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In this paper we extend the concept of persistence, well defined for classical stochastic dynamics, to the
context of quantum dynamics. We demonstrate the idea via quantum random walk and a successive measure-
ment scheme, where persistence is defined as the time during which a given site remains unvisited by the
walker. We also investigated the behavior of related quantities, e.g., the first-passage time and the succession
probability �newly defined�, etc. The study reveals power-law scaling behavior of these quantities with new
exponents. Comparable features of the classical and the quantum walks are discussed.
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Persistence in classical dynamical systems is a topic
which has been extensively studied in recent years �1�. The
persistence probability �Pcl�t�� that the order parameter in a
magnetic system has not changed sign until time t �2� and the
persistence of unvisited sites in a diffusion problem �3� are
common examples which have received a lot of attention.
The importance of persistence phenomena lies in the fact that
the persistence probability in many systems shows an alge-
braic decay �in time� with an exponent not related to any
other known static or dynamical exponents.

The dynamics of a quantum system is expected to be dif-
ferent from the corresponding classical counter part, yet in-
vestigating persistence behavior in the quantum case has re-
mained an interesting open problem to date. However,
defining quantum persistence is ridden with the fundamental
problem of measurement since in order to ensure whether or
not the system persisted in a given state �or in a chosen
subspace X�, one has to impose a continuous monitoring
which would change the dynamics of a quantum system in
some essential way. Hence in the quantum case, meaningful
definition of persistence has to include the associated mea-
surement scheme �i.e., how the evolution is disturbed by the
measurement� and should essentially be dependent on that.
The dynamical process we consider here is a discrete quan-
tum random walk �QRW� �7–10�. Classical random walk
�CRW� on a line is a much studied topic �4–6� where at
every step one tosses a fair coin and takes a step, either to the
left or right. The unitary implementation of QRW may be
achieved through coupling an additional degree of freedom
�a quantum coin� with the walker. This coin degree of free-
dom is called the chirality, which takes values “left” and
“right,” analogous to Ising spin states �1 and directs the
motion of the particle. The state of the walker is expressed in
the �x��d� basis, where �x� is the position �in real space�
eigenstate and �d� is the chirality eigenstate �either “left” or
“right,” denoted by �L� and �R�, respectively�. There may be
several ways of choosing the unitary operator causing the
rotation of the chirality state, conventional choice effecting
the rotation of the chirality state is the Hadamard coin �8–10�
unitary operator. �Most of the results are, however, believed

to be coin independent.� The rotation is followed by a trans-
lation represented by the operator T,

T�x��L� → �x − 1��L�
T�x��R� → �x + 1��R�

. �1�

The two-component wave function ��x , t� describing the po-
sition of the particle is written as

��x,t� = ��L�x,t�
�R�x,t�

� , �2�

and the occupation probability of site x at time t is given by

f�x,t� = ��L�x,t��2 + ��R�x,t��2; �3�

normalization implying 	xf�x , t�=1.
In the case of the classical random walker, two well-

studied quantities are persistence or the survival probability
Pcl�x , t� defined as the probability that the site at x has not
been visited until time t �4,5� and the first-passage time
Fcl�x , t� which is the probability that the walker has reached
site x for the first time at time t �6�. The two quantities are
related by

Fcl�x,t� = −
�Pcl�x,t�

�t
. �4�

At t�1, both the persistent probability and first-passage
probabilities decay algebraically in time with exponents �cl
and �cl which obey the relation

�cl = �cl − 1, �5�

consistent with the equality in Eq. �4�. We are primarily in-
terested in the analogs of these two quantities in the QRW.

We now define our measurement schemes and the observ-
ables to quantify the concept of quantum persistence in this
case. In order to measure persistence in strict sense, one is
left with no other choice than to monitor the system continu-
ally over time. One way of achieving this is to impose a
direct time-continual projective measurement that determines
at every moment whether or not the system persists within
the subspace X in question. In this discrete time version of
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quantum walk, this amounts to carrying out a measurement
after every time step of the unitary evolution following the
scheme described below. The walk starts from some given
site at t=0, and a detector is placed at some other given site
x̄, which detects the particle with probability unity if it
reaches there. If the particle is detected at x̄, the evolution is
stopped �here, X is the entire lattice excluding x̄�. Now the
question asked for such a system �rather, for an ensemble of
such systems� is what is the probability that the detector does
not click until time t. This is the persistence probability
P�x̄ , t�. It is equivalent to carrying out measurements at the
site x̄ after each step of unitary evolution of the ensemble and
calculating the probability from the fraction of the surviving
copies �for which x̄ is yet unvisited� at each step. Within this
setup of QRW on a line, placing the detector at x̄ amounts to
having a semi-infinite walk �SIW� �9,11–13� with an absorb-
ing boundary at x̄ and an open end in the other direction. Let
us give a concrete illustration of the scheme with a detector
placed at x̄=1. Suppose the walker starts at x=0 with left
chirality. At time t=1 in 50% cases it will be detected at x̄
and the time evolution will be stopped. Persistence probabil-
ity is therefore 1/2 for x̄ at t=1. The remaining 50% walks
will evolve unitarily to the next step t=2. At t=3, the nor-
malized probabilities at x=−3, x=−1 and x=1 are equal to
1/4, 1/2, and 1/4, respectively �and zero elsewhere�. Hence
now the detector detects the walker at x̄ with probability 1/4,
which means that the 3/4 fraction of the population that was
carried over to t=2 would be carried over to the next time
step at t=3. This is 3/8 of the initial population �at t=0�.
Hence the persistence probability at t=3 will be 3/8 for x̄
=1.

