brillouin zone of the super-
cell required in the TABC calculations.

We apply a backflow transformation �38� to the electron
coordinates in the Slater determinant with the form

x�i = r�i + �
j


ij��rij��r�ij , �6�

where 
 is either a parametrized electron-electron backflow
function or an analytical form derived using Bohm-Pines
collective coordinate approach �39�. This introduces correla-
tions and improves the nodal surfaces of the DFT orbitals
�20,27,39�. This many-body wave function represents a good
balance between accuracy and efficiency.

III. EQUATION OF STATE OF HYDROGEN

In this paper we calculate the free energy of hydrogen as
a function of temperature and density for ranges 2000�T
�10 000 K and 0.7���2.4 g cm−3. For ��0.7 g cm−3,
molecular dissociation becomes the dominant feature in the
EOS, requiring a more detailed study than the one performed
here to reach a similar level of accuracy. Such simulations
are in progress and will be reported elsewhere.

The CEIMC calculations were performed with 54 hydro-
gen atoms using RQMC. The time step and projection length
used in RQMC were chosen to reach a convergence of the
energy of 0.2–0.3 mhartree/atom; see Appendix B for details.
We used TABC with a grid of 64 twists �96 for rs�1.10�,
which together with the use of recently developed finite-size
correction schemes for QMC energies allows a significant
reduction in size effects; see Appendix A for details and
discussion.

We performed 36 CEIMC simulations �not including
those related to the coupling constant integration �CCI��; the
results are reported in Table I. The initial proton configura-
tions �typically associated with regular lattice arrangements�
were first relaxed using effective pair potentials between pro-
tons, built from reflected Yukawa functions �see Eq. �8� be-
low�, which were chosen in such a way that they reproduce
approximately the radial distribution functions of the QMC
systems. We then performed 2000–3000 equilibration steps
with CEIMC. Statistics were gathered in the following
5000–15 000 steps, with the number of steps depending on
temperature and density.

The protons are treated as classical particles in the results
presented in Table I and in the free-energy calculations dis-
cussed below. Quantum effects of the protons could be im-
portant at low temperatures at the densities considered in this
work. In order to assess their effect on the thermodynamic
properties, we performed PIMC calculations for the protons
on the potential-energy surface defined by the zero-
temperature RQMC method. This is an extension of CEIMC
to treat quantum nuclei �23�. The resulting corrections to the
energy and pressure are given in Table II, at T=2000 K for

three densities. At this temperature, which is the lowest tem-
perature studied in this work, the corrections to the pressure
from quantum proton effects are limited to 1%.

A. Free-energy integration

We used CCI �40� to calculate the free energy of hydrogen
at a reference point chosen as T=6000 K and rs=1.25. In
CCI a 
-dependent potential energy V�
� is a linear combi-
nation of two different potential energies: V�
�=V0+
�V1
−V0�. The difference in free energy between systems 0 and 1
is then

F1 − F0 = 

0

1

d
	�V1 − V0��
, �7�

where 	¯ �
 indicates a statistical average over the distribu-
tion �e−�V�
�. We chose system 0 to be a system of classical
point particles with pairwise additive interaction of the
Yukawa type,

v0�r� = � e−br

r
+

e−b�L−r�

�L − r�
− 4

e−bL/2

L
, r � L/2

0, r � L/2,
� �8�

where b=2.5a0
−1 with a0 being the Bohr radius and L is the

length of the simulation cell. The reflection makes the func-
tion and its first derivative continuous at the cutoff, r=L /2.
We performed a first CCI to compute the free energy of the
effective system at the desired thermodynamic point using
V�
�=
V0, so that the effective system was transformed into
an ideal system. A second CCI was performed to switch the
effective system into the system of classical protons and
ground-state electrons and therefore evaluate the free energy
of hydrogen at the reference point. In this second CCI we
used V�
�=
V0+ �1−
�EBO�
�, where EBO�
� is the Born-
Oppenheimer energy as obtained from RQMC. Note that EBO
depends implicitly on the specific value of 
, a dependence
that we have explicitly indicated. We obtained a value of
−0.5737�1� hartree /atom for the free energy and
6.25�3� �kB /atom� for the entropy at the reference point. The
free energy at thermodynamic points other than the reference
point was obtained by thermodynamic integration �41�, i.e.,
integrating the internal energy or the pressure along, respec-
tively, isochors or isotherms of the system.

