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We present analytical results for the biased diffusion of particles moving under a constant force in a
randomly layered medium. The influence of this medium on the particle dynamics is modeled by a piecewise
constant random force. The long-time behavior of the particle position is studied in the frame of a continuous-
time random walk on a semi-infinite one-dimensional lattice. We formulate the conditions for anomalous
diffusion, derive the diffusion laws, and analyze their dependence on the particle mass and the distribution of
the random force.
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I. INTRODUCTION

A vast variety of physical, chemical, biological, and other
natural processes can be adequately described by random
processes exhibiting anomalous diffusion behavior at long
times. This behavior, which is characterized by a nonlinear
dependence of the variance of these processes on time, can
be observed in various systems. Anomalous diffusion actu-
ally occurs, for example, in turbulent fluids �1�, amorphous
solids �2�, rotating flows �3�, single molecules �4�, and po-
rous substrates �5� and has been predicted to occur in many
other systems �6–10�.

The existence of anomalous diffusion in systems with
quenched, i.e., time-independent disorder has also been ex-
tensively studied �6,7�. One of the most effective and simple
ways to describe anomalous diffusion in these systems is
based on the motion equations for diffusing objects �which
we will call particles�. In these equations, the influence of
quenched disorder is usually modeled by a time-independent
random potential producing the corresponding random force
and the influence of thermal fluctuations is accounted for by
white noise. Specifically, this Langevin-type approach has
been successfully applied to study a variety of phenomena,
including biased diffusion, which occur when particles move
under a constant external force in a one-dimensional poten-
tial �11�.

If thermal fluctuations are absent then particles can be
transported to an arbitrary large distance only if the distribu-
tion of the random force has bounded support. In this case,
the directional transport of particles can be caused by either a
periodic external force �12� or a constant one. In the latter
case, particles move only in one direction and so the com-
pletely anisotropic case of biased diffusion, when the prob-
ability of motion along and against the external force equals
1 and 0, respectively, may exist. It has been shown for par-
ticular cases of the random force distribution that in the over-
damped limit this diffusion is normal if the total force acting
on a particle is strictly positive or strictly negative �13,14�. In
Ref. �13� it was also argued that the anomalous regimes of
biased diffusion would exist if the lower �upper� bound of

the total force at a fixed external force is equal to zero. How-
ever, none of the laws of anomalous diffusion was found in
this case.

The aim of this paper is to study the anomalous regimes
of biased diffusion of particles moving under a constant
force in a randomly layered medium which acts as a piece-
wise constant random force. The paper is organized as fol-
lows. In Sec. II, we describe the model, reduce it to a
continuous-time random walk �CTRW� on a semi-infinite
chain and calculate the first two moments of the particle
position. The connection between the waiting time probabil-
ity density and the particle mass and the probability density
of the random force is also presented in this section. The
conditions providing the anomalous behavior of biased dif-
fusion are formulated in Sec. III. In Sec. IV, using the Taub-
erian theorem and its modified version, we derive the laws of
anomalous diffusion and analyze the influence of the particle
mass and the random force distribution. Finally, in Sec. V we
summarize our results.

II. MODEL AND BASIC EQUATIONS

We consider the one-dimensional propagation of a particle
in a medium composed by the layers of a fixed width l whose
transport properties are assumed to be random. The motion
of a particle in this medium occurs under the action of a
constant external force f��0� and the influence of the layers
on the particle dynamics is modeled by a random force g�x�.
We assume that g�x� �i� is a bounded function, i.e., g�x�
� �−g0 ,g0�, �ii� possesses a symmetry property, i.e., g�x� and
−g�x� are statistically equivalent, and �iii� has statistically
independent values on different intervals of the length l. In
accordance with these conditions, we approximate g�x� by a
piecewise constant random force �see Fig. 1� whose values
are distributed with the same probability density u�g�. In this
stage, we consider u�g� as an arbitrary symmetric probability
density, u�g�=u�−g�, satisfying only the normalization con-
dition �−g0

g0 dgu�g�=1.
Since the total force acting on a particle equals f +g�Xt�,

where Xt �X0= Ẋ0=0� is the particle position, its dynamics
can be described by the motion equation