At each time step the ensemble is measured, and the am-
plitudes are described only to the surviving copies, and the
probabilities are to be renormalized. Let the normalized oc-

cupation probability at x at time t be denoted by f̃�x , t�. Thus

f̃�x̄ , t�� denotes the fraction of the copies that survived the
measurement at time t�−1 �not the fraction of the initial
population� which reaches x̄ at time t�. The persistence prob-
ability is hence given by

PSIW�x̄,t� = 

t�=1

t

�1 − f̃�x̄,t��� . �6�

It is to be mentioned here that by placing the detector at x̄, it
is possible to find the occupation probabilities for all x and t
�which are strongly dependent on x̄�, but the persistent prob-
ability is obtained only for x= x̄. One may define a first-
passage time FSIW�x̄ , t� analogous to the classical random
walk in this case as follows:

FSIW�x̄,t� = 

t�=1

t−1

�1 − f̃�x̄,t��� f̃�x̄,t� = PSIW�x̄,t − 1� f̃�x̄,t� .

�7�

It may be mentioned here that some related studies have
been made earlier �11,12� and the problem of persistence
measured in this way had been addressed with the boundary
kept far from the starting point of the walker �12�.

As mentioned before, the definition of quantities in a
quantum system depend heavily on the measurement
scheme, and we next pose similar interesting and well-
defined questions that bring out the more intrinsic character-
istics of the dynamics somewhat directly by monitoring what
we call the succession probability S�X , t� defined as follows.
Let us consider a system allowed to evolve unitarily from a
given initial state at ti=0, up to a terminating time t�=�t,
when finally a measurement is done on it in order to deter-
mine whether or not it resides at a given state �or within a
subspace� X and the evolution is stopped �e.g., in the QRW,
one discards the walk�. The entire process is repeated for
increasing terminating times: t�=�t ,2�t ,3�t , . . . t. Now the
question is asked, what is the probability that the system will
be found within X in every measurement with t�� t?

For a continuous-time evolution, this probability will be
called the succession probability S�X , t� in the limit �t→0.
For a discrete random walk, �t will correspond to a single
step. For example, in the context of QRW, one might choose
to calculate the probability of a random walker not being
found at some target site x̄ in the successive measurements
done at t�=1,2 . . . t �starting from a given site�. The subspace
X in this case is constituted of all lattice points the walk may
include, excluding x̄ and we may then use the notation S�x̄ , t�
to denote the succession probability. It may be noted that in
the classical case, one need not restart the evolution, after
each measurement since the measurement would not disturb
it. S�x̄ , t� clearly differs from Pcl�x̄ , t� in general, since in
case of S�x̄ , t�, in calculating the probability of finding the
system within X at t�, one takes contributions of all the paths
running from the initial time 0 up to the final time t�, includ-
ing those which went out of X in the intermediate times.

In the present one-dimensional setting this amounts to al-
lowing the system to evolve unitarily in either direction �in-
finite walk or IW �8�� for an interval t�, when the measure-
ment is done and the walk is discarded. We choose, again, X
to be the entire lattice except a given point x= x̄, where we
would like to see whether the particle has reached or not. To
determine S�x̄ , t� for a given t, the termination time t� is
varied as t�=1,2 . . . t, and for each given t� one determines
the occupation probability f�x̄ , t�� and calculates S�x̄ , t� as

S�x̄,t� = 

t�=1

t

�1 − f�x̄,t��� . �8�

An analog of the first-passage time may also be defined as

FIW�x̄,t� = 

t�=1

t−1

�1 − f�x̄,t���f�x̄,t� = S�x̄,t − 1�f�x̄,t� . �9�

Experimentally this corresponds to simply knowing f�x̄ , t��
for t�� t.