TABLE II. Corrections to the energy and pressure of hydrogen
from quantum effects of the protons, from PIMC simulations with
CEIMC, at a temperature of 2000 K: �E= �E−Eclassical� /N and
�P= P− Pclassical. Errors are in parentheses.

rs

�E
�mhartee�

�P
�GPa�

�P / P
�%�

1.05 4.0�7� 7�3� 0.4

1.10 3.8�3� 9�1� 0.7

1.25 2.8�5� 5�1� 1.0
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B. Fits to EOS

The free energy as a function of temperature and density
was parametrized by the functional form

F�T,�� = �
i=1

4

�
k=1

5

cikgi�T�gk��� , �9�

where gi�x�= 
1,x ,x2 ,x ln x ,x2 ln x�. The parameters cik
were determined by a least-squares fit to CEIMC data for
energy and pressure of the analytical derivatives of this ex-
pansion,

P�T,�� =
�2

mh
� �F

��
�

T

, �10�

E�T,�� = − T2� �

�T
�F

T
��

�

. �11�

The free-energy fit reproduces the energies and pressures
obtained from the CEIMC simulations to within 0.5% and
1.5%, respectively, although the average error is much
smaller than this. The coefficients of the expansion are given
in Table III.

IV. COMPARISON WITH OTHER METHODS

In order to asses the accuracy of the DFT-MD method for
hydrogen at such extreme conditions we have performed
DFT based Born-Oppenheimer molecular dynamics
�BOMD�. As in the CEIMC calculations of the previous sec-
tion, the electrons are assumed to be at zero temperature. The
BOMD simulations were performed in the NVT ensemble
�weakly coupled with a Berendsen thermostat� using the
QBOX code �42�. We used the Perdew-Burke-Ernzerhof
exchange-correlation functional and a Hamann-type �43� lo-
cal pseudopotential with a core radius of rc=0.3 a.u. to rep-
resent hydrogen. The simulations were performed with 250
hydrogen atoms in a cubic box using a plane-wave cutoff of
90 Ry �115 Ry for rs�1.10� with periodic boundary condi-
tions �	 point of the simulation cell�. Corrections to the EOS
were added to extrapolate results to infinite cutoff and to
account for the Brillouin-zone integration. To do this, we
studied 15–20 statistically independent static configurations
of protons at each density by using a 4�4�4 grid of k
points with a plane-wave cutoff of at least 300 Ry. See Ref.
�44� for additional details of the BOMD simulations.

Data for energy and pressure obtained by CEIMC and
BOMD are reported in Table I. There is a good agreement

between the two methods, especially at higher densities
where the difference in pressure is within error bars. Figure 1
shows a comparison of the pressure and the energy between
CEIMC simulations and BOMD simulations. At lower den-
sities, the pressure difference increases, reaching an average
value of 5% close to the dissociation regime ��
�0.75 g /cm3�. There is less reason to expect good agree-
ment for the energies since DFT uses pseudopotentials and
approximate exchange-correlation functionals which can
modify the zero of the energy. However, the temperature and
density dependence is well reproduced with an almost uni-
form energy shift of 0.8% in the region of the phase diagram
studied. Figure 2 shows the proton-proton radial distribution
function for several thermodynamic conditions as obtained
with the two methods. The observed agreement is again re-
markable. Note that the small wiggles in the CEIMC deter-
mined radial distribution function �r.d.f.� are statistical noise.
The CEIMC functions were computed from fewer many-
body configurations because of the greater computational

TABLE III. Coefficients of the expansion of the free energy; energy is in hartree/atom, temperature is in
K, and density is in g cm−3.