�Ẍt + �Ẋt = f + g�Xt� , �2.1�

with � and � being the particle mass and the damping coef-
ficient, respectively. According to this equation, if f �g0 then*stdenis@pks.mpg.de
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f +g�Xt��0 and particles can be transported to an arbitrary
large distance in the positive direction of the axis x. Thus, in
this case the condition Xt �t→�→� holds for all sample paths
of g�x�. On the contrary, if f �g0 then for each sample path
of g�x� there always exists a certain point L= lnst�nst=n ,
n=0,1 , . . .�, which is characterized by the conditions
f �−g�x� �x�L and f �−g�x� �x=L+0, where particles are
stopped. The probability Wn that nst=n is expressed through
the probability I=�−g0

f dgu�g� that g�x�� f as follows: Wn

= In− In+1. Therefore, the average distance �L� �the angular
brackets denote an average over the sample paths of g�x��
from the origin to the stopping point can be written in the
form �L�= l	n=1

� nWn= l	n=1
� In. Finally, using the geometric

series formula, we obtain the desired result

�L� = l
I

1 − I
. �2.2�

Assuming that the probability that �g�x��=g0 equals zero,
i.e., the probability density u�g� is not concentrated at the
edges of the interval �−g0 ,g0�, one can make sure that I
→1 and so �L�→� as f →g0. Hence, at f =g0 the condition
Xt �t→�→� holds almost surely, i.e., with probability one. In
contrast, if the probability density u�g� has unbounded sup-
port with g0=� as, e.g., for a Gaussian distribution, then I
�1 and so �L� is finite for all finite values of the driving
force f . In other words, in this case particles cannot be trans-
ported to an arbitrary large distance. It is therefore we con-
sider here only a class of probability densities u�g� with
bounded support. It should be noted in this context that,
since infinite values of g�x� are physically not relevant, the
assumption of bounded support is not too restrictive.

Our aim is to study the long-time behavior of the particle
position Xt at f �g0. The main statistical characteristic of Xt
is its probability density function P�x , t� defined as P�x , t�
= ���x−Xt��, where ��x� is the Dirac � function. If the solu-
tion of Eq. �2.1� were known for all sample paths of g�x�, it
would be, in principle, possible to determine P�x , t� directly
from the definition. However, this approach is difficult to
implement and, what is more important, it is not necessary
for finding the long-time behavior of the moments of Xt.
Moreover, since at long times Xt can be accurately evaluated
as a total length of the intervals �nl ,nl+ l� �n=0,1 , . . .� which
a particle passes, many of the details of the particle dynamics
described by Eq. �2.1� are needless for this purpose.

It is therefore reasonable to consider, instead of the model
based on Eq. �2.1�, the unidirectional CTRW of a particle on

a semi-infinite one-dimensional lattice with the period l. In-
troduced more than four decades ago �15�, the CTRW model
has become one of the most effective and powerful tools in
the theory of anomalous diffusion �see, e.g., Refs. �8–10��.
Within this model, we describe the particle position by a
discrete variable Yt= lN�t�, where N�t� is the random number
of jumps up to time t. In order to guarantee that the long-time
behavior of Yt and Xt are the same, we assume that for all n
the waiting time ��n�, i.e., the time of occupation of the site
nl, is equal to the time that a particle spends moving from the
site nl to the site nl+ l. If the inertial effects can be neglected
then Eq. �2.1� yields ��n�=�l / �f +g�n��, where g�n�=g�x� and x
belongs to the nth interval, i.e., x� �nl ,nl+ l�. Since the ran-
dom forces gn are statistically independent and distributed
with the same probability density u�g�, the waiting times ��n�

are also statistically independent variables whose probability
density is given by

p��� = 
�l

�2u��l

�
− f� , � � ��min,�max�

0, otherwise,
 �2.3�

where

�min =
�l

f + g0
, �max =

�l

f − g0
. �2.4�

It is important to emphasize that the inertial effects, at
least in the underdamped regime characterized by the condi-
tion ��min /�	1 �weakly underdamped regime�, can also be
incorporated into the CTRW framework. In order to illustrate
this, let us first write the particle velocity v�n��
t��
t
� �0,��n��� on the nth �n�1� interval. The straightforward
integration of Eq. �2.1� yields

v�n��
t� =
f + g�n�

�
+ �v−

�n� −
f + g�n�

�
�e−�
t, �2.5�

where �=� /� and v−
�n�=v�n��0� is the particle velocity at the

left end of the nth interval. Introducing also the particle ve-
locity at the right end of this interval, v+