Some time-dependent features in this type of infinite walk
have been studied such as the hitting time, recurrence time,
and Polya number �14–17�, which involve the first-passage
time. However, in these studies, the spatial dependence has
not been considered. For example, quantities such as first-
passage time specifically at the origin have been estimated.
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It is important to note here that the quantities S and PSIW
given by Eqs. �6� and �8� �as also FIW and FSIW� are identical
in form: the difference being f appearing in the infinite walk

in place of f̃ in the semi-infinite walk. Thus f and f̃ essen-
tially make these quantities different. As an example, we

have shown f�x , t� and f̃�x , t� as functions of x at a fixed time
t in Fig. 1. For the semi-infinite walk, there is a detector
placed at x=10. To emphasize the difference, we have gen-
erated a walk biased toward the right, and the unbounded
walk shows it clearly. On the other hand, in the semi-infinite
walk, the walker is not allowed beyond x=10 and conse-
quently is driven toward the left. Obviously, even if a walk
with symmetric boundary condition is initiated, the presence
of the detector will convert it to a asymmetric walk.

In the calculation, a quantum random walk is initialized at
the origin with �L�0,0�=a0, �R�0,0�=b0; a0

2+b0
2=1. �All

other �L and �R taken equal to zero.� �L�x̄ , t� and �R�x̄ , t� are
recursively evaluated for all x and t. In the bounded �semi-
infinite� walk, contributions from the walks going through x̄
are ignored. Unless otherwise specified, we have taken a0
=1 /�2, b0= i /�2 which would result in a symmetric walk for
the unbounded �infinite� walk case.

The results for SIW are essentially numerical; the persis-
tence probabilities here saturate in time. This saturation be-
havior apparently originates from the simultaneous effect of
drifting of the quantum walker away from the origin and the
presence of the boundary at x̄. These observations are in
agreement with �12� and consistent with other results involv-
ing recurrence time, etc. �9,13�. The first-passage times, on
the other hand, decay algebraically with t. As already men-
tioned, in �12�, the persistence probability for large x̄ was
found to vary as

PSIW�x̄,t� = P0 + const�t/�x̄��−�SIW �10�

where P0 is the saturation value and �SIW=2. We verify this
result with the observation that P0 has a weak dependence on
x̄ and observe that the numerical value of �SIW approaches
value 2 asymptotically. The numerically estimated values of
P0�x̄� are found to vary as �a−b exp�−cx̄�� with c

=0.30�0.02, shown in the inset of Fig. 2. Using these val-
ues of P0�x̄�, we show that a data collapse is obtained when
the residual persistence probability PSIW�x̄ , t�− P0�x̄� is plot-
ted against t / �x̄�. The first-passage time FSIW�x̄ , t� behaves as

FSIW�x̄,t� � �t/�x̄��−�SIW/�x̄� , �11�

with �SIW�3.0. Results for the collapsed data of persistence
and first-passage times are shown in Figs. 2 and 3.

For the unbounded or infinite walk, the calculations can
also be done using the analytical forms available in �8�

�L�x,t� =
1 + �− 1�x+t

2

 dk

2	
�1 +

cos k
�1 + cos2 k

�e−i�
kt+kx�

�12�

�R�x,t� =
1 + �− 1�x+t

2

 dk

2	

eik

�1 + cos2 k
e−i�
kt+kx� �13�

�which are obtained for a initial state with left chirality, i.e.,
a0=1 , b0=0� and evaluate f�x̄ , t� directly by numerical in-
tegration.

Power-law decay for both S�x̄ , t� and FIW�x̄ , t� are ob-
served,
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S�x̄,t� � �t/�x̄� − 1�−�IW �14�

for t / �x̄��1, and

FIW�x̄,t� � �t/�x̄� − 1�−�IW/�x̄� �15�

for t / �x̄��1 with �IW�0.31 and �IW�1.31. Data collapse
for S�x̄ , t� and FIW�x̄ , t� from the numerical evolution of the
infinite walk is shown in Fig. 4. These results are obtained
with a0=1 /�2, b0= i /�2 which correspond to a symmetric
walk. Results obtained from the numerical integration of
Eqs. �12� and �13� �corresponding to a0=1 , b0=0 giving an
asymmetric walk� show the same scaling behavior as S�x̄ , t�
and FIW�x̄ , t�. Thus the exponents are independent of the ini-
tial conditions as expected.

As discussed in �16,17�, the quantum walk on a line is
recurrent; i.e., it returns to the origin with certainty and the
same applies to visiting any other lattice point. Hence, the
asymptotic succession probability is zero, which is in agree-
ment with the power-law decay of S�x̄ , t� found in the present
paper.