k c1k c2k c3k c4k

1 −0.529586 −2.085591�10−4 −3.365628�10−9 2.294411�10−5

2 2.227221�10−6 −1.452601�10−4 −2.488880�10−9 1.894880�10−5

3 −6.266619�10−5 4.210279�10−4 6.174066�10−9 −5.144879�10−5

4 9.977346�10−2 −6.220508�10−4 −8.564851�10−9 7.499558�10−5

5 −1.437627�10−2 −9.867541�10−5 −1.598083�10−9 1.225739�10−5
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FIG. 1. �Color online� Comparison of energy and pressure be-
tween CEIMC and DFT-based BOMD simulations. We show the
percent difference, defined as �A= 
�ACEIMC−ABOMD� / ��ACEIMC

+ABOMD� /2���100.
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burden of QMC and thus have larger noise. The structure of
the liquid is reproduced by BOMD simulations quite accu-
rately, even the short-range correlation peak that develops at
the lower temperatures and higher densities. Figure 3 shows
a comparison for the entropy as a function of density along
two isotherms. For densities beyond �=1.4 g /cm3, the en-
tropy curves obtained with the two methods are indistin-
guishable. In general, we obtain very good agreement be-
tween the two methods for pressures beyond 600 GPa. At
lower pressures, the agreement is not perfect, but still very

good, with BOMD predicting a slightly higher entropy than
CEIMC. We are currently expanding our calculations to
lower density to provide an additional benchmark of the DFT
method close to the molecular dissociation region.

Finally, Fig. 4 shows a comparison of the pressure as a
function of density, obtained with CEIMC, BOMD, and the
“interpolated” SCVH EOS at T=6000 K. The lower panel
shows the pressure divided by the square of the density to
highlight the differences between the results of the different
methods. At pressures well below the dissociation regime
�outside the regime investigated in the present work�, SCVH
EOS produces good results, but at higher densities, but still
keeping the temperature T�10 000 K, the model is less ac-
curate. As shown in Fig. 4 the SCVH pressures are 25%
larger than those of CEIMC and BOMD.

The SCVH EOS is based on a chemical model of hydro-
gen, where one assumes dense hydrogen consists of H2, H,
e−, and p+ particles. The free energy is calculated assuming
pair interactions between these species, and electronic exci-
tations of the H atoms. In the CEIMC simulations there are,
in fact, very few H2 molecules and the atoms are strongly
coupled �as evidenced by the r.d.f.� but incompletely ionized.
In fact, one of the main limitations of the SCVH model is the
lack of dependence of the H atom excitation energy on the
surrounding plasma. As a consequence, the existence of
bound states essentially determines that ionization takes
place with a first-order plasma phase transition �PPT� rather
than as a crossover �2�. In the SCVH model, the PPT is
estimated to occur at �0.5 g /cm3 at 6000 K, but according
to later work, such a prediction “is not credible” �2�. In the
chemical model, in fact, there is a second spurious phase
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FIG. 2. �Color online� Comparison of radial distribution func-
tions between BOMD �solid blue curve� and CEIMC �dashed red
curve�.
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transition described as a “flaw in the EOS” at slightly higher
temperatures and densities. This transition and the PPT are
typically removed by smoothing out the free energy by hand.
Based on CEIMC and BOMD calculations �45�, the actual
PPT should occur only at considerably lower temperatures:
at 6000 K there should be a smooth crossover from H2 to an
atomic liquid. Hence, the errors in SCVH in this range of
temperatures and pressures are likely due to effects of the
interpolation. Although the errors in the SCVH are only ob-
served to be large in a small portion of the temperature-
density range of the model, this region is crucial for calcu-
lating the internal structure of Jupiter, in particular the size of
the core region �2�.

V. CONCLUSIONS

In summary, we performed a comprehensive study of the
free energy and the equation of state of warm dense liquid
hydrogen in its atomic phase using energies computed with a
quantum Monte Carlo method. After performing finite-size
corrections and estimating effects of zero-point proton ener-
gies, energies and pressures are computed to an absolute ac-
curacy of a few percent. The free energy is computed using
coupling constant and thermodynamic integrations. We pro-
vide a fit to the free energy which can be used as an input to
models of the Jovian planets. The energies and pressures
�Table I� can be used to constrain chemical models.