�n�=v�n����n��, from
Eq. �2.5� we obtain

v+
�n� =

f + g�n�

�
+ �v−

�n� −
f + g�n�

�
�e−���n�

. �2.6�

Then, taking into account that l=�0
��n�

d�
t�v�n��
t�, with the
help of Eqs. �2.5� and �2.6� we find

l =
f + g�n�

�
��n� −

v+
�n� − v−

�n�

�
. �2.7�

Since in the case under consideration ���n�	1, the expo-
nential term in Eq. �2.6� can be neglected yielding v+

�n�= �f
+g�n�� /�. According to this approximation, the particle veloc-
ity at the end of the nth interval is determined by the random
force on this interval. Therefore, using the continuity condi-
tion for the particle velocity, v−

�n�=v+
�n−1�, we obtain v−

�n�= �f
+g�n−1�� /�. Substituting these expressions for v+

�n� and v−
�n�

into Eq. �2.7�, we arrive to the following result:

�

�

���� �����

�

�

�

��

�
��
�

FIG. 1. Sample path of a piecewise constant random force
g�x�.
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��n� =
��l + g�n� − g�n−1�

��f + g�n��
. �2.8�

It shows that in the weakly underdamped regime the waiting
time ��n� depends not only on the random force g�n�, as in the
overdamped case, but also on the random force g�n−1�. Since
these forces are statistically independent, the probability den-
sity of the waiting time can be written in the form

p��� = �
−g0

g0 �
−g0

g0

dgdg�u�g�u�g����� −
��l + g − g�

��f + g� � ,

�2.9�

if �� ��min,�max�, otherwise it equals zero. It is not difficult
to verify that in the overdamped case �when �=�� Eq. �2.9�
reduces to Eq. �2.3�.

Next, we express the first two moments of the random
variable Yt through the waiting time probability density p���.
Since the moments of N�t� are known from the CTRW
theory �see, e.g., Ref. �16��, we reproduce here only the main
results related to our situation. Introducing the probability
P�n , t� that N�t�=n, we define the kth moment of the particle
position Yt in the usual way

�Yt
k� = lk	

n=1

�

nkP�n,t� , �2.10�

�k=1,2 , . . .�. Then, using the Laplace transform of a function
h�t�, hs=L�h�t��=�0

�dte−sth�t� �Re s�0�, and taking into ac-
count that P�0, t�=�t

�d�p��� and

P�n,t� = �
0

t

d�p���P�n − 1,t − �� �2.11�

�n�1�, we obtain

�Yt
k�s = lk1 − ps

s
�ps

d

dps
�k 1

1 − ps
. �2.12�

Finally, applying to Eq. �2.12� the inverse Laplace transform
defined as h�t�=L−1�hs�= �1 /2�i��c−i�

c+i�dsesths �c is chosen to
be larger than the real parts of all singularities of hs�, we find
the first

�Yt� = lL−1� ps

s�1 − ps�
� , �2.13�

and the second

�Yt
2� = l2L−1� ps

2 + ps

s�1 − ps�2� , �2.14�

moments of Yt, which in turn determine the variance of the
particle position

2�t� = �Yt
2� − �Yt�2. �2.15�

III. CONDITIONS OF ANOMALOUS DIFFUSION

As it follows from the waiting time probability density
�2.9�, the mth moment of the waiting time, �m=�0

�d��mp���
�m=1,2 , . . .�, can be written in the form

�m = �
−g0

g0 �
−g0

g0

dgdg�u�g�u�g�����l + g − g�

��f + g� �m

. �3.1�

Since the probability density u�g� is normalized on the inter-
val �−g0 ,g0�, from Eq. �3.1� it follows that �m� ��l
+2g0 /��m / �f −g0�m. Thus, if f �g0 then all these moments
are finite, and so in this case the classical central limit theo-
rem for sums of a random number of random variables �17�
is applied to Yt. This implies that 2�t�� t as t→�, i.e., at
f �g0 the biased diffusion of particles is normal and the res-
caled probability density P�� , t�=�t�P��Yt�+�t�� , t� in the
long-time limit tends to the probability density P�� ,��
= �2��−1/2e−�2/2 of the standard normal distribution.