While the exponents �IW��SIW� and �IW��SIW� are differ-
ent from the classical �cl and �cl, they enjoy a relationship
identical to Eq. �5�. We consider some other quantities re-
lated to the function FIW�x , t� which one can compare with
their classical counterparts. Plotting FIW�x , t� against x or t,
we notice that it has an oscillatory behavior. These oscilla-
tions which die down for large values of t /x as is apparent
from Fig. 4 can be traced to the oscillatory behavior of f�x , t�
for a QRW observed earlier �8–10�. From Figs. 5 and 6, we
observe that FIW�x , t� actually attains a maximum value
FIW,max�x , t� at values of �x�=xmax �or t= tmax� for fixed values
of t �or x�. We notice that FIW,max�xmax , t��xmax

−� where �
�0.59. Keeping x fixed, FIW,max�x , tmax� versus tmax shows
the same kind of dependence, i.e., FIW,max�x , tmax�� tmax

−� . That
the scalings with tmax and xmax turn out to be identical is not
surprising as x scales as t in a QRW. It is not possible to
obtain this scaling form directly from Eq. �15� since F�x , t�
attains a maximum value when t / �x� is close to unity where
the fitted scaling form is not exactly valid. In fact, Eq. �15�
does not give any maximum value at all.

Another dynamic quantity called hitting time has been
estimated earlier for the QRW in which an absorber is as-
sumed to be located at a specific vertex of a hypercube
within which the walk is conceived �14,15�. The average
hitting time is by definition the average time to reach that
particular vertex for the first time. One can evaluate the av-
erage hitting time 
h�x� in the infinite walk scheme using

h�x�=	0

TtFIW�x , t� where t is allowed to vary from 0 to T,


h � 

0

T

tFIW�x,t�dt � T2−�IWx�IW−1/�2 − �IW� + O�T−�IW+1� .

The numerical data �not shown� give a fairly good agreement
with this scaling. The above equation shows that 
h blows up
for T→� in agreement with some earlier results using other
coins �14,15�.

We thus observe that a number of quantities related to the
dynamics of a quantum random walker follow power-law
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behavior with time. Of these, the persistence probability
PSIW�x̄ , t�, which is obtained from a semi-infinite walk, is
drastically different from its classical analog as it approaches
a constant value in a power-law fashion with an exponent
which is quite different from the classical value of 1/2. The
first-passage time also has a power-law decay with a new
exponent. The numerical data also indicate that the two
quantities obey a simple relation as in the classical case �Eq.
�4��.

A different quantum measure which we call the succes-
sion probability has been proposed and calculated in the
present work and a corresponding first-passage probability
defined. These measures can be obtained from an infinite
walk. The persistence probability and succession probabili-
ties are similar in form but the results are highly different
with the succession probability exhibiting a power-law decay
�no saturation� with yet another new exponent. However, the
form of the probabilities in Eqs. �10�, �11�, �14�, and �15� and
the values of the exponents indicate the validity of Eq. �4� in
the quantum case as well.

In a classical random walk, �x2�� t�cl with �cl=1 and in
one dimension this scaling governs all other dynamic behav-
ior including persistence. Thus all other exponents such as
�cl and �cl are essentially dependent on �, e.g., �cl=�cl /2
and �cl=

3
2�cl. A quantum walker propagates much faster;

here �x2�� t�q with �q=2. Thus the dimensionless factor x / t
appears in the scaling argument of the dynamic quantities.
The exponents �SIW�2 and �SIW�3 appear to be simply
related to �q; �SIW=�q and �SIW= 3

2�q showing that here too

the persistence phenomena is governed by the scaling �x2�
� t�q only.

For the infinite walk case, the exponents �IW and �IW are
apparently not simply related to �q. We have estimated some
additional quantities involving the first-passage time. The
maximum values of the classical probability Fcl, behaves as
1 / tmax �for x constant� or 1 /xmax

2 �for t constant� showing that
the obtained exponents are simple multiples of �cl=1. On the
other hand, the behavior of FIW,max appears to depend on the
value of �IW and not �q as it varies with tmax or xmax with an
exponent � which is very close to 2�IW numerically.

The average hitting time for a CRW is found to vary as
T�cl/2. In the infinite QRW, this variation is given by T2−�IW.
For the classical case, 2−�cl=�cl /2, but since no such rela-
tion exists for the quantum case, the hitting time scaling is
therefore not dictated by �q but by �IW �or �IW� only.

Lastly, it is true that the probabilities f̃�x̄ , t� are quite dif-
ferent from f�x̄ , t� making the persistence and succession
probabilities distinct; however, the feature that the quantum
walker walks away from the origin �in contrast to a classical
walker� is present in both. This makes the persistence prob-
ability and the succession probabilities quite large in magni-
tude compared to classical persistence probabilities. For the
quantum persistence probability, PSIW, the additional con-
straint of the presence of the boundary makes it saturate.
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