Given the status of DFT as a workhorse for EOS model-
ing, it is crucial to benchmark its predictions against more

accurate correlated methods. We provide such a critical test
at the conditions relevant for planetary interiors. Our results
indicate that DFT based BOMD simulations provide a very
good description of both thermodynamic and structural prop-
erties of hydrogen for 2000�T�10 000 K and densities of
0.7���2.4 g cm−3 with errors in the total energy and pres-
sures of less than 2%, except at densities of less than
1 g cm−3, where DFT pressures are too high by 5%. With
current day computer algorithms and capabilities, EOS cal-
culations for hydrogen with a 1% accuracy are close to being
achieved.

The equation of state of SCVH, used in the study of plan-
etary interiors for more than a decade, is shown to produce
pressures in error by 25% in this regime. We speculate that
the errors in the SCVH are due to an inaccurate modeling of
the molecular-atomic �i.e., PPT� transition, which is pre-
dicted to occur at a lower densities, but whose effect in the
EOS extends up to conditions investigated here. Because
planetary models are sensitive to details in this regime and at
lower pressures during dissociation, a deviation from SCVH
will produce a much larger change in the planetary model,
e.g., it is found using a less compressible EOS that Jupiter
has a core mass of 14–18 earth masses, much larger than
SCVH value of 0–7 earth masses �1,18�. This suggests that
planetary models, particularly of Jupiter, should be reinves-
tigated with a more accurate EOS, such as the one presented
in this work.
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APPENDIX A: FINITE-SIZE EFFECTS

Due to the high computational demands of QMC, our
simulations are restricted to systems of at most 128 atoms.
Many techniques have been developed in order to obtain
useful results with finite systems. In this work we use TABC
�the generalization of Brillouin-zone integration to many-
body quantum systems in periodic boundary conditions� to
eliminate shell effects in the kinetic energy of metallic sys-
tems. Twisted boundary conditions when an electron wraps
around the simulation box are defined by

���. . . ,rj� + L� , . . .� = ei����. . . ,rj�, . . .� . �A1�

where �� is the many-body wave function of the system.
Observables are then averaged over the all twist vectors,
similar to one-body theories,
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FIG. 5. �Color online� Comparison of proton-proton radial dis-
tribution functions between systems with different numbers of elec-
trons. In the upper panel, the temperature is 4000 K and rs=1.25. In
the lower panel, the temperature is 3000 K and rs=1.85. Electronic
energies in CEIMC were calculated using variational Monte Carlo.
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	Â� = 

−�

� d��

�2��3 	���Â���� . �A2�

This procedure has been shown to restore the classical 1 /N
dependence of the energy per particle in QMC calculations,
absent when periodic boundary conditions �PBCs� are used
�24�.

As first shown by Chiesa et al. �25�, most of the remain-
ing finite-size errors in the potential and kinetic BO energies
of QMC simulations come from discretization errors induced
by the use of PBC. To see this, notice that we can write the
potential energy �per electron� of a system of N electrons and
N protons as

	V̂�
N

=
1

2�
�
k��0

v�k���SN�k�� − 2� , �A3�

where � is the volume of the simulation box, 
k�� is the set of
lattice vectors in reciprocal space of the simulation box, v�k��
is the Fourier transform of the Coulomb potential, SN�k��
= 	��p�k��−�e�k�����p�−k��−�e�−k���� /N is the charged structure
factor, and �p/e�k��=�ie

ik�·ri�; the sum over i refers to either
protons or electrons depending on the superscript. As we
approach the thermodynamic limit N→�, the structure fac-
tor converges �SN�k��→S��k��� and the sum becomes an inte-
gral: 1