It is clear from the above that the anomalous long-time
behavior of the variance 2�t� is expected at �2=� when the
mentioned central limit theorem becomes inapplicable. The
condition �2=� implies f =g0 that, in accordance with �2.4�,
yields �min=�l /2g0 and �max=�. Since the divergence of �2

occurs when p��� at �→� tends to zero slowly enough, next
we assume that

p��� �
a

�1+� , �3.2�

��→�� with a�0 and �� �0,2�. Thus, the biased diffusion
in a randomly layered medium is expected to be anomalous
if both conditions, f =g0 and �� �0,2�, hold. The former
guarantees that the waiting time � can be arbitrarily large
��max=�� and so it is a necessary condition for anomalous
diffusion. We note also that in this case one may expect that
the rescaled probability density P�� , t� at t→� approaches
the stable probability density, as the generalized central limit
theorem �18� suggests.

The coefficient of proportionality a and the exponent �
are in general not independent and can be found from the
asymptotic behavior of the probability density u�g� in the
vicinity of the point g=−g0. Indeed, using the condition
�−g0

g0 dggu�g�=0, which is a consequence of the symmetry
property of u�g�, from Eq. �2.9� at f =g0 we obtain

p��� �
�l

�2�1 −
g0

��l
�1 − �

�

��
��u��l

�
− g0� , �3.3�

��→� ,�→��. Then, assuming that

u�g� � b�1 +
g

g0
��−1

, �3.4�

where g→−g0, b�0, and ��0, the asymptotic formula
�3.3� takes the form

p��� � bg0� �l

g0
���1 −

�g0

��l
� 1

�1+� . �3.5�

Finally, comparing Eq. �3.5� with Eq. �3.2�, we find �=� and

a = aod�1 −
�g0

��l
� , �3.6�

where aod=bg0��l /g0�� is the parameter a in the overdamped
limit. According to these results, the particle mass decreases
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the parameter a in comparison with the overdamped case but
does not change the exponent �.

An example of u�g� having the asymptotic behavior �3.4�
is the probability density

u�g� =
��� + 1/2�
g0

������
�1 −

g2

g0
2��−1

, �3.7�

where ��x�=�0
�dyyx−1e−y is the gamma function, which cor-

responds to the symmetric beta distribution. According to
Eq. �3.7�, this distribution is unimodal with the maximum at
g=0 if ��1, bimodal with infinite maxima at g= �g0 if �
�1, and uniform if �=1. Determining the parameter b di-
rectly from the density function �3.7�, for this example we
obtain

aod =
��� + 1/2�
2������

�2�l

g0
��

. �3.8�

IV. LAWS OF ANOMALOUS DIFFUSION

A. Long-time behavior of the inverse Laplace transform

From a formal point of view, the moments �Yt� and �Yt
2�

completely determine the variance 2�t�. But the calculation
of the inverse Laplace transforms in Eqs. �2.13� and �2.14� is
a difficult technical problem because of the contour integra-
tion in the complex plane s. Fortunately, in the long-time
limit this problem can be avoided. Such a possibility pro-
vides the celebrated Tauberian theorem for the Laplace trans-
form �18� which is widely used in the theory of CTRW and
its applications. According to this theorem, if h�t� is ulti-
mately monotone and

hs = L�h�t�� � L�1

s
� 1

s� , �4.1�

�0����� as s→0 then

h�t� = L−1�hs� �
1

����
L�t�t�−1, �4.2�

as t→�, where L�t� is a slowly varying function at infinity.
The term “slowly varying” means that L��t��L�t�, i.e.,
limt→� L��t� /L�t�=1, for all ��0. We note that, in contrast
to Eqs. �2.13� and �2.14�, the parameter s in Eq. �4.1� is
assumed to be a positive real number.

The Tauberian theorem in the above form permits to find
only the leading terms of the asymptotic expansion of the
moments �Yt� and �Yt

2� as t→�. If limt→��Yt�2 / �Yt
2��1 then,

according to the definition �2.15�, these terms completely
determine also the leading term of the long-time expansion
of 2�t�. However, if limt→��Yt�2 / �Yt

2�=1 then for finding the
leading term of 2�t� at least the first two terms of each of
the asymptotic expansions of �Yt� and �Yt

2� should be evalu-
ated. Remarkably, these terms can also be determined from
the Tauberian theorem if the Laplace transforms �Yt�s and
�Yt

2�s at s→0 have the asymptotic form

hs −
q

s� � L�1

s
� 1

s� , �4.3�

with ���. In this case, replacing hs by hs−q /s� and using
the exact result L−1�1 /s��= t�−1 /���� �19�, from Eq. �4.2�
we obtain

h�t� −
q

����
t�−1 �

1

����
L�t�t�−1. �4.4�

It should be noted that qt�−1 /���� and L�t�t�−1 /���� ac-
tually represent the first two terms of the long-time expan-
sion of h�t� only if ���. In the opposite case, when
L�1 /s� /s� is the leading term of the asymptotic expansion of
hs, this may not be true. The reason is that in this case the
second term of the asymptotic expansion of L−1�L�1 /s� /s��
at t→� may not be negligible in comparison with
qt�−1 /����. To illustrate this fact, let us assume that L�1 /s�
=k ln�1 /s� �k is a scale factor� and �=2 and consider the
Laplace transform hs=q /s�+ �k /s2�ln�1 /s�. Since
L−1��1 /s2�ln�1 /s��= t�ln t+�−1�, where �=0.5772 is the
Euler constant �19�, for the inverse Laplace transform of hs
we obtain an exact result h�t�=qt�−1 /����+kt�ln t+�−1�. If
��2 and t→� then, keeping in h�t� the two leading terms,
in accordance with Eq. �4.4� we find h�t�−qt�−1 /����
�kt ln t. However, if ��2 then the second term of the
asymptotic expansion of L−1�L�1 /s� /s��, k��−1�t, is not
negligible compared to qt�−1 /���� and, as a consequence,
the asymptotic formula �4.4� does not hold. In this case only
the leading term of h�t�, kt ln t, is determined from the Taub-
erian theorem. Thus, while at ��� the first two terms of the
asymptotic expansion of h�t� can be determined from the
modified Tauberian theorem, Eqs. �4.3� and �4.4�, to solve
this problem in the opposite case it is necessary to go beyond
the Tauberian theorem.

Next, we use the Tauberian theorem, Eqs. �4.1� and �4.2�
and its modified version, Eqs. �4.3� and �4.4�, to find the
long-time behavior of the first two moments, �Yt� and �Yt

2�,
and the variance 2�t� in the case of anomalous diffusion,
i.e., when the conditions f =g0 and �� �0,2� hold simulta-
neously. Since the asymptotic solution of the CTRW is dif-
ferent for different intervals of � �20�, we consider the cases
with �� �0,1�, �� �1,2�, �=1, and �=2 separately.

B. �« (0 ,1)

In this case it is convenient to represent the Laplace trans-
form of the waiting time probability density p��� in the form

ps = 1 − �
�min

�

d��1 − e−s��p��� , �4.5�

which follows from the definition ps=��min

� d�e−s�p��� and the
normalization condition ��min

� d�p���=1. Introducing the vari-
able of integration x=s� and using the asymptotic formula
�3.2�, we obtain
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1 − ps � s�a�
0

�

dx
1 − e−x

x1+� , �4.6�

as s→0. An integration by parts together with the integral
representation of the gamma function �21�, ��x�
=�0

�dye−yyx−1, reduces Eq. �4.6� to the form

1 − ps �
a��1 − ��

�
s�. �4.7�

Now, using this result and the Laplace transforms

�Yt�s = l
ps

s�1 − ps�
, �Yt

2�s = l2 ps
2 + ps

s�1 − ps�2 , �4.8�

of the first two moments of Yt, we find in the limit s→0

�Yt�s �
l�

a��1 − ��
1

s1+� , �4.9�

and

�Yt
2�s �

2l2�2

a2�2�1 − ��
1

s1+2� . �4.10�

Since these asymptotic formulas are particular cases of the
asymptotic formula �4.1� in which the slowly varying func-
tion L�1 /s� is a constant, from Eq. �4.2� we obtain in the
long-time limit

�Yt� �
l�

a��1 − ����1 + ��
t�, �4.11�

and

�Yt
2� �

2l2�2

a2�2�1 − ����1 + 2��
t2�. �4.12�

Thus, in this case limt→��Yt�2 / �Yt
2��1 and the above

asymptotic expressions yield

2�t� �
l2�2

a2�2�1 − ��� 2

��1 + 2��
−

1

�2�1 + ���t2�.

�4.13�

According to this result, which agrees with that obtained
in the context of the asymptotic solution of the CTRW �20�,
subdiffusion occurs if �� �0,1 /2� and superdiffusion if �
� �1 /2,1�. If �=1 /2 then 2�t�� t and, in accordance with
the commonly used terminology, the biased diffusion is nor-
mal. However, for normal diffusion processes both the mean
and variance are proportional to time. Therefore, since �Yt�
� t1/2 at �=1 /2, this type of diffusion should be more appro-
priately termed as quasinormal. It is also worthy to note that,
according to Eqs. �3.6� and �4.13�, the larger is the particle
mass, the stronger is diffusion.