��k��0→�dk� / �2��3. Assuming, as it is usually the
case, that the structure factor converges fast with the number
of particles, then most of the finite-size error in the potential
energy comes from the omission of the k� =0 term in the sum.
This can be estimated using the Poisson summation formula


 dk�

�2��3 
̂�k�� − �
k��0


̂�k�� = 
�0� − �
L�


�L� � , �A4�

where 
�r� is any generic position-dependent property of the
periodic system and 
̂ is its Fourier transform. From the
RPA, exact in the limit of k�→0, we know that SN�k���k2 as
k→0. The leading-order correction to the potential energy
per particle is

�V =
3

2Nrs
3 lim

k�→0

SN�k��
k2 . �A5�

Computing the structure factor for small k during our simu-
lation and extrapolating its behavior to k=0, we obtain the
desired corrections. In the case of the electronic kinetic en-
ergy, following a similar argument, we obtain for the correc-
tion up to second order �25,26�

�K =
 dk�

�2��3 û�k��k2 −
1

�
�
k��0

û�k��k2 =
�3

4Nrs
3/2 −

5.264

2�rs
2�2N�4/3 ,

�A6�

where û�k�� is the Fourier transform of electron-electron Ja-
strow function; in the present work we have used the RPA
form �22�.

To check the finite-size corrections �Eqs. �A5� and �A6��
for dense hydrogen, we performed simulations with 32, 54,

and 108 atoms at rs=1.85 and 1.25. We used TABC with
variational Monte Carlo energies with 108 twists for the 32-
atom system and 32 twists for the 54 and 108 atoms. Figure
5 shows a comparison of the radial distribution functions
between the systems with different numbers of atoms, for the
two densities studied. Note that the two systems are very
different: while the system at rs=1.25 and T=4000 K is me-
tallic, fully ionized plasma, the system at rs=1.85 and T
=3000 K exhibits a clear molecular character and is in the
insulating phase �46�. For both systems, the agreement be-
tween the three simulations is very good, with no noticeable
difference between the systems with 54 and 108 atoms vali-
dating the assumption that SN�k� is converged beyond 54
atoms. Using the fact that TABC restores the 1 /N depen-
dence of the properties, we can compare the results of the
size correction formulas with a 1 /N extrapolation. Table IV
shows a comparison of finite-size corrections taking the sys-
tem with 54 atoms as the reference. As can be seen, the
correction for the lower-density system agrees very well with
the extrapolated value. In the case of the higher-density sys-
tem, the agreement is less good but still acceptable. We at-
tribute the disagreement at higher densities to the differences
in TABC used for the systems with different sizes.

APPENDIX B: DETAILS OF RQMC CALCULATIONS

As mentioned in the text, the parameters of the RQMC
calculations were varied with density to obtain uniform ac-
curacy over the region of phase diagram investigated. Table
V shows the time steps and projection times versus density
used in the simulations. As is well known, total energies
converge faster as a function of imaginary time because their
convergence error is second order with respect to the trial
wave function. The kinetic and potential energies, and hence

TABLE IV. Comparison of finite-size corrections between a size
extrapolation ��EN ,�PN� and formulas �A5� and �A6� ��ES ,�PS�.

rs

Energy �mhartree� Pressure �GPa�

�EN �ES �PN �PS

1.25 7.7 10.0 10.8 17.6

1.85 5.4 5.5 3.3 3.1

TABLE V. Projection time and time step used in the RQMC
calculations.

rs

Projection time
�a.u.�

Time step
�a.u.�

1.05 0.456 0.008

1.10 0.504 0.008

1.15 0.550 0.01

1.25 0.660 0.012

1.40 0.732 0.012

1.55 0.975 0.015
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the pressure, obtained from the virial expression are only
first order, which means that longer projection times are
needed to obtain converged results. During the course of the
simulations, we only require accurate energies, so a smaller
projection time is used, one that is insufficient for accurate
pressures. In order to obtain converged results for the pres-

sure, we calculated a correction for the finite projection time
and nonzero time step by studying approximately a dozen
protonic configurations at each density. The corrections were
found to be independent of the precise proton configuration
but density dependent. The corrections to the total energy are
negligible within errors.
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