C. �« (1 ,2)

Since in this case limt→��Yt�2 / �Yt
2�=1 �see below�, for

finding the long-time behavior of 2�t� we should determine
the first two terms of the asymptotic expansion of �Yt� and

�Yt
2� as t→�. To this end, taking into account that at �

� �1,2� the mean waiting time �̄=��min

� d��p��� exists, we use
the following formula:

ps = 1 − �̄s − �
�min

�

d��1 − s� − e−s��p��� . �4.14�

Proceeding in the same way as before, we obtain

ps − 1 + �̄s �
a��2 − ��
��� − 1�

s�, �4.15�

as s→0, and the straightforward calculation of the Laplace
transforms �4.8� yields

�Yt�s −
l

�̄

1

s2 �
la��2 − ��
�̄2��� − 1�

1

s3−� , �4.16�

and

�Yt
2�s −

2l2

�̄2

1

s3 �
4l2a��2 − ��
�̄3��� − 1�

1

s4−� . �4.17�

These asymptotic formulas are particular cases of the
asymptotic formula �4.3� with L�1 /s�=const. Therefore, us-
ing the well-known property of the gamma function, ��1
+x�=x��x�, from Eq. �4.4� we get

�Yt� −
l

�̄
t �

la

�̄2��� − 1��2 − ��
t2−�, �4.18�

and

�Yt
2� −

l2

�̄2 t2 �
4l2a

�̄3��� − 1��2 − ���3 − ��
t3−�, �4.19�

as t→�. Accordingly, the long-time behavior of the variance
2�t� is described by the power law

2�t� �
2l2a

�̄3��2 − ���3 − ��
t3−�. �4.20�

Thus, since �� �1,2�, the transport of particles is super-
diffusive. Interestingly, depending on the exponent �, the
increase in the particle mass � can either enhance or sup-
press the biased diffusion. In order to show this, we first use
Eq. �3.1� with m=1 to represent the mean waiting time �̄ in
the form

�̄ = �̄od�1 +
1

��̄od

−
g0

��l
� , �4.21�

where �̄od=�l�−g0

g0 dgu�g� / �g0+g� is the mean waiting time in
the overdamped limit. Then, using this formula for �̄, the
expression �3.6� for the parameter a and the condition
��min	1, we obtain

a

�̄3 =
aod

�̄od
3 �1 −

3

��̄od

+
�3 − ��g0

��l
� . �4.22�

According to this result, the biased diffusion is enhanced by
the particle mass at �3−���̄od�3�l /g0 and is suppressed at
�3−���̄od�3�l /g0. In particular, if the probability density
u�g� is given by Eq. �3.7� then
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�̄od =
�l

g0

� − 1/2
� − 1

, �4.23�

and so the former case occurs at �� �1,3 /2� and the latter at
�� �3 /2,2�.

D. �=1

Here our starting point is the Laplace transform of the
waiting time probability density p��� represented as

ps = 1 − aqs − �
�min

�

d��1 − e−s���p��� −
a

�2� , �4.24�

where qs=��min

� d��1−e−s�� /�2. The advantage of this repre-
sentation is that the term aqs accounts for the asymptotic
behavior of p���, p����a /�2 as �→�, in an explicit form.
With the definition of the exponential integral �21�, E1�x�
=�x

�dye−y /y, qs can be written as

qs = s
1 − e−�

�
+ sE1��� , �4.25�

��=s�min�. Since p���−a /�2=o�1 /�2���→��, the integral
term in Eq. �4.24� at s→0 can be neglected compared to aqs.
Therefore, taking into account the asymptotic formula
E1���� ln�1 /s� �21�, we obtain

1 − ps � as ln
1

s
. �4.26�

Using this result and Eq. �4.8� for calculating the leading
terms of the Laplace transforms at s→0,

�Yt�s �
l

a

1

s2 ln�1/s�
, �Yt

2�s �
l2

a2

2

s3 ln2�1/s�
, �4.27�

from the Tauberian theorem, Eqs. �4.1� and �4.2�, we find the
long-time behavior of the first two moments

�Yt� �
l

a

t

ln t
, �Yt

2� �
l2

a2

t2

ln2 t
. �4.28�

It should be noted that similar asymptotic formulas for
�Yt� and �Yt

2� were obtained in Ref. �20�. But because of the
use of the waiting time probability density p��� of a particu-
lar form, the asymptotic formulas derived in that paper do
not depend on the parameter a. At the same time, as it was
shown above, the parameter a contains important informa-
tion about the role of quenched disorder and particle mass. In
particular, Eq. �3.6� shows that the moments �4.28� increase
with the particle mass.

Since limt→��Yt�2 / �Yt
2�=1, for finding 2�t� as t→� we

need to know at least the two leading terms of the long-time
expansion of �Yt� and �Yt

2�. In principle, using Eq. �4.25� and
the integral term in Eq. �4.24�, we could easily find the
asymptotic behavior of 1− ps−as ln�1 /s� as s→0 and, in this
way, obtain the second terms of the asymptotic expansion of
�Yt�s and �Yt

2�s. However, in contrast to the previous case, a
straightforward application of the Tauberian theorem to this
case does not provide a precise determination of the second
terms of the asymptotic expansion of �Yt� and �Yt

2�. As it was

argued in Sec.IV A, in order to find these terms it is neces-
sary to go beyond the Tauberian theorem.

E. �=2

In this case we use the following representation for the
Laplace transform of p���

ps = 1 − �̄s − ars − �
�min

�

d��1 − s� − e−s���p��� −
a

�3� ,

�4.29�

where

rs = �
�min

�

d�
1

�3 �1 − s� − e−s��

= s21 − 2� − �1 − ��e−�

2�2 −
s2

2
E1��� . �4.30�

This form of ps explicitly accounts for both the finiteness of
�̄ and the asymptotic behavior of p���. Since p���−a /�3

=o�1 /�3���→��, at s→0 we can neglect the integral term in
Eq. �4.29� in comparison with ars. This, together with the
asymptotic formula rs�−�s2 /2�ln�1 /s� �s→0�, yields

ps − 1 + �̄s �
a

2
s2 ln

1

s
. �4.31�

Using this result, the Laplace transforms of the first two
moments of Yt at s→0 can be written as

�Yt�s −
l

�̄

1

s2 �
la

2�̄2

1

s
ln

1

s
, �4.32�

and

�Yt
2�s −

2l2

�̄2

1

s3 �
2l2a

�̄3

1

s2 ln
1

s
. �4.33�

Therefore, in accordance with the modified Tauberian theo-
rem, Eqs. �4.3� and �4.4�, we obtain

�Yt� −
l

�̄
t �

la

2�̄2 ln t , �4.34�

and

�Yt
2� −

l2

�̄2 t2 �
2l2a

�̄3 t ln t . �4.35�

As a consequence, the long-time behavior of the variance is
described by the asymptotic formula

2�t� �
l2a

�̄3 t ln t . �4.36�

The fact that 2�t� increases faster than t is in accordance
with the asymptotic formula �4.20�. Indeed, while t3−� ap-
proaches t, the coefficient of proportionality between 2�t�
and t tends to infinity as �→2−0. We note also that the ratio
a / �̄3 at �=2 is determined by the same Eq. �4.22�. There-
fore, if u�g� is given by Eq. �3.7� then the larger is the par-
ticle mass, the weaker is diffusion.
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In conclusion of this subsection we would like to draw
attention to the differences between our model and one-
dimensional iterated maps which generate trajectories ac-
cording to the rule xn+1=xn+F�xn�. It is usually assumed �22�
that F�x� is an antisymmetric, F�−x�=−F�x� and periodic,
F�x+N�=F�x� �N is an integer�, function. Due to these con-
ditions, there is no drift, i.e., the quantity �x���xn+t−xn� can
be taken to be zero, where the angular brackets denote an
average over a properly chosen set of initial conditions of xn
and t plays the role of the number of iterations. The same
property, �x�=0, holds also for maps perturbed by time de-
pendent noise �23� and quenched disorder �24� with zero
means. Thus, these maps are unbiased and so the variance of
xn+t−xn, i.e., �x2�− �x�2, reduces to �x2�. Using the CTRW
theory, in most cases it is possible to write this variance as
the inverse Laplace transform and use the ordinary Tauberian
theorem for finding its long-time behavior �22,23�. In con-
trast, in our model �Yt� grows with time and although the
moments �Yt� and �Yt

2� can also be represented as the inverse
Laplace transform, the variance 2�t�= �Yt

2�− �Yt�2 cannot.
Therefore, if limt→��Yt�2 / �Yt

2�=1, the leading term of the
asymptotic expansion of 2�t� as t→� cannot be determined
by applying the ordinary Tauberian theorem. We have solved
this problem �for ��1� by using the modified Tauberian
theorem. It should also be noted that adding to F�x� a weak
uniform bias breaks the symmetry of the system and, as a
consequence, leads to a time dependence of �x� �25�. How-
ever, the biased maps considered in �25� do not exhibit
anomalous diffusion at long times.

F. Role of thermal fluctuations

We complete our analysis with a qualitative discussion of
the role of thermal fluctuations. These fluctuations can be
accounted for by adding the thermal noise term to the right-
hand side of Eq. �2.1�. In this case some important conclu-
sions can be drawn from the asymptotic behavior of the cor-
relator K�x ,y�= ��U�x�−U�y��2� as �x−y�→�, where U�x� is
the random potential that corresponds to the random force
g�x�=−dU�x� /dx. Since under thermal fluctuations particles
can move in both directions, the random force and potential
should be determined on the entire x axis. Using the proper-
ties of g�x� and the continuity condition for U�x� with
U�0�=0, we obtain

U�x� = − �x − nl�g�n� + U�nl� . �4.37�

Here, x� �nl ,nl+ l�, n=0, �1, . . ., and U�nl�=−l	s=0
n g�s�

+ lg�n� if n�0 and U�nl�= l	s=−1
n g�s� if n�−1. Taking into

account that the random forces g�s� with different s are sta-
tistically independent, the definition of the correlator K�x ,y�
and Eq. �4.37� lead to the asymptotic expression

K�x,y� � lg
2�x − y� , �4.38�

��x−y�→��, where g
2=�−g0

g0 dgg2u�g�.
The systems with K�x ,y�� �x−y� have long been a subject

of extensive study �see, e.g., Refs. �6,26� and references
therein�. A remarkable result obtained for these systems in
the overdamped regime is that there always exists a threshold
value f tr of the external force f in which the depinning tran-

sition occurs. This transition is characterized by vanishing
the average particle velocity in the pinning state, when f
� f tr, while in the depinning state, when f � f tr, particles
move with a nonzero average velocity which strongly de-
pends on f . According to �27�, if g�x� is a bounded function
then f tr�g0 �f tr→g0 as the temperature approaches zero� and
the mean first-passage time in the depinning and pinning
states is finite and infinite, respectively. Since the moments
of the first-passage time can be associated with the moments
of the waiting time, we may expect therefore that at nonzero
temperatures and f �g0 the exponent � and so the character
of anomalous diffusion becomes depending on f �the diffu-
sion behavior at f �g0 is expected to be normal�. Specifi-
cally, with decreasing of f from g0 to f tr the exponent �
should also decrease from 2 to 1, and if f � f tr then ��1. Of
course, in order to find the dependence of � on f and the
diffusion laws a quantitative consideration of the problem is
needed. It is especially important because the effects arising
from the joint action of quenched disorder and thermal fluc-
tuations are often unexpected and even counterintuitive.

V. CONCLUSIONS

We have studied in the long-time limit the unidirectional
transport of particles which occurs under a constant force in
a randomly layered medium. The influence of the layers is
modeled by a piecewise constant random force whose values
in different layers are assumed to be independent and iden-
tically distributed with bounded support. We have reduced
the problem of the unidirectional transport, initially formu-
lated in the framework of the motion equation, to a
continuous-time random walk on a semi-infinite chain. The
main statistical characteristic of this approach, the waiting
time probability density, is expressed through the probability
density of the random force and particle characteristics, in-
cluding the particle mass. By analyzing the dependence of
the moments of the waiting time on the external force, we
have formulated the conditions under which the biased dif-
fusion exhibits the anomalous behavior. It has been shown
that this behavior may occur only if the external force is
equal to the boundary value of the random force.

In order to find in the anomalous regime the long-time
behavior of the first and second moments of the particle po-
sition, we have used the Tauberian theorem and its modified
version allowing, in most cases, to determine the first two
terms of the asymptotic expansion of these moments. Within
this approach, we have found, with one exception, the ex-
plicit asymptotic formulas for the variance of the particle
position, i.e., the laws of diffusion. The time dependence of
the variance is completely controlled by the exponent de-
scribing the asymptotic behavior of the probability density of
the random force in the vicinity of its minimum value. It has
also been shown that, depending on the value of this expo-
nent, the particle mass in the weakly underdamped regime
can either enhance or suppress the anomalous diffusion with-
out changing its time dependence.